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Abstract

Modulation theory with periodic traveling waves is a powerful, but not rigorous
tool to derive a thermodynamic description for atomic chains with nearest neighbor
interactions (FPU chains). This theory is sufficiently complex to deal with strong
oscillations on the microscopic scale, and therefore it is capable to describe the
creation of temperature and the transport of heat on a macroscopic scale. In this
paper we investigate the validity of modulation theory by means of several numer-
ical experiments. We start with a survey on the foundations of modulation theory.
In particular, we discuss the hyperbolic scaling, the notion of cold data, microscopic
oscillations and Young measures, periodic and modulated traveling waves, and, fi-
nally, the resulting macroscopic conservation laws. Afterwards we discuss how the
validity of a macroscopic theory may be tested within numerical simulations of the
microscopic dynamics. To this end we describe an approach to thermodynamic data
exploration which is motivated by the theory of Young measures, and relies on
mesoscopic windows in space and time. The last part is devoted to several numeri-
cal experiments including examples with periodic boundary conditions and smooth
initial data, and macroscopic Riemann problems. We interpret the outcome of these
experiments in the framework of thermodynamics, and end up with two conclusions.
1. There are many examples for which modulation theory provides in fact the right
thermodynamic description because it can predict both the structure of the micro-
scopic oscillations and their macroscopic evolution correctly. 2. Modulation theory
will fail if the oscillations exhibit a more complicate structure.
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1 Introduction

The atomic chain with nearest neighbour interaction (FPU chain), see Figure
1, consists of N identical particles with unit mass. These are located on the
real axis and are labeled by the index α = 1...N . For given α, let xα(t) and

xα−1 xα
xα+1 xα+2

rα

Figure 1. The atomic chain with nearest neighbour interaction.

vα(t) = ẋα(t) denote the position and velocity, respectively, of the atom α at
time t, and let rα(t) = xα+1(t)−xα(t) be the distance between the atoms α+1
and α. The dynamics of the chain is governed by Newton’s law of motion

ẍα(t) = Φ ′
(

xα+1(t) − xα(t)
)

− Φ ′
(

xα(t) − xα−1(t)
)

, (1)

where Φ is the (nonlinear) atomic interaction potential. For our purposes it
is convenient to consider distance and velocity as the independent variables.
Eliminating x in (1) we find the equivalent system

ṙα(t) = vα+1(t) − vα(t), v̇α(t) = Φ ′
(

rα(t)
)

− Φ ′
(

rα−1(t)
)

. (2)

Since the number of particles is finite we must impose appropriate boundary
conditions, so that (2) becomes a closed system of 2N ODEs with unknowns
r1...rN and v1...vN . Here we consider only two kinds of boundary conditions.
The first one describes a periodic chain, i.e. we suppose r0(t) = rN(t) and
vN+1(t) = v1(t), so that the total momentum and the total energy are con-
served in time. The second kind of boundary conditions allows the computation
of Riemann problems and will be introduced in §3.

Newton’s equations describe the evolution of the atomic chain on the micro-
scopic scale, and thus we call t and α the microscopic time and particle index,
respectively. If the number of particles N is very large, we are not interested in
the complete solution to (1), but rather in its thermodynamic properties. This
means, we shall describe the evolution of some averaged quantities like mean
distance and mean velocity on a suitable chosen macroscopic scale. A micro-
macro transition is a theory which can derive macroscopic evolution equations
directly from (1). Unfortunately, no rigorous theory can do this without mak-
ing further assumptions, but in §2 we show that one can use modulation theory
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with periodic traveling waves in order to establish a micro-macro transition
on a formal level.

In this paper we solely consider the macroscopic scale that results from the
hyperbolic scaling (cf. Figure 2) as follows. We introduce the scaling parameter
ε by ε = 1/N , and define the macroscopic time t and the macroscopic particle
index α by

t = εt, α = εα. (3)

Note that for N → ∞ the macroscopic particle index becomes a continuous

N1

N2

N3

t

α

t

α

Figure 2. The hyperbolic scaling.

variable taking values in the unit interval [0, 1]. Moreover, we define the macro-
scopic space x by x = εx, and this fixes the scaling of all other quantities. In
particular, the identities x/t = x/t and x/α = x/α imply that both the dis-
tance r and the velocity v are invariant under the hyperbolic scaling. Besides
(3) there are other reasonable scalings which provide macroscopic evolution
equations for the atomic chain, see [DK00,SW00,GM04,GM06], and [GHM06]
for an overview.

All considerations which follow are restricted to convex interaction potentials,
because only in this case we can establish the micro-macro transition. A famous
example is the Toda potential

Φ(r) = exp (1 − r) + r − 1, (4)

which makes (2) completely integrable, cf. [Hén74,Fla74], but our approach to
micro-macro transitions is not related to integrability, and applies to all non-
linear and strict convex potentials. Moreover, our numerical results indicate
that the validity of modulation theory does not depend on integrability.

Oscillatory data and thermodynamics The macroscopic description of
the atomic chain becomes very complicated if the atomic data exhibit oscil-
lations on the microscopic scale. In this case, the most challenging problem
is to find an appropriate mathematical description for the macroscopic evo-
lution of the microscopic oscillations. An elegant framework for this issue is
provided by the theory of Young measures as it allows to use probabilistic con-
cepts like distributions functions for the macroscopic description of an purely
deterministic microscopic system. However, relying only on this theory we are
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not able to establish the micro-macro transition. As we will see below, for a
complete macroscopic theory we must combine the notion of Young measures
with some additional assumptions concerning the structure of the microscopic
oscillations. In this paper we always assume that all microscopic oscillations
take the form of modulated traveling waves.

Another way to think about microscopic oscillations is in terms of thermody-
namics. The key idea in this context is the following. The microscopic oscil-
lations can be regarded as a kind of internal motion, in which some amount
of the total energy is stored, and this observation gives rise to an intrinsic
notion of temperature. Although strict thermodynamic concepts are not yet
well established within the mathematical community, their use turn out to be
very fruitful for the macroscopic description of systems with microscopic os-
cillations. Thermodynamics can be easily combined with the notion of Young
measures, and provides an elegant language to describe macroscopic effects
like the motion of mechanical waves or the transport of heat. Moreover, ther-
modynamical arguments allows us to extract the macroscopically relevant in-
formation from the enormous amount of data which come out from numerical
simulations with large particle numbers.

Modern thermodynamics describe a macroscopic body in terms of mechani-
cal and thermodynamical fields like pressure, temperature, and the densities
for mass, momentum, and energy. In the macroscopic Lagrangian representa-
tion these fields depend on time t and the material coordinate, which can be
identified with the macroscopic particle index α. To derive a reasonable ther-
modynamic model for chains we follow the lines of Rational Thermodynamics
which is based on the following two paradigms.

1 First Principles. There exist fundamental balance equations as for in-
stance the (local) conservation laws for mass, momentum and energy. These
equations are considered to by universal, i.e., they are supposed to hold for
all materials and all processes.

2 Material Laws. The second building block are material- and process- de-
pendent constitutive laws which provide pointwise relations between several
thermodynamic fields. In particular, these constitutive relations guarantee
that the universal balance equations become a closed system of PDEs.

Next we explain how the modulation theory with periodic traveling waves fits
into this thermodynamic framework.

Notion of modulation theory In this paper we consider a special class of
microscopic oscillations in FPU chains, namely those which take the form of
modulated traveling waves. The thermodynamic model for their macroscopic
evolution turns out to be provided by Whitham’s modulation theory, and is
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based on (periodic) traveling waves. A traveling wave is an exact solution to
(1) which satisfies the ansatz

xα(t) = rα+ vt+ X(kα+ ωt). (5)

Here r, v, k, and ω are four parameters, and can be interpreted as mean
distance, mean velocity, wave number, and frequency, respectively. The wave
profile X depends only on the phase variable ϕ = ωt + kα, and describes
the microscopic oscillations. In what follows we solely consider periodic wave
profiles with unit periodicity length, i.e., we assume X(ϕ+ 1) = X(ϕ).

A modulated traveling wave is not an exact but only approximate solution to
(1) for which the traveling parameters vary on the macroscopic scale. The main
issue of modulation theory is the derivation of a system of PDEs that governs
the macroscopic evolution of the modulated traveling wave parameters. As we
show in §2.4, this system consists of four macroscopic conservation laws

∂ t

(

r, v, k, S
)

(t, α) + ∂α

(

−v, +p, −ω, +g
)

(t, α) = 0, (6)

which can be interpreted as the fundamental conservation laws for mass, mo-
mentum, wave number, and entropy. 4 Moreover, the modulation equations
formally imply

∂ t

(

1
2
v2 + U

)

(t, α) + ∂α

(

vp+ ωg
)

(t, α) = 0, (7)

which is the conservation law for the energy. The system (6) consists of four
equations for seven quantities. It is closed by the equation of state and a Gibbs
equation, which both are intimately related to traveling waves, see §2. The
equation of state provides the internal energy U as function of mean distance
r, wave number k, and entropy S, and depends on the interaction potential Φ
(which embodies the material properties). All other constitutive relations are
in turn determined by the universal Gibbs equation

dU = ω dS − p dr − gdk. (8)

The modulation theory described above is not completely understood for the
following two reasons.

(1) Up to now, the validity of the modulation system (6) with (8) is not jus-
tified rigorously for arbitrary potentials but only for the Toda chain, and
some other very special potentials, see [Her05,DHM06]. This lack of rigor

4 Here, and likewise in other thermodynamic field theories as for instance the Euler
system, we find a conservation law for the entropy, but we cannot not expect the
entropy to be conserved across a shock solution.
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was the starting point for our investigations. Our simulations provide nu-
merical evidence that (6) and (8) describe in fact the thermodynamic
limit of the atomic chain for a wide class of initial value problems.

(2) All properties of the macroscopic system (6) are determined by the equa-
tion of state. However, this equation of state depends on the interaction
potential Φ, and is almost never given explicitly. This causes several dif-
ficulties which we discuss within §2 and §3.

There exists a well established theory for modulated traveling waves in inte-
grable systems (Toda chain, KdV equation), which relies on a a careful analysis
of the dynamics of systems in Lax-form, see [El05,LL83,Ven85]. Although this
theory are very satisfactory from a mathematical point of view, it is very hard
to carry over their concepts to non-integrable systems. More precisely, all rig-
orous results for the Toda chain are formulated in very special coordinates
which are un-physical as they have no counterparts in non-integrable chains.
For this reason we have chosen a framework built on the generic concepts of
Young measures and thermodynamics, which can be applied to both integrable
and non-integrable interaction potentials.

We mention that our considerations concern the modulations of single-phase
traveling waves only. It is known for integrable system that there exists vari-
ants of modulation theory based on two- or even multi-phase traveling waves,
see [BY92,DM98]. Moreover, numerical simulations in [HR07] indicate that
modulated multi-phase traveling waves exists for all convex interaction poten-
tials, but this phenomenon is not addressed in this paper.

Main issues We consider several numerical simulations of initial value prob-
lems for FPU chains with nonlinear but convex interaction potentials. We
always choose the initial data from the class of modulated traveling waves,
and focus on the following two objectives. Note that it is not our intention to
present a study on accuracy, efficiency or convergence properties of numerical
ODE integrators.

(1) We study the convergence of oscillatory atomic data in the limit N → ∞.
The key idea is that we can expect the atomic data to converge to a
unique limit in the sense of Young measures. Moreover, we describe how
the thermodynamically relevant information can be extracted from the
enormous amount of microscopic data. To this end we introduce meso-
scopic space-time windows which are very small on the macroscopic scale
but very large with respect to microscopic units. These windows allow us
to compute local distribution functions of the atomic data as well as local
mean values of microscopic observables.

(2) We present an approach for the numerical justification of modulation
theory that can be applied to all convex atomic interaction potentials.
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To that purpose we show that the microscopic oscillations arising in the
numerical data can in fact be described by modulated traveling waves.
Finally, exploiting the theory of Young measures we can conclude that
the macroscopic dynamics of the modulated parameters is governed by
the modulation equations (6).

In this paper we consider two classes of initial value problems. Class S con-
cerns finite chains with periodic boundary conditions, and here we assume
that the initial modulation of the traveling wave parameters is smooth with
respect to the macroscopic particle index α. Within the Class R we study
microscopic Riemann problems for infinite chains, where in the simplest case
the initial distances and velocities are piecewise constant with a single jump
discontinuity.

Energy conservation as the origin of dispersive shocks Some aspects
of Riemann problems have much in common with zero dispersion limits. To
explain the basic phenomenon let us start with the famous Burgers’ equation

∂ tu+ u ∂αu = 0. (9)

which is, on a formal level, the zero dispersion limit of the KdV equation

∂ tu+ u ∂αu+ ε ∂ 3
αu = 0. (10)

Here, u is a scalar field depending on the macroscopic coordinates (t, α),
and ε is an artificial small parameter. The main question is, under which
conditions the solutions to (10) converge to (weak) solutions to (9) as ε →
0. The rigorous theory for this problem was developed in [LL83,Ven85] by
exploiting the complete integrability of (10). It is known that for given smooth
initial datum u0 there usually exists a critical time tcrit such that (9) has a
unique smooth solution for 0 ≤ t < tcrit only. At time t = tcrit this solution
becomes discontinuous in one point αcrit, and for t > tcrit solutions exist in a
weak sense only. More precisely, for t > tcrit any weak solution u satisfies ∂ tu+
1
2
∂α (u2) = 0 in the sense of distributions. Imposing the same initial datum u0

for KdV, the typical behavior for ε → 0 is as follows, see [Lax86,Lax91,LLV93].
For 0 ≤ t < tcrit the solutions uε to (10) converge in some strong sense to
the unique smooth solution to (9). However, for t > tcrit the KdV-solutions
become highly oscillatory in a neighborhood of αcrit with typical wavelength
1/
√
ε. For t > tcrit the functions uε still converge to a weak limit 〈u〉, but

the main point is the following. The weak limit 〈u〉 does not satisfy Burgers
equation, i.e. ∂ t 〈u〉 + 1

2
∂α 〈u〉2 6= 0, because for the weak limit 〈u2〉 of u2

ε we
have 〈u〉2 6= 〈u2〉. Similar phenomena occur in the limit for various dispersive
difference schemes, see [GL88,HL91,LL96].

We next describe the macroscopic evolution of cold data for the atomic chain
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because there exists a close relation to the above mentioned phenomenon. We
say the atomic data are cold, if there exist two macroscopic fields r and v
(depending on t and α) such that

rα(t) = r(εt, εα), vα(t) = v(εt, εα). (11)

Inserting this ansatz into Newton’s equation (2) yields to leading order

∂ t r −∇+εv = 0, ∂ t v −∇−εΦ′(r) = 0,

where ∇+ε, ∇−ε are discrete differential operators. In the limit ε → 0 we
formally obtain the PDEs

∂ t r − ∂α v = 0, ∂ t v − ∂α Φ′(r) = 0, (12)

which can be viewed as the macroscopic conservation laws for mass and mo-
mentum. These equations provide a reasonable mechanical model for the evo-
lution of a nonlinear string. Moreover, the same equations appear within isen-
tropic gas dynamics, and one usually refers to these equations as the p-system
(with p = −Φ′). It is well known, see [Smo94,Daf00,GR96], that for convex Φ
the string equations (12) form a nonlinear and strictly hyperbolic system, and
imply the conservation of energy

∂ t

(

1
2
v2 + Φ(r)

)

− ∂α (vΦ′(r)) = 0 (13)

for all smooth solutions. Similarly to above, the string equations in fact de-
scribe the thermodynamic limit for cold atomic data as long as these data
are smooth on the macroscopic scale. However, when the nonlinearity forms a
shock at time tcrit, the system (12) is no longer a thermodynamic consistent
model for t > tcrit. To see this let us summarize some basic facts about shock
solutions to (12). For simplicity we assume that the convex potential Φ has a
strictly convex (or concave) derivative Φ′, so that all eigenvalues of (13) are
genuinely nonlinear. According to the Lax theory for hyperbolic systems, see
for instance [GR96,Daf00,LeF02], a shock wave propagates with a constant
shock speed σ, and the basic variables r and v satisfy the Rankine-Hugeniot
jump conditions across the shock. These conditions read

−σ|[r]| − |[v]| = 0, −σ|[v]| − |[Φ′(r)]| = 0, (14)

where |[·]| denotes as usual the jump. However, (14) implies that the jump
condition for the energy must be violated, i.e., for any shock with (14) we
have

−σ|[1
2
v2 + Φ(r)]| − |[vΦ′(r)]| 6= 0. (15)

Consequently, the string equations predict some production for the macro-
scopic energy (the Lax criterion selects the shocks with negative energy pro-
duction). In contrast to (15), Newton’s equations conserve mass, momentum
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and energy, and for this reason the string equations cannot describe the ther-
modynamic limit beyond the shock. We will see in the numerical simulations
that the atomic data beyond the macroscopic shock start to oscillate on the
microscopic scale, and self-organize into modulated traveling waves. The aris-
ing oscillations spread out in the macroscopic space-time and give rise to a
dispersive shock wave. This corresponds to the fact that some amount of ma-
chanical energy is dissipated into internal energy, and shows that our notion of
temperature is generic for atomic chains. It is one of the merits of modulation
theory that it can describe the microscopic oscillations emerging from cold
shocks.

The numerical investigation of shocks in the atomic chain started with Holian
and Straub [HS78], and during the last decades a lot of research concerned Rie-
mann problems in the Toda chain, see [HFM81,VDO91,Kam91,BY92,DM98],
where the onset of dispersive shock waves is well understood. However, there is
no mathematical theory for dispersive shocks in non-integrable chains, and all
rigorous results for the Toda chain do not address the macroscopic behavior
of the thermodynamic fields. For these reasons we return to dispersive shocks
in §5.

Main results The numerical simulation presented below provide numerical
evidence for the following propositions.

(i) If all macroscopic fields are smooth, then the oscillations in the atomic
data can be described in terms of modulated traveling waves, and the
macroscopic dynamics is governed by the modulation system (6) with
(8).

(ii) Moreover, we can use modulated traveling waves to describe the micro-
scopic oscillations which arise when cold data form shocks.

(iii) If the shocks emerge from data with temperature, then usually the micro-
scopic oscillations exhibit a more complicated structure, and modulation
theory fails in this case.

In summary we can conclude that modulation theory provides the correct
thermodynamic description for a wide class of problems. In particular, the
theory is able to describe the creation of temperature from cold data as well as
the transport of heat in a nonlinear medium. Recall that all these propositions
are valid only under the following restrictions. (i) The interaction potential Φ
is convex, (ii) the macroscopic scale results from the hyperbolic scaling, and
(iii) the initial data are given in form of modulated traveling waves.

Outline of this paper This paper is organized as follows. In §2 we give
an overview on the foundations of this study. We use the theory of Young
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measures in order to derive some restrictions for the macroscopic dynamics of
any reasonable thermodynamic limit under the hyperbolic scaling. Afterwards
we discuss the existence and thermodynamic properties of periodic traveling
waves, and give an overview on the modulation theory with periodic single-
phase traveling waves as it is developed in [FV99,Her05,DHM06]. In §3 we
proceed with a discussion of the numerical methods and techniques. In partic-
ular, we introduce the notion of mesoscopic space-time windows, and discuss
the numerical computation of both local distribution functions and local mean
values. Finally we explain how one can associate a periodic traveling waves
to a given space-time window, and summarize our strategy for the numerical
justification of modulation theory.

§4 contains the numerical simulations for periodic boundary conditions and
initial data with smooth mean values on the macroscopic scale. We start with
two examples, S1 and S2, where we impose temperature in form of microscopic
oscillations already in the initial data. These two examples illustrate that the
atomic data converge as N → ∞ to a unique limit in the sense of Young
measures. Moreover, for sufficiently small macroscopic times modulation the-
ory turns out to be capable to describe the arising microscopic oscillations
correctly. However, it may happen that the data form a macroscopic shock at
a critical time tcrit, and in this case modulation theory fails for t > tcrit. In
the third example S3 we study the evolution of cold but smooth initial data.
The atomic data remain cold for t < tcrit, where tcrit is again the time where
the first shock is formed. For t > tcrit the atomic data beyond this shock self-
organize into modulated traveling waves. Finally, Example S4 illustrates that
the restriction to convex interaction potentials is essential.

The problem how macroscopic shock waves influence the validity of modulation
theory is studied in more detail within §5, where we solve three macroscopic
Riemann problems. In all three examples we find that in the limit N → ∞ the
atomic data reproduce the typical structure for solutions of Riemann problems.
This means the macroscopic part of all solutions is self-similar, and consists
of several waves separated by constant states. With Example R1 we study
the contact problem for two cold half-chains, and similarly to Example S3
we find that microscopic oscillations arising from cold shocks take the form
of modulated traveling waves. In Examples R2 we impose cold initial data on
one half-chain but initial data with temperature on the other one. Surprisingly
we find that modulation theory can predict the structure of the resulting
microscopic oscillations correctly. Finally, in Example R3 both half-chains are
initialized with temperature. The resulting microscopic oscillations exhibit a
complicate structure which cannot be described by modulated traveling waves.
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2 Foundations of modulation theory

2.1 Macroscopic evolution of data with temperature and Young measures

In §1, the restriction to cold data has led to the quite simple set of macroscopic
equations (12). However, micro-macro transitions with oscillatory atomic data
are much more involved, and call for thermodynamic concepts like temperature
and heat transport. In this section we exploit the theory of Young measures,
and derive some essential building blocks for the thermodynamic description
of the atomic chain.

(1) Young measures provide an elegant framework for the interpretation of
our numerical experiments, and allow to identify the thermodynamic rel-
evant properties that are independent of the particle number. Moreover,
Young measures bridge between the deterministic microscopic dynamics
and a probabilistic description on the macroscopic scale.

(2) The numerical justification in §4 and §5 essentially relies on the com-
parison of different Young measures. More precisely, we will compare the
measures produced by the numerical data with those that are predicted
by modulation theory.

(3) The theory of Young measures provide non-trivial restrictions for the
macroscopic dynamics as it implies three universal macroscopic conser-
vations laws.

In what follows we consider a rectangular domain Ω in the macroscopic La-
grangian space-time given by Ω = {(t, α) : 0 ≤ t ≤ tfin, α ∈ [0, 1]}, where
tfin > 0 is a fixed macroscopic time. The main advantage of Young measures
can be stated in terms of a compactness theorem.

Theorem 1 Suppose that K is a compact subset of the two-dimensional Eu-
clidian space, and suppose that (Q(n))n=1, 2, ... is a sequence of functions Ω →
K. Then there is a subsequence, still denoted by Q(n), and a family of prob-
ability measures Ω ∋ (t, α) 7→ µ(t, α, dQ) ∈ Prob(K) such that for any con-
tinuous observable Ψ = Ψ(Q) on K the following convergence is satisfied

∫

Ω

Ψ
(

Q(n)(t, α)
)

φ(t, α) dt dα
n→∞−−−−→

∫

Ω

〈Ψ〉(t, α)φ(t, α) dt dα. (16)

Here the function 〈Ψ〉 is defined by

〈Ψ〉(t, α) =
∫

K

Ψ(Q)µ(t, α, dQ), (17)

and φ denotes an arbitrary smooth test function.
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Remarks

(1) A proof of Theorem 1 can be found in [Tay96,Hör97,Daf00].
(2) The subsequence provided by Theorem 1 converges to µ in the sense

of Young measures. Usually one refers to the whole family (t, α) 7→
µ(t, α, dQ) as the Young measure, whereas for a given point (t, α) ∈ Ω
the probability measure µ(t, α, dQ) is called the disintegration of µ at
this point.

(3) According to (19) we can regard the functions 〈Ψ〉 as weak limits.
(4) If the sequence (Q(n))n converges strongly to some limit function Q(∞),

then (16) and (17) imply

µ(t, α, dQ) = δ
Q(∞)(t, α)(dQ)

where δQ0(dQ) denotes a Dirac distribution located in the point Q0. How-
ever, if the functionsQ(n) are oscillatory, then the support of each measure
µ(t, α, dQ) will contain more than one point. In this case, the probabil-
ity measure µ(t, α, dQ) describes the oscillations in the vicinity of (t, α),
and 〈Ψ〉(t, α) gives the local mean value of the observable Ψ.

(5) Theorem 1 claims that sequences which are bounded in L∞ are compact
w.r.t. to the convergence of Young measures. There exist generalizations
of this result that rely on uniform bounds in Lp with p > 1, but then
additional assumptions on the decay behavior of the observables Ψ are
needed. For simplicity we omit the details, and refer to [War99].

Next we describe how we can apply Theorem 1 in the context of micro-macro
transitions for the atomic chain. For that issue we restrict to finite chains
with periodic boundary conditions so that the total energy of the chain is
finite and conserved during the evolution. In what follows let (Ni)i=1, 2, ... be
a sequence of particle numbers with Ni → ∞ as i → ∞, and for any i let
Q(i)

α (t) =
(

r(i)
α (t), v(i)

α (t)
)

be a solution to Newton’s equation defined for 0 ≤
t ≤ Nitfin and α = 1, ..., Ni. According to the hyperbolic scaling and the
formal identification

Q(i)
α (t) Q(i)(Nit, Niα)

we can regard microscopic solutions to Newton’s equations as piecewise con-
stant (but usually oscillatory) functions on the macroscopic domain Ω. To
achieve uniform bounds we consider only those sequences Q(i) whose total
energy is proportional to the particle number, i.e.,

1

Ni

Ni
∑

α=1

(

1
2
v(i)

α (0)2 + Φ
(

r(i)
α (0)

))

= C + O
(

1

Ni

)

, (18)

for some constant C independent of Ni. Such initial data usually provide
solutions that are oscillatory, but (at least for macroscopic times tfin > 0
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being not too large) bounded in L∞. Of course, this is rather an additional
assumption, but it is satisfied in all simulations presented here. Alternatively,
we could use energy conservation and (18) in order to prove suitable Lp-bounds
for certain classes of interaction potentials, see [Her05] for the details.

Exploiting Theorem (1) we find at least a subsequence, still denoted by (Ni)i,
and a Young measure µ such that the identity

∫

Ω

Ψ
(

Q(i)(Ni t, Ni α)
)

φ(t, α) dt dα
i→∞−−−→

∫

Ω

〈Ψ〉(t, α)φ(t, α) dt dα. (19)

is satisfied for all continuous observables Ψ and all smooth test functions φ,
where 〈Ψ〉 is given by (17). In §3 we will explain how the probability measures
µ(t, α, dQ) and the mean values 〈Ψ〉(t, α) can be computed in numerical
simulations. Note that we consider the common probability distribution of
distance and velocity instead of their separate statistics. Consequently, any
measure µ(t, α, dQ) can be interpreted as a weight function defined on the
microscopic state space which is the plane spanned by distance and velocity.

The only assumption we made in Theorem 1 regards the existence of bounds,
and therefore we cannot expect that the whole sequence (Q(i))i has only one
accumulation point in the sense of Young measures. However, in our simula-
tions we study sequences of atomic chain for which the initial data converge
to a modulated traveling wave. For this reason we expect to find a unique
accumulation point, which implies convergence of the whole sequence.

In §1 we have reformulated Newton’s equations as a system of first order
equations with variables r and v, see (2). Since the appearing difference op-
erators can be viewed as the discrete counterparts of the divergence opera-
tor, equations (2) can be interpreted as the microscopic conservations laws
for mass and momentum. Moreover, (2) implies a microscopic conservation
law for the atomic energy, because with eα(t) = 1

2
v2

α+1(t) + Φ(rα(t)) and
fα(t) = −vα(t)Φ′(rα(t)) we find ėα(t) = −fα(t) + fα+1(t). It is direct con-
sequence of the microscopic conservation laws, see [Her05] for a proof, that
any Young measure limit of atomic chains must satisfy the following macro-
scopic conservation laws for mass, momentum and energy.

Theorem 2 Suppose that a sequence (Q(i))i of solutions to Newton’s equations
converges to a Young measure µ. Then the following equations

0 = ∂ t 〈r〉 − ∂α 〈v〉,
0 = ∂ t 〈v〉 − ∂α 〈Φ′(r)〉, (20)

0 = ∂ t

〈

1
2
v2 + Φ(r)

〉

− ∂α 〈vΦ′(r)〉

are satisfied.
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Remarks

(1) Apparently, the PDEs (20) constitute a restriction for any Young mea-
sure limit of the atomic chain, and can be proved by considering bounded
sequences, and extracting subsequences. However, apart from these re-
strictions the result applies to any kind of oscillatory data.

(2) In general we cannot express the fluxes in terms of the densities. The sys-
tem (20) is therefore not closed, i.e., it does not determine the macroscopic
evolution completely. However, the main observation is the following. If
we have further information about the pointwise structure (pointwise in t
and α) of the measures µ(t, α, dQ), then we are able to derive pointwise
constitutive relations, and in this case the system (20) provides infor-
mation about the spatial and temporal evolution of the densities. This
argument plays a central role in our justification approach in §3.4.

Within modulation theory we start with some assumptions concerning the
pointwise structure of the microscopic oscillations in the chain. Then we iden-
tify (i) further macroscopic evolution laws extending (20), and (ii) constitutive
relations that close the extended system, so that finally we end up with a com-
plete macroscopic model.

2.2 Existence of periodic traveling waves

In this section we summarize the most important properties of periodic trav-
eling waves. Recall that a traveling wave is an exact solution to the atomic
chain satisfying (5). Inserting this ansatz into (1) we find the advance-delay
differential equation

ω2 d2

dϕ2
X(ϕ) = Φ ′(r + X(ϕ+ k) − X(ϕ)) − Φ ′(r + X(ϕ) − X(ϕ− k)), (21)

where ϕ = kα + ωt denotes the phase variable, and X is the wave profile
which describes the microscopic oscillations. For our micro-macro transition
with temperature we use solely periodic traveling waves. Since the periodicity
length can be chosen arbitrarily, we always suppose X(ϕ+ 1) = X(ϕ). Note
that the parameter v does not appear in (21) due to the Galilean invariance of
(1), but within modulation theory this additional degree of freedom becomes
important.

Each periodic traveling wave provides a highly oscillatory solution to the
atomic chain, and has two characteristic properties, see Figure 3.

(1) All oscillations are caused by a constant phase shift between adjacent
particles. In particular, for all α the curve t 7→ (rα(t), vα(t)) has the
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Figure 3. Schematic representation of a periodic traveling waves in the microscopic
phase space. All curves t 7→ (rα(t), vα(t)) differ only by a phase shift.

same image in the microscopic phase space, that is the plane spanned by
distance and velocity. This image can be viewed a the characteristic trace
of a traveling wave.

(2) There is a strong coupling between oscillating distances and velocity as
the trace of each periodic traveling waves is a closed curve.

At a first glance, both properties are not in accordance with our usual notion
of temperature. However, any reasonable macroscopic model should describe
these oscillations in the language of thermodynamics because some amount
of energy is stored in these oscillations. It is the great advantage of modula-
tion theory that it provides such a thermodynamically consistent description
including temperature, internal energy, heat flux and so on.

For completeness we cite an existence result for four-parameter families of
periodic traveling waves from [FV99]. A simplified proof in terms of convex
analysis can be found in [DHM06]. Other existence results for periodic (or non-
periodic) traveling waves are given in [FW94,AG96,FP99,FV99,PP00,Pan05].

Theorem 3 Suppose that the convex interaction potential Φ is defined on the
whole real axis, twice continuously differentiable, and satisfies 0 < m ≤ Φ′′ ≤
M for some constants m, M . Then, for each four-parameter set (r, v, k, γ)
with 0 < k < 1 and γ > 0 there exists a frequency ω > 0 and a 1-periodic,
smooth wave profile X such that the traveling wave equation (21) as well as

0 =
∫ 1

0
X(ϕ) dϕ, γ = 1

2

∫ 1

0
(X′(ϕ))

2
dϕ, (22)

are satisfied.

This theorem solves the non-trivial existence problem for periodic traveling
waves, but many questions remain open as the following remarks show.

Remark 4

(1) The restriction 0 < k < 1 is natural as for k = 0 and k = 1 the equation
(21) becomes degenerate. In some sense these limiting cases correspond
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to solitary waves, see [PP00]. Moreover, for γ = 0 there exists only the
trivial solution X ≡ 0, and there is no condition for ω in this case.

(2) Equation (21) is invariant under shifts w.r.t. ϕ, so that each shifted so-
lution provides a further solution. It is an open problem whether or not
traveling waves are unique up to phase shifts.

(3) The technical assumptions concerning the second derivative can be weak-
ened by means of a priori estimates. In fact, it can be shown, see [Her05],
that for each traveling wave with (22), and each γ > 0 we have |X(ϕ)| ≤√

2γ. Thus we can choose m and M as function of γ, and Theorem 3
applies to all strictly convex and smooth interaction potentials, as for
instance the Toda potential (4).

(4) The approximation of the traveling waves is investigated in [DH05].
(5) Theorem 3 provides the existence of a four-parameter family of periodic

traveling waves for a wide class of nonlinear potentials, but up to now
there is no result that guarantes the smooth dependence on the parameters.
Nevertheless, motivated by numerical simulations we always suppose that
traveling waves depend smoothly on their parameters.

(6) For modulation theory we are interested in four-parameter families of
traveling waves parametrized by (r, v, k, ω), compare §2.4. Although not
proven rigorously, numerical simulations indicate that for nonlinear po-
tentials one can replace (at least locally) the parameter γ by ω.

For arbitrary wave number k it is hard to solve the difference-differential equa-
tion (21). However, for k = 1/2 equation (21) reduces to a simple Hamiltonian
ODE, because (21) implies the following symmetry properties

R(ϕ+ 1/2) = −R(ϕ), V (ϕ+ 1/2) = −V (ϕ), (23)

where R(ϕ) = X(ϕ) − X(ϕ− 1/2), and V (ϕ) = ω dX

dϕ
(ϕ). With (23) equation

(21) is equivalent to

ω
dR

dϕ
(ϕ) = 2V (ϕ), ω

dV

dϕ
(ϕ) = Φ′(r − R(ϕ)) − Φ′(r +R(ϕ)). (24)

Traveling waves with wave number k = 1/2 have a further remarkable prop-
erty. If the atoms in the chain evolve according to such a traveling wave, any
snapshot of the atomic data for fixed time will show only two distances and
two velocities. In other words, depending on whether α is odd or even we have
either rα(t) = r1(t) and vα(t) = v1(t), or rα(t) = r2(t) and vα(t) = v2(t). For
this reason we refer to traveling waves with k = 1/2 as binary oscillations.
Note that we always find r1(t)+r2(t) = 2r and v1(t)+v2(t) = 2v, where r and
v are the constant mean distance and mean velocity, respectively. Moreover,
arbitrarily chosen r1(0), r2(0), and v1(0), v2(0) determine uniquely a solution
to (24), and hence we can easily initialize binary oscillations in the atomic
chain. This becomes useful in §4 and §5, where we choose the initial data from
the class of modulated binary oscillations.
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2.3 Thermodynamics for traveling waves

As mentioned in the introduction, we can regard each periodic traveling wave
as a single thermodynamic state of the atomic chain. Therefore it is very
natural to study the relations between the traveling wave parameters and the
mean values of different atomic observables. The resulting equations are the
constitutive laws of thermodynamics, depend on the material (i.e., on the
atomistic interaction potential Φ), and provide the closure for the universal
conservation laws.

In order to investigate the thermodynamic properties of traveling waves we
introduce two further 1-periodic profile functions R and V by V(ϕ) = d

dϕ
X(ϕ),

and R(ϕ) = X(ϕ+ k/2) − X(ϕ− k/2). These functions are related to the os-
cillating atomic distances and velocities in an exact traveling wave via rα(t) =
r + R(kα + ωt+ k/2), vα(t) = v + ωV(kα+ ωt), and the characteristic trace
of the traveling waves equals the image of the curve

ϕ 7→ QTW(ϕ) = (r + R(ϕ+ k/2), v + ωV(ϕ)). (25)

Most of the thermodynamic quantities are defined as mean values of the os-
cillating atomic data in a traveling wave. We define

W =

1
∫

0

Φ(r + R(ϕ)) dϕ internal potential energy,

p = −
1
∫

0

Φ′(r + R(ϕ)) dϕ pressure = negative force,

K =
ω2

2

1
∫

0

V(ϕ)2 dϕ internal kinetic energy,

and T = 2K kinetic temperature, F = K −W internal action, U = K + W
internal energy, E = 1

2
v2 +U total energy, and L = 1

2
v2 +F total action. Note

that the norm parameter γ with γ = 1
2
S/ω = 1

2

∫ 1
0 V(ϕ)2 dϕ has no physical

interpretation at all, but plays an important role in the existence theorem 3.

There exist other important thermodynamic quantities which have no micro-
scopic counterpart. It turns out that S and g, defined by

S := ω

1
∫

0

V(ϕ)2 dϕ, g := −
1
∫

0

1

2
(V(ϕ+ k/2) + V(ϕ− k/2)) Φ′(r + R(ϕ)) dϕ,

can be interpreted as the macroscopic entropy density and entropy flux, re-
spectively, cf. [Her05,DHM06]. Note that all these thermodynamic quantities
are constant as long as we consider exact traveling waves, but in modula-
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tion theory they become fields in t and α whose evolution is described by the
modulation equations (6).

As mentioned above, a fundamental question in thermodynamics concerns
the constitutive relations being satisfied by the thermodynamic quantities. In
[DHM06] it is proved that any (smooth) four-parameter family of traveling
waves fulfils a universal Gibbs equation. This Gibbs equation relates all con-
stitutive laws to a material-dependent equation of state which provides the
parameter dependence of a single thermodynamic potential. Depending on the
chosen set of independent variables we obtain different alternatives, which,
however, are all equivalent. The main results are listed in the following table.

independent
variables

thermodynamic
potential

Gibbs equation

(r, k, γ) W = W (r, k, γ) dW = ω2 dγ − p dr − g dk

(r, k, ω) F = F (r, k, ω) dF = S dω + p dr + g dk

(r, k, S) U = U(r, k, S) dU = ω dS − p dr − g dk

The status of these identities is as follows. If the equation of state is known
for a given potential Φ, then all other constitutive relations can be determined
by means of the corresponding Gibbs equation. For instance, if we know how
the internal energy U depends on r, k, and S, we know that pressure p and
frequency ω satisfy p(r, k, S) = −∂rU(r, k, S) and ω(r, k, S) = ∂SU(r, k, S).
However, for almost all Φ we lack explicit expressions for the equation of state,
and for this reason the modulation theory for FPU chains is not completely
understood. On the other hand, there are some special potentials for which
explicit expressions are available. The formulas for the following two examples
are derived in [Her05,DHM06].

The harmonic chain with quadratic interaction potential Φ(r) = c0 + c1 r +
c2
2
r2. Here the linearity of Φ ′ implies that explicit expressions for all traveling

waves are available. Therefore we may compute the equation of state, and
obtain

U(r, k, S) = c0 + c1r + 1
2
c2r

2 + ω(k)S. (26)

Note that the harmonic dispersion relation ω(k) =
√
c2 sin (πk)/π provides

the frequency ω is a function of the wave number k. However, for generic
nonlinear potentials we expect that the frequency ω can be chosen as fourth
independent parameter.

The hard sphere model with interaction radius r0. Here all atomic interactions
are modeled as elastic collisions between hard spheres with radius r0. This
gives rise to an interaction potential Φ with Φ(r) = +∞ for r < r0 and
Φ(r) = 0 for r ≥ r0. Although this potential is not smooth the notion of

18



traveling waves may be generalized to this case, and again we are able to
derive explicit expressions for traveling waves. The corresponding equation of
state turns out to be

U(r, k, S) = 1
2
S2 k (1 − k)/(r − r0)

2. (27)

We mention that the hard sphere model describes the high energy limit for
certain potentials, see [Tod81] for the Toda potential, and [FM02] for Lennard-
Jones potentials.

To conclude this section we discuss the connections between Young mea-
sures and traveling waves. If we consider an exact traveling waves solutions
with fixed parameters on the macroscopic scale, we can regard this oscilla-
tory solutions as a Young measure with constant disintegration. This means
µ(t, α, dQ) = µTW( dQ) in the sense of §2.1, where the traveling wave measure
µTW( dQ) is given by

∫

phase space

Ψ(Q)µTW(dQ) =

1
∫

0

Ψ
(

QTW(ϕ)
)

dϕ, (28)

and depends on the parameters of the traveling wave. In particular, the support
of µTW( dQ) equals the characteristic trace of the traveling wave, that is the
image of the curve (25), and µTW( dQ) can be regarded as a height function on
its support. Finally we mention that the averages of atomic observables with
respect to µTW( dQ) coincide with our thermodynamics definitions from above.
For instance, the traveling wave parameter mean distance r and mean velocity
v coincide with the averaged atomic distances and velocities, respectively, and
for the traveling-wave pressure p we find

−p =

1
∫

0

Φ′(r + R(ϕ)) dϕ = 〈Φ′〉 =
∫

phase space

Φ′(r)µTW( dQ).

2.4 Modulation equations

Modulation theory is a powerful tool which provides an effective dynamical
model on the macroscopic scale. It was originally developed in the context
of partial differential equations, see the examples in [Whi74], but can also be
applied to discrete models as for instance the atomic chain, see [FP99], or the
discrete nonlinear Schödinger equation, cf. [HLM94]. The modulation theory
used in this paper relies on periodic traveling waves and leads to the system of
modulation equations (6). Recall that generalizations to multi-phase traveling
waves are possible but this is not addressed here.
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The main idea behind modulation theory is the construction of approximate
solutions to the atomic chain (2) by allowing the traveling wave parameter to
vary on the macroscopic scale. A modulated traveling waves is an approximate
solution of Newton’s equations which satisfies the following ansatz for the
atomic positions

xα(t) = 1
ε
X(εt, εα) + X̃

(

εt, εα; 1
ε
Θ(εt, εα)

)

+ O(ε), (29)

where X and Θ are two macroscopic functions. The modulated traveling wave
parameters now are fields in t and α, and are determined as derivatives of X
and Θ via

v(t, α) = ∂ tX(t, α), r(t, α) = ∂αX(t, α), (30)

ω(t, α) = ∂ t Θ(t, α), k(t, α) = ∂α Θ(t, α).

The function X̃ serves to model the microscopic oscillations and provides the
link to traveling waves via

X̃(t, α; ϕ) = X(r(t, α), v(t, α), k(t, α), ω(t, α); ϕ),

where X is a family of traveling wave profiles depending on the parameters
r, v, k, and ω, as well as on the phase variable ϕ. To ensure that (29) yields
in fact approximate solutions to (1), we cannot choose X and Θ arbitrarily,
but must satisfy some restrictions. We follow Whitham’s lines of thought,
and use an averaged Lagrangian in order to identify the evolution equations
for the macroscopic parameter modulation. We insert the ansatz (29) into
the expression for the total action integral of a finite chain with periodic
boundary conditions, and replace the arising sums over α by integrals with
respect to the phase variable ϕ and the macroscopic particle index α. After
some elementary calculations, see [FV99,DHM06] for more details, we obtain
the averaged action integral

Lav(X, Θ) =

tfin
∫

0

1
∫

0

L(∂αX, ∂ tX, ∂α Θ, ∂ t Θ) dα dt

where L is the internal action of a traveling wave with parameters (r, v, k, ω),
see §2.2. According to Whitham, the modulation equations result from the
Principle of Least Action applied to the averaged action integral. Doing so we
find the Euler-Lagrange equations

∂ t (∂vL) + ∂α (∂rL) = 0, ∂ t (∂ωL) + ∂α (∂kL) = 0,

as well as the consistency relations ∂ t r = ∂α v, and ∂ t k = ∂αω, which are
a direct consequence of the definitions (30). This form for the modulation
equations was at first derived in [FV99], and generalizes classical results of
Whitham for nonlinear wave equations, see [Whi74].
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In the next step we can rephrase the modulation equations in our thermody-
namic language. Recall that the total action L satisfies the Gibbs equation
dL = S dω − p dr − g dk + v dv, where entropy density S, pressure p, and
entropy flux g are defined within §2.2. These identities reveal that the system
(6) is in fact equivalent to Whitham’s modulation equations. We prefer to
consider the densities in (6) as the independent variables, and this gives rise
to the Gibbs equations (8), where the internal energy U plays the role of the
thermodynamic potential. Moreover, one can show that this system implies
the conservation law (7) for the total energy E = 1

2
v2 + U with energy flux

pv + ωg. Note that the equation of state, which provides U as a function of
the densities r, k, and S, strongly depends on the material (i.e., on the atom-
istic interaction potential Φ) via the corresponding family of periodic traveling
waves.

As explained within §2.1, the modulation equations for r, and v, and E can be
viewed as a concretization of the universal system (20) stated in Theorem 2. In
fact, if we consider a sequence of solutions to Newton’s equations that converge
to a unique Young measure, and if we assume that in each macroscopic point
(t, α) the disintegration of the limit measure coincides with a periodic traveling
wave, then it follows that the fluxes in (20) must satisfy the constitutive
relations for periodic traveling waves. In this sense we can regard the system
of modulation equations as an closed extension of (20).

It is an remarkable fact that Whitham’s modulation theory yields a reasonable
thermodynamic model consisting of universal balance equations, a universal
Gibbs equation, and a material-dependent equation of state. However, up to
now the modulation theory for FPU chains is not completely understood, and
many questions remain open. This lack of rigorous understanding was a strong
motivation for our numerical experiments. The most important open problems
are the following.

(1) In modulation theory we suppose that traveling waves depend on four
independent parameters. There exist existence proofs for four-parameter
families of traveling waves, see Theorem 3, but presently there are no
corresponding uniqueness results.

(2) There is no rigorous theorem which guarantees that (i) the equation of
state is unique, and (ii) the modulation equations are hyperbolic or even
strictly hyperbolic.

(3) For almost all potentials the equation of state is not known explicitly,
and therefore we cannot solve the system (6) in these cases.

(4) There is no rigorous justification, except for some special atomistic inter-
action potentials. We refer to [DHM06], which contains a conjecture for
the general case as well as rigorous proof of this conjecture for the har-
monic chain and the hard sphere model. Moreover, [Mie06] gives another
rigorous justification for the harmonic chain in terms of discrete Wigner
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measures.

In the next section we describe how we can test the validity of modulation the-
ory without solving the PDE system (6). Here we proceed with some special
cases for which the corresponding modulation system is completely under-
stood. The first example is the harmonic chain. According to (6) and (26), the
modulation equations read

∂ t

(

r, v, k, S
)

(t, α) − ∂α

(

v, r, ω(k), ω′(k)S
)

(t, α) = 0. (31)

Note that (31) splits into two independent 2×2-systems. The first one has
variables r and v, and is equivalent to the linear wave equation. The second
independent subsystem governs the evolution of wave number k and entropy
S, where the equation for k is even independent of S. We mention that both
subsystems have their own energy balance whose sum gives (7). The second
example with explicit equation of state is the hard sphere model, cf. (27). For
shortness we omit explicit formulas and refer to [DHM06] for the details. The
third special case concerns cold data whose macroscopic evolution is governed
by the nonlinear string equations (12), see §1. Cold data have no microscopic
oscillations, and this implies that (i) temperature T , entropy S and heat flux q
must vanish, and (ii) wave number k and frequency ω have no meaning at all.
Nevertheless, the conservation laws for mass, momentum and energy follow
from (6) by setting U = Φ(r).

3 Numerical methods and techniques

3.1 Numerical integrator, initial data and time steps

The numerical integration of (1) relies on Verlet’s method, a symplectic inte-
grator of second order, see [HLW02,SYS97]. The one-step formulation of the
scheme reads

x (i+1)
α = x (i)

α + h v (i)
α +

h2

2
p (i)

α ,

v (i+1)
α = v (i)

α +
h

2

(

p (i+1)
α + p (i)

α

)

, (32)

p (i)
α = Φ ′

(

x
(i)
α+1 − x (i)

α

)

− Φ ′
(

x (i)
α − x

(i)
α−1

)

.

Here h = ∆t is the microscopic time step, and the upper index (i) denotes
the ith time step. Recall that for given N the particle index α takes values in
{1...N}.

We cannot expect modulation theory to be valid for all classes of atomic initial
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data, but must choose the initial data from the class of modulated traveling
waves. For the sake of simplicity we solely consider initial data taking the form
of modulated binary oscillations, these are modulated traveling waves with
constant wave number k = 1/2, because in this case the explicit knowledge of
the profile functions is not necessary, see §2. In fact, in order to initialize the
atomic chain with modulated binary oscillations we choose four macroscopic
functions r odd, r even and v odd, v even, and set

rα(0) =











r odd(εα) if α is odd,

r even(εα) if α is even,
vα(0) =











v odd(εα) if α is odd,

v even(εα) if α is even.
(33)

These initial conditions (33) are cold, if and only if r odd = r even and v odd =
v even. For periodic chains the functions r odd, r even, v odd and v even are assumed
to be 1-periodic, whereas for Riemann problems they are piecewise constant
with a single jump discontinuity within the interval (0, 1). We mention, that
the class of modulated binary oscillation is not stable during the evolution. In
other words, even if we start with unmodulated wave numbers at t = 0, we
find non-constant wave numbers for t > 0.

For initial value problems of Class S we use the boundary conditions x
(i)
0 =

x
(i)
N − L and x

(i)
N+1 = x

(i)
1 + L, where the total length L is fixed by the initial

data. These conditions describe periodic chains as they imply r
(i)
0 = r

(i)
N and

v
(i)
N+1 = v

(i)
1 . For the numerical solution of Riemann problems (Class R) we

set x
(i)
0 = x

(i)
1 + x

(i)
2 − x

(i)
3 and x

(i)
N+1 = x

(i)
N + x

(i)
N−1 − x

(i)
N−2, and this gives

r
(i)
0 = r

(i)
2 and v

(i)
N+1 = r

(i)
N−1. This kind of boundary conditions are appropriate,

because we restrict the initial data to modulated binary oscillations, but they
can produce reasonable results only for sufficiently small times. In fact, when
the first macroscopic wave hits the boundary of the computational domain,
we must stop the numerical computations.

In all simulations we solve Newton’s equations (1) by means of (32) within a
given macroscopic time interval [0, tfin], and use always a constant time step
∆t. In particular, the number of time steps is proportional to the particle num-
ber. We choose ∆t small in comparison to the smallest inverse frequency tlin
of the linearized problem. The value of tlin can be approximated by the period
tBO of the linearized binary oscillator, i.e. tlin ≈ tBO with t−2

BO = Φ ′′(r)/4π2.
Here r denotes the local mean value of the atomic distances, and can be esti-
mated during the computation. Although modulated binary oscillations create
modulated traveling waves with k 6= 1/2, we can expect (at least for moderate
macroscopic times) the resulting periodicity times tTW to remain compara-
ble with tBO, i.e., tlin ≈ tTW ≈ tBO. In all simulation we have ensured that
∆t/tBO / 0.01 holds during the whole computation.
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N : number of particles N,
ma_final_time : macroscopic final time tfin,
mi_final_time : microscopic final time tfin = Ntfin,
mi_time_delta : length of microscopic time steps ∆t,
mi_time_steps : number of microscopic time steps,
mv_win_t_len : parameter AF

T for MV-windows,
mv_win_p_len : value of 2AF

P + 1 for MV-windows,
df_win_t_len : parameter AF

T for DF-windows,
df_win_p_len : value of 2AF

P + 1 for DF-windows,
df_win_prm : parameter MF

r = MF
v for DF-windows.

Table 1
Meaning of the numerical parameters. ⋄
3.2 Windows in space and time

In order to study the macroscopic behavior of the atomic chain for large N we
shall pass from the enormous amount of microscopic data to the characteristic
macroscopic quantities. These are (i) the macroscopic fields of the local mean
values, and (ii) the local distribution functions of the atomic data. The main
tool for computing these quantities are mesoscopic space-time windows. These
windows are very small on the macroscopic scale but contain many particles
as well as many time steps. In the sequel let F = IFT × IFP be such a window,
where IFT and IFP denote sets of time steps and particle indices, respectively.
This reads

IFT =
{

iF − AF

T + 1, ..., iF
}

, IFP =
{

αF − AF

P , ..., α
F , ..., αF + AF

P

}

,

where iF is a time step, αF is a particle index, and AF
P , AF

T are two integers
satisfying 1 ≪ AF

P , A
F
T ≪ N. If tF denotes the microscopic time corresponding

to iF , the window F contains all microscopic data around its macroscopic
center ZF =

(

εtF , εαF
)

.

For any atomic observable ψ we can compute its mean value 〈ψ〉
F

with respect
to F . If ψ is a one-particle observable we immediately find

〈ψ〉
F

=
1

AF
T(2AF

P + 1)

∑

(i, α)∈F

ψ
(

r (i)
α , v (i)

α

)

, (34)

and if ψ depends on more than one particle index similar formulae for 〈ψ〉
F

can be easily derived. We mention that (34) can be regarded as the discrete
analogue of (17), i.e. if the atomic data converge as N → ∞ in the sense of

Young measures, then 〈ψ〉
F

is a good approximation of 〈ψ〉
(

εtF , εαF
)

.

Next we describe how we compute the distribution functions of the atomic
data within a given window F . As mentioned before, we always consider the
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distribution functions in the microscopic phase space, that is the plane spanned
by atomic distance and atomic velocity. For any F we choose a rectangle BF

with

BF =
{

(r, v) : rFmin < r ≤ rFmax, vFmin < v ≤ vFmax

}

,

and decompose it into MF
r ×MF

v equal and pairwise disjoint sub-rectangles

BF =
⋃

mr=1..MF
r , mv=1..MF

v

BF

mr, mv
,

whereMF
r andMF

v are two integers controlling the resolution. We approximate
the atomic distribution function within F by a MF

r ×MF
v -matrix WF with

components

WF

mr, mv
= µF ♯

{

(i, α) ∈ F :
(

r (i)
α , v (i)

α

)

∈ BF

mr, mv

}

.

Here ♯ means the number of elements, and µF is a normalization constant. It
is obvious that the matrix WF approximates the distribution function of the
atomic data only if the rectangle BF is sufficiently large. In particular, for all
(i, α) ∈ F the point (r (i)

α , v (i)
α ) must be an element of BF . For this reason we

determine the bounds of BF not a-priori but during the numerical simulation.
The computation of the microscopic distribution functions is closely related
to the notion of Young measures. More precisely, if the atomic data converge
as N → ∞ in the sense of Young measures, then the matrix WF encodes all
information about the probability measure µ

(

εtF , εαF , dQ
)

from Theorem 1.

As mentioned above, each window F is supposed to be mesoscopic. This leads
to the ansatz

AF

T = cNκ, (2AF

P + 1) = cNκ,

where c is an arbitrary chosen constant, and κ is some exponent with 0 < κ < 1.
If the assumptions of modulation theory are satisfied, then as N → ∞ all re-
sulting local distribution functions and mean values must be independent of
the particular choice of c and κ. However, for any finite N the concrete values
of c and κ apparently affect the quality of the results. Moreover, if the windows
are to small, then the mean values will do not vary on the macroscopic, but on
some intermediate scale. On the other hand, for the evaluation of the distri-
bution functions the windows should be rather small so that the fine structure
of the microscopic oscillations become as clear as possible. For this reasons
we distinguish between MV-windows and DF-windows for the computation of
mean values and distribution functions, respectively, and chose the size of the
windows for each simulation separately.
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(i+1)
α

velocity

distance

Figure 4. On the computation of the frequency ω. The auxiliary variable Ψω is the

rescaled angle between Q
(i+1)
α − Q

(i)
α and Q

(i)
α − Q

(i−1)
α . ⋄

3.3 The traveling wave within a window

If the atomic oscillations are equivalent to those from modulated traveling
waves, then the microscopic distributions functions within any space-time win-
dow F must be equivalent to the distribution function of an exact traveling
wave (whose parameters depend on F). As discussed in §2, for each window F
we have to identify four traveling wave parameters, namely the specific length
rF , the mean velocity vF , the wave number kF , and a fourth parameter which
might be either the frequency ωF , the parameter γF , the entropy SF , or the
temperature TF .

The values of mean distance and of mean velocity are fixed by their physical
meaning, i.e., rF and vF result as the local mean values of the atomic distances
and velocities, respectively. This means rF := 〈r〉

F
and vF := 〈v〉

F
. Similarly,

the temperature TF is computed as twice the mean internal kinetic energy, and
reads TF :=

〈

(v − 〈v〉
F
)2
〉

F
= 〈v2〉

F
− 〈v〉

F

2. The determination of the wave

number kF and the frequency ωF is not so obvious as they have no immediate
physical interpretation on the microscopic scale. For this reason we introduce
auxiliary observables Ψk and Ψω, cf. Figure 4, and set

kF := 〈Ψk〉F , ωF := 〈Ψω〉F . (35)

The auxiliary variables in our simulations are given by

(Ψk)
(i)
α :=

ang
(

P
(i)

α−1, P
(i)

α

)

2π
, (Ψω) (i)

α :=

∣

∣

∣

∣

∣

∣

ang
(

P (i−1)
α , P (i)

α

)

2π∆t

∣

∣

∣

∣

∣

∣

, (36)

where P (i)
α = Q

(i)
α+1 −Q (i)

α , Q (i)
α =

(

r (i)
α , v (i)

α

)

, and ang (P1, P2) denotes the

angle between P1 = (r1, v1) and P2 = (r2, v2), i.e.,

ang (P1, P2) = sgn (+r1v2 − r2v1) arccos

(

r1r2 + v1v2

|P1| |P2|

)

.

By construction, Ψk takes values in [0, 1], and Ψω is non-negative. The formu-
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lae (35)–(36) have been tested with exact traveling wave solutions, for which
they reproduce the right values for kF and ωF . Finally, we define the entropy
density SF consistent to §2 by SF := TF/ωF .

Atomic observable Definition
distance rα(t) = xα+1(t) − xα(t)
velocity vα(t) = ẋα(t)
negative force pα(t) = −Φ ′(rα(t))
energy eα(t) = 1

2 (vα+1(t))
2 + Φ(rα(t))

energy flux fα(t) = −vα(t)Φ ′(rα(t))

Table 2
Selected atomic observables.⋄

In the next step we exploit the values rF , vF , kF and TF in order to asso-
ciate an exact traveling wave to any window F . For this purpose we use an
approximation scheme for traveling waves described in [DH05]. To be more
precise, we use the T -scheme which allows to prescribe the temperature. This
scheme provides two profile functions RF and VF , that describe the oscillat-
ing atomic distances and velocities in the exact traveling wave. Moreover, the
scheme yields a frequency ωTW

F which does not result from the auxiliary ob-
servable Ψω, but satisfies a dispersion relation. Employing ωTW

F
and the profile

functions RF and VF we can (i) derive the corresponding distribution func-
tion, (ii) define an entropy STW

F
by STW

F
= TTW

F
/ωTW

F
, and (iii) compute a

TW-mean value 〈ψ〉TW
F

for any observable ψ. For instance, according to §2.3
the TW-pressure pTW

F is given by pTW
F = − ∫ 1

0 Φ ′(rF + RF (ϕ + kF/2)) dϕ.

Note that there is a fundamental difference between mean values and TW -
mean values. A mean value 〈ψ〉

F
is computed directly from the numerical

data, i.e., it is derived from the (approximate) solution of Newton’s equations.
On the contrary, a TW-mean value 〈ψ〉TW

F
is computed by means of the TW-

profiles RF and VF , and thus it reflects our assumptions on the microscopic
oscillations. Since the profile functions RF and VF are determined by means
of rF , vF , kF , and TF , the identities rTW

F
= rF , vTW

F
= vF , kTW

F
= kF , and

TTW
F

= TF are satisfied by construction. However, it is not ensured by our
definitions that ωF = ωTW

F , SF = STW
F , or 〈ψ〉

F
= 〈ψ〉TW

F
for all observables

ψ. The validity of these identities must be checked!

In Table 2 we have summarized the most important atomic observables. The
corresponding mean values and further derived quantities are described in
Table 3. From now on we refer to the distribution functions resulting directly
from the atomic data as the microscopic distribution functions. On the other
hand, since the traveling wave parameters rF , vF , kF , and TF vary on the
macroscopic scale, we call the distribution functions determined by RF and
VF the macroscopic predictions. Moreover, to distinguish between the different
notions of mean values, we refer to 〈ψ〉

F
and 〈ψ〉TW

F
as fields and TW-fields,
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mean value TW-mean value

mean distance rF = 〈distance〉
F

rTW
F

= 〈distance〉TW
F

mean velocity vF = 〈velocity〉
F

vTW
F

= 〈velocity〉TW
F

pressure pF = 〈neg. force〉
F

pTW
F

= 〈neg. force〉TW
F

macroscopic

energy density eF = 〈energy〉
F

eTW
F

= 〈energy〉TW
F

macroscopic

energy flux fF = 〈energy flux〉
F

fTW
F

= 〈energy flux〉TW
F

field TW-field

frequency ωF is mean value ωTW
F

from T -Scheme
entropy SF = TF/ωF STW

F
= TTW

F /ωTW
F

heat flux qF = fF − pF vF qTW
F

= fF − pTW
F

vTW
F

entropy flux gF = qF/ωF gTW
F

= qTW
F

/ωTW
F

Table 3
Mean values and derived fields.⋄

respectively.

3.4 Strategy for the numerical justification

At a first glance the numerical justification of modulation theory should split
into the following two steps. At first we solve the macroscopic modulation
equations (6) by means of an appropriate PDE solver. Afterwards we compare
the solutions of (6) with the corresponding macroscopic mean values derived
from the numerical solution of Newton’s equation. However, this direct ap-
proach is impracticable for the following reason. The main problem is that we
do not know the closure relations in (6) explicitly but only in terms of trav-
eling waves. As a consequence, any call of the flux function within the PDE
solver requires a numerical integration of the difference-differential equation
(21) as well as the numerical computation of some TW-mean values. Since
this leads to a tremendously high numerical effort, we cannot solve the system
(6) numerically, and thus the direct approach is impracticable.

Our strategy to investigate the validity of modulations theory is different from
the direct approach sketched above, and has the advantage that the traveling
wave equation (21) must be solved a few times only. We mainly rely on a direct
comparison between the microscopic oscillations and the macroscopic predic-
tions coming from modulation theory, where this comparison is carried out in
several space-time windows. To obtain further evidence we will additionally
compare some macroscopic fields with their corresponding TW-fields.

Whenever the macroscopic predictions equal the microscopic distribution func-
tions in a given window F , we can conclude that the oscillations within F can
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indeed by described by a traveling wave with parameters rF , vF , kF and TF .
Moreover, if we obtain such an agreement for every selected window, we have
evidence that all microscopic oscillations are produced by a modulated trav-
eling wave, and this is apparently a strong indication that modulation theory
provides the correct thermodynamic description of the atomic chain.

Note that we do not compute the macroscopic derivatives of the macroscopic
mean values, because the accurate computation of derivatives requires much
larger particle numbers than the computation of the mean values. As a conse-
quence, we do not check explicitly whether or not the modulated parameters
evolve according to (6). Nevertheless, the theory of Young measures provides
some a posteriori information about the macroscopic dynamics of the modu-
lated traveling wave parameters. This will be explained now.

According to §2.1 we know that asN → ∞ the local mean values of the atomic
data satisfy the conservation laws of mass, momentum and energy, see (20) in
Theorem 2. Recall that this property can be proved without any assumption
on the structure of the microscopic oscillations. Now let us suppose that all
atomic oscillations are equivalent to the oscillations in a modulated traveling
wave, and consider a mesoscopic window F around an arbitrary macroscopic
center (t, α). Due to our assumption we can express the measure µ(t, α, dQ)
in terms of a corresponding exact traveling wave, see (28). In particular, for
any one-particle observable ψ we find that its mean value 〈ψ〉

F
(t, α) must

equal the corresponding TW-mean value 〈ψ〉TW
F

(t, α). Since according to Ta-
ble 2 all densities and fluxes in (20) are defined as mean values of one-particle
observables, the system (20) is just a subsystem of the modulation system
(6)–(7). Consequently, our assumption concerning the (point-wise) structure
of the microscopic oscillations implies that at least three independent mod-
ulation equations are satisfied. Of course, this does not guarantee the forth
independent evolution equation (conservation of wave number) to be satisfied,
but provides strong indication that modulation theory describes the macro-
scopic dynamics correctly.

4 Simulations with smooth initial data

All results of the numerical simulations are presented graphically. For fixed
macroscopic time t we plot the atomic data and macroscopic fields as snap-
shots against the macroscopic particle index α ∈ [0, 1], and all microscopic
distribution functions are presented as density plots.
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Example S1

We study the evolution of initial data with temperature, i.e. with microscopic
oscillations. To this end we consider a periodic Toda chain, and set

0. 1.
-1.00

+0.50

+2.00
Distances, Time=0.0

0. 1.
-0.50

+0.00

+0.50
Velocities, Time=0.0

Figure 5. Example S1. Initial data with temperature, plotted against α. ⋄

v odd(α) = v even(α) = 1
2
cos (2πεα), r even(α) = 2, r even(α) = −1, (37)

cf. Figure 5. The initial atomic distances oscillate on the microscopic scale,
and we mention that the velocities become likewise oscillating for t > 0. Note
that at t = 0 we modulate only the macroscopic velocity v but neither the
specific length r, the wave number k nor the temperature T .
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Distances, Time=0.4, N=2000

0. 1.
-1.17

+0.97

+3.10
Distances, Time=0.4, N=4000

0. 1.
-1.17

+0.97

+3.11
Distances, Time=0.4, N=8000

0. 1.
-1.17

+0.54

+2.24
Distances, Time=0.8, N=2000

0. 1.
-1.17

+0.54

+2.24
Distances, Time=0.8, N=4000

0. 1.
-1.17

+0.54

+2.24
Distances, Time=0.8, N=8000

Figure 6. Example S1. Atomic distances plotted against α. The different columns
correspond to the particle numbers N = 2000, N = 4000, and N = 8000, top
and bottom row to t = 0.4 and t = 0.8, respectively. The dark colored functions
represent the macroscopic mean values. ⋄
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Figure 7. Atomic velocities corresponding to Figure 6. ⋄
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Figure 8. The snapshots of three selected macroscopic fields at t = 0.8 for N = 4000
and N = 8000 indicate that the macroscopic fields converge in the sense of
functions. ⋄
We have solved Newton’s equations with periodic boundary conditions for
different particle numbers but within a fixed macroscopic time interval [0, tfin]
with tfin = 0.8, so that the microscopic final time is tfin = Ntfin.

Figures 6 and 7 show snapshots of the resulting atomic distances and velocities,
where the data for N = 2000, N = 4000, and N = 8000 are arranged in
different columns. The dark colored curves represent the local mean values, i.e.,
the fields of mean distance and mean velocity, whose computation is described
in §3. We observe that the atomic data are highly oscillating on the microscopic
scale, and that the oscillations are bounded by sharp envelopes. From the
mathematical point of view the oscillations prevent that the limit N → ∞
can be described completely in terms of functions, and hence any appropriate
mathematical descriptions must rely on measures. Even if we are interested
in the macroscopic quantities only, the oscillations remain important because
some amount of the macroscopic energy is stored in the oscillations. In Figures

N = 4000/8000
ma_final_time = 8.0E-01 mi_final_time = 3.2E+03/6.4E+03
mi_time_delta = 1.25E-02 mi_time_steps = 256000/512000
mv_win_t_len = 4047/5724 mv_win_p_len = 20/20
df_win_t_len = 4047/5724 df_win_p_len = 40/80
df_win_prm = 100

Table 4
Numerical parameters for Example S1. ⋄

6 and 7 we observe the same microscopic oscillations for all particles numbers.
For this reason we expect that the atomic data converge as N → ∞ in the
sense of Young measures to a unique limit measure, and this implies that the
local mean values converge in the sense of functions, see Figure 8.

The computation of wave number and frequency is illustrated in Figure 9,
which shows snapshots of the auxiliary observables Ψk and Ψω at t = 0.8.
Again we find strong oscillations in the atomic data, which converge as N →
∞ in the sense of measures. Moreover, the local mean values converge to
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Figure 9. Example S1. The local mean values of the oscillating auxiliary observables
Ψk and Ψω determine the fields of wave number k and frequency ω. The three
columns correspond to N = 2000, N = 4000, and N = 8000, respectively. ⋄
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Figure 10. Local distribution functions for Example S1 with N = 4000 (top) and
N = 8000 (bottom) in three selected points at t = 0.8, compare with Figure 11. For
large N , the local distribution functions become independent of N and the details
of the mesoscopic averaging. ⋄

macroscopic functions, and provide the fields of wave number and frequency.

In a next step we compare the microscopic distribution functions with their
macroscopic predictions coming from modulation theory. To this end we fix
eight mesoscopic space-time windows. Recall that each of these window con-
tains a lot of time steps and particles, but shrinks to a single point on the
macroscopic scale. The mesoscopic windows for this example are located at
t = 0.8 but have different α-coordinates, see the bottom right picture in Figure
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Figure 11. Local distribution functions (White and Gray) and macroscopic predic-
tions (black points) for Example S1 with N = 8000 in eight selected points at
t = 0.8; for the α-coordinates see the vertical lines in the bottom right picture. ⋄
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Figure 12. Example S1. Comparison between macroscopic fields (Gray) and corre-
sponding TW-fields (Black) for N = 8000 and t = 0.8. ⋄

11. For each window we compute the distribution function of atomic distances
and velocities as it is described in §3. This gives rise to the density plots
within Figures 10 and 11, where Gray and White indicate a high resp. low
probability for finding a particle. Note that (i) the support of every distribu-
tion function is contained in a closed curve, and (ii) the distribution functions
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vary on the macroscopic scale. Moreover, Figures 10 illustrates that for large
N the distribution functions become independent of N .

The black drawn points in Figure 11 represent the macroscopic predictions,
and are obtained as follows. Let any window F be fixed. The values rF , vF , kF
and TF determine an exact traveling wave with profiles functions RF and VF ,
and these functions encode all macroscopic predictions concerning the micro-
scopic oscillations. In fact, the microscopic distribution function is predicted
to equal the measure of the traveling wave, that is the measure generated by
the curve

ϕ 7→ QTW(ϕ) = (rF + RF (ϕ+ kF/2), vF + ωF VF(ϕ)), (38)

see formula (28) in §2.2. In particular, the support of the microscopic distri-
bution within F is predicted to equal the characteristic trace of the traveling
wave, that is the image of the curve (38). To test the validity of the predic-
tions we have computed 24 points QTW

i = QTW(ϕi) of the curve (38) with
ϕi = i/20, i = 1...20. Finally, we have drawn the points Qi with black color
into the density plots of Figure 11.

The eight plots of Figure 11 show that the image of the curve (38) coincides
with the support of the microscopic distribution function. Moreover, a closer
look to the distribution functions reveals that the distance between adjacent
points Qi+1 and Qi is inversely related to the amount of particles located in
between these points, see for instance the density plots for α = 0.51. This im-
plies that all density plots provide the correct height function. From these two
observations we conclude that the microscopic oscillations within any window
F can in fact be described by a traveling waves with parameters rF , vF , kF
and TF , and this implies that the atomic data behave like in a modulated
traveling waves. Finally, according to the discussion in §3.4 we conclude that
the macroscopic dynamics of the thermodynamics fields is governed by the
modulation equations (6).

In Figure 12 we compare three macroscopic fields with their corresponding
TW-fields, where the TW-fields are plotted in only 25 points. Recall that
there is fundamental difference between fields and TW-fields. The fields result
immediately from the atomic data by averaging the oscillations. On the other
side, TW-fields represent mean values of traveling waves, and thus they depend
only on the four macroscopic fields r, v, k and T . In Figure 12 we observe a very
good correspondence between fields and TW-fields, and this gives a further
confirmation for the validity of modulation theory.

We conclude with a remark. The modulation equations for the harmonic chain,
see (31), split into two independent subsystems. Consequently, if we initial-
ize the harmonic chain with the initial data (37), then both wave number k
and temperature T will remain constant for all times. The current example
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illustrates that for nonlinear chains all four modulation equations are coupled.

Example S2

Here we study the evolution of smooth initial data for a non-integrable inter-
action potential. To this end we add a fourth order correction to the Toda
potential, and obtain

Φ(r) = exp ((1 − r)) − (1 − r) + 1
40

(r − 1)4. (39)

The initial data, cf. Figure 13, are given by v odd(α) = v even(α) = 0 and
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Figure 13. Modulated atomic initial data for Example S2. ⋄
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Figure 14. Example S2. Snapshots of the atomic distances. Top and bottom row
correspond to N = 2000 and N = 8000, respectively. The dark colored functions
represent the local mean values. ⋄
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Figure 15. Atomic velocities corresponding to Figure 14. ⋄
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Figure 16. Local distribution functions for Example S2 with N = 8000 in five
selected points at t = 0.5; the α-coordinates are marked by the vertical lines in
the bottom right picture. Gray and Black correspond to microscopic distribution
functions and macroscopic predictions, respectively. Interpretation. For t < 0.5
all microscopic oscillations take the form of modulated traveling waves. ⋄
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Figure 17. Example S2. Comparison between macroscopic fields (Gray) and corre-
sponding TW-fields (Black) with N = 8000 and t = 0.5. ⋄

N = 2000/8000
ma_final_time = 0.9E+00 mi_final_time = 1.8E+03/7.2E+03
mi_time_delta = 2.0E-02 mi_time_steps = 90000/360000
mv_win_t_len = 2236/4472 mv_win_p_len = 10/40
df_win_t_len = 2236/4472 df_win_p_len = 40/89
df_win_prm = 100

Table 5
Numerical parameters for Example S2. ⋄

r odd(α) = 1 + 1
2
sin(2πα), r even(α) = −1

2
− 1

2
sin(2πα).

While the fields r, v and k are initially constant, we modulate the internal
energy U , and this implies a modulation of frequency ω and entropy S. The
numerical solution to Newton’s equation is shown within Figures 14 and 15,
which contain snapshots for N = 2000, N = 8000 at t = 0.1, t = 0.5, and
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Figure 18. Local distribution functions for Example S2 with N = 8000 in five
selected points at t = 0.9; for the α-coordinates see the vertical lines in the bottom
right picture. Gray and Black correspond to microscopic distribution functions and
macroscopic predictions, respectively. Interpretation. The microscopic oscillations
beyond the shock exhibit a more complicate structure, and cannot be described by
modulated traveling waves. ⋄
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Figure 19. Example S2. The formation of macroscopic shocks with N = 8000. ⋄

t = 0.9.

For macroscopic times t / 0.5 we observe the same qualitative behavior as
in Example S1. The atomic data converge for N → ∞ to a Young measure,
and the local mean values converge in the sense of functions. Furthermore,
the atomic oscillations are again bounded by sharp envelopes. In Figure 16 we
compare the microscopic distribution functions with their macroscopic predic-
tions in eight selected points at t = 0.5. As for the previous example we observe
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a very good correspondence between microscopic oscillations and macroscopic
predictions, and Figure 17 yields a good matching of fields and TW-fields.

At t = 0.9 we can identify a region, namely 0.4 . α . 1.1, where the mi-
croscopic oscillations exhibit a different behavior. According to Figure 18 the
support of the microscopic distribution functions are not contained in closed
curves anymore, but fill a set with positive measure. We conclude, that the
microscopic oscillations in this region cannot be described by modulated trav-
eling waves. Figure 19 provides an explanation for this observation. As t→ 0.6
the gradients of all fields become steeper and steeper, so that finally at t ≈ 0.6
two shocks are formed. These shocks, which arise from data with temperature,
are the reason that modulation theory with periodic traveling waves cannot
capture the microscopic oscillations for t ' 0.6. For integrable systems like
the Toda chain it is known, cf. [BY92,DM98,El05], that the oscillations be-
yond such shocks can be described in terms of modulated two-phase traveling
waves, but a similar theory for non-integrable system is not yet available.

Example S3

In this example we initialize a periodic chain with cold but smooth initial
data. The potential is Φ(r) = cosh (r − 1), and the initial data are given by
rα(0) = rini(εα) and vα(0) = vini(εα) with

rini(α) = 3.5, vini(α) = 2.75 sin (2πα) + 2.75 cos (4πα).

Two corresponding solutions to Newton’s equations are shown in Figures 20
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Figure 20. Example S3. Snapshots of the atomic distances. For several macroscopic
times t the data are plotted against α. Bright and dark correspond to N = 100
and N = 8000, respectively. At t ≈ 0.5 the atomic data start to oscillate on the
microscopic scale, and temperature is created. ⋄

and 21, where bright and dark colored points correspond to N = 100 and
N = 8000, respectively.

For t / 0.1 the numerical simulations provide evidence that the atomic data

38



0. 1.
-1.00

-0.22

+0.56
Velocities, Time=0.0

0. 1.
-0.33

+0.08

+0.48
Velocities, Time=0.125

0. 1.
-0.45

+0.04

+0.54
Velocities, Time=0.25

0. 1.
-0.97

-0.21

+0.54
Velocities, Time=0.375

0. 1.
-0.56

-0.06

+0.43
Velocities, Time=0.5

0. 1.

-0.76

+0.04

+0.85

Velocities, Time=0.625

Figure 21. Atomic velocities corresponding to Figure 20. ⋄
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Figure 22. Local distribution functions for Example S3 with N = 8000 in five
selected points at t = 0.18; the α-coordinates are marked by the vertical lines in
the bottom right picture. Gray and Black correspond to microscopic distribution
functions and macroscopic predictions, respectively. Interpretation. The atomic
data beyond a cold shock self-organize into modulated traveling waves. ⋄

remain cold, and converge as N → ∞ to smooth macroscopic functions, so
that in each point (t, α) we find unique limit values r(t, α) and v(t, α) for
the atomic distances and velocities, respectively. In particular, the cold limit
functions r and v must satisfy the ansatz (11), and we conclude that the
macroscopic evolution of r and v is governed by the nonlinear string system
(12). Of course, this is only a numerical observation, but we mention that for
a similar model the convergence to smooth and cold limit data was proved in
[GL88] by exploiting Strang’s Theorem [Str64].
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At time t ≈ 0.1 the smooth macroscopic fields r and v form a shock, and the
atomic data start to oscillate beyond this shock. As before, these oscillations
give rise to a nonvanishing temperature field on the macroscopic scale. Recall
that for t > 0.1 the system (12) is not longer an appropriate model for the
macroscopic evolution as it does not conserve mass, momentum, and energy
beyond the shock.

N = 100/8000
ma_final_time = 1.8E-01 mi_final_time = 1.8E+01/1.44E03
mi_time_delta = 5.0E-03 mi_time_steps = 3600/288000
mv_win_t_len = 398/3219 mv_win_p_len = 1/40
df_win_t_len = 1265/3219 df_win_p_len = 1/40
df_win_prm = 100

Table 6
Numerical parameters for Example S3. ⋄

Next we investigate the fine-structure of the microscopic oscillations within the
region with temperature by comparing the microscopic distribution functions
with their macroscopic predictions in five selected points at t = 0.18, see Figure
22. Again we observe a good correspondence between microscopic distribution
functions and macroscopic predictions, and we conclude that in this example
the oscillations can in fact be described by modulated traveling waves. For
further details on cold shocks we refer to Example R1.

Example S4

In all previous simulations the interaction potential Φ was a convex function.
The current example shows that this restriction is essential. We consider the
double-well potential

Φ(r) = +2 cosh (2 − r) − sinh (1)(r − 2)2,

which is concave in the vicinity of its unstable equilibrium at r = 2. At time

0. 1.

+2.00+2.00+2.00

Distances, Time=0.0

0. 1.
-0.01

+0.00

+0.01
Velocities, Time=0.0

0. 1.
+0.29

+2.00

+3.71
Distances, Time=0.02

0. 1.
-0.94

-0.02

+0.89
Velocities, Time=0.02

Figure 23. Example S4. Snapshots of the atomic distances and velocities at t = 0.0
and t = 0.02. ⋄
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t = 0 we impose the cold initial data

r odd(α) = r even(α) = 2, v odd(α) = v even(α) =
1

10
cos (2πα),

so that the evolution starts in the region of concavity of Φ. In Figure 23 we
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Figure 24. Microscopic distribution functions for Example S4 in three selected points
at t = 0.02. Interpretation. Since Φ is non-convex, the arising microscopic oscil-
lations cannot be described by modulated traveling waves. ⋄

N = 2000
ma_final_time = 2.0E-02 mi_final_time = 4.0E+01
mi_time_delta = 2.5E-03 mi_time_steps = 16000
df_win_t_len = 4000 df_win_p_len = 5
df_win_prm = 75

Table 7
Numerical parameters for Example S4. ⋄

observe that the cold initial data immediately generate temperature, but the
corresponding oscillations cannot be described by modulated traveling waves
as they exhibit a completely different structure, see Figure 24. In particular,
the supports of the distribution functions are not contained in closed curves,
and this corresponds to the absence of sharp envelopes in Figure 23. These
results are not surprising at all, because the nonlinear string system (12) is not
hyperbolic for non-convex interaction potentials Φ (in the regions of concavity
it is elliptic). Recall that here we start in the region with concave potential. In
case that all initial distances are chosen sufficiently close to either one of the
stable equilibria of Φ, then we expect that the data remain cold until either an
atomic distance runs into the region with Φ′′ < 0, or the first shock is formed.
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5 Simulations to Riemann problems

Example R1

We study the evolution of cold Riemann initial data for an infinite chain with
modified Toda potential (39), and initialize the atoms with

r odd(α) = r even(α) =











0 for α < 0.6,

1 for α ≥ 0.6,

and v odd(α) = v even(α) = 0. The corresponding numerical solutions for N =
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Figure 25. Example R1. Snapshots of atomic distances and velocities at t = 0.0,
t = 0.15, and t = 0.3, for N = 4000 and N = 16000. The vertical lines separate
waves from constant states. ⋄

4000 and N = 16000 are depicted in Figure 25, and allow for the following
interpretations.

(1) There is a cold rarefaction wave running to the left.
(2) We find a second, right going wave, which has a head and a rear front.

Within this wave the motion generates microscopic oscillations but there
are no oscillations outside this wave.

(3) Between the two waves we observe a new constant state with cold data.
(4) The macroscopic behavior is independent of the particle number.
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Figure 26. Example R1. Snapshots of various macroscopic fields at t = 0.15 and
t = 0.3 for N = 16000. Vertical lines again separate waves from constant states. ⋄
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Figure 27. see Figure 26. ⋄
N = 4000/16000
ma_final_time = 3.0E-01 mi_final_time = 1.2E+03/4.8E+03
mi_time_delta = 1.0E-02 mi_time_steps = 120000/480000
mv_win_t_len = 1879/3794 mv_win_p_len = 40/126
df_win_t_len = 1879/3794 df_win_p_len = 40/126
df_win_prm = 100

Table 8
Numerical parameters for Example R1. ⋄
Note that our concept of waves follows the theory of hyperbolic PDEs, i.e., each
wave connects two constant states. In particular, we interpret the region with
temperature as a single wave with head and rear front. In §1 we have argued
that the onset of microscopic oscillations is caused by the conservation of mass,
momentum, and energy, which prevents that the microscopic data beyond a
cold shock remain cold. Since the same qualitative behavior is typical for zero
dispersion limits we will refer to the second wave as a dispersive shock wave.

Figures 26 and 27 show various macroscopic fields, which all exhibit a self-
similar profile, i.e., they depend only on c := (α− 0.6)/t. The temperature
within the constant intermediate state vanishes, and hence both wave number
k and frequency ω have no physical meaning here. However, the values we
observe for k and ω have some reasonable explanation. Since they are produced
by very small oscillations they satisfy the dispersion relation as well as the
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Figure 28. Local distribution functions for Example R1 in five selected points at
t = 0.3 for N = 16000. The α-coordinates of the mesoscopic windows are are
marked by the vertical lines in the bottom right picture. Gray and Black correspond
to microscopic distribution functions and macroscopic predictions, respectively. ⋄

evolution equation for k from the harmonic theory, see §2.4.

Figures 26 and 27 seem to indicate that every macroscopic field jumps at
the head front of the dispersive wave. However, our simulations do not al-
low for a definite decision whether all fields remain discontinuous when we
increase the number of particles further. In fact, formal arguments developed
in [DHR06,HR07] provide some indications that only the entropy density is
discontinuous for N → ∞, whereas all other fields, especially the tempera-
ture, become continuous but have infinite derivative. Here we focus on the
microscopic oscillations within the dispersive wave, and postpone a detailed
investigation of the vicinity of the head front to future research.

In Figure 28 we compare the microscopic distribution functions with their
macroscopic predictions in five selected points at t = 0.3. Again we observe a
good coincidence between microscopic distribution functions and macroscopic
predictions. Thus we conclude that the microscopic oscillations take in fact the
form of a modulated traveling wave. As mentioned in the introduction, there is
an elaborated theory for Riemann problems in the Toda chain, but all theses
results do not address the qualitative behavior of the generic thermodynamic
fields.

44



Example R2

In this example we study the contact problem between a cold state and a
binary oscillation for the Toda chain, and choose v odd(α) = v even(α) = 0 and

r odd(α) =











−1 for α < 0.5,

+1 for α ≥ 0.5,
r even(α) =











+3 for α < 0.5,

+1 for α ≥ 0.5.
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Figure 29. Example R2. Snapshots of atomic distances and velocities at t = 0.0,
t = 0.2, and t = 0.4. The vertical lines separate waves from constant states. ⋄
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Figure 30. Example R2. Snapshots of selected macroscopic fields at t = 0.4. ⋄

N = 4000
ma_final_time = 4.0E-01 mi_final_time = 1.6E+03
mi_time_delta = 1.0E-02 mi_time_steps = 160000
mv_win_t_len = 2529 mv_win_p_len = 10
df_win_t_len = 2529 df_win_p_len = 20
df_win_prm = 100

Table 9
Numerical parameters for Example R2. ⋄

Figure 29 shows the atomic data for N = 4000 at t = 0.0, t = 0.2, and t = 0.4,
and Figure 30 contains snapshots of various macroscopic fields. We observe the
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Figure 31. Local distribution functions for Example R2 in eight selected points at
t = 0.4; the α-coordinates are marked by the vertical lines in the bottom right pic-
ture. Gray and Black correspond to microscopic distribution functions and macro-
scopic predictions, respectively. ⋄

creation of three self-similar waves having two fronts each. The first wave runs
to the left, the second wave spreads out both to the left and to the right, and
the third wave goes to the right. All waves are separated by constant states,
where the width of the constant state in between the first and second wave is
very small.

By construction, the third wave contacts a region with zero temperature. Sur-
prisingly, the same is true for the first two waves because the temperature
vanishes in the constant state in between. In particular, the entropy increases
with c within the first wave, then it jumps to zero, jumps back to a posi-
tive value, and finally it decreases with c within the second wave. Due to this
qualitative behavior we classify all three waves as dispersive shocks.
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In Figure 31 we compare the microscopic distribution functions with their
macroscopic predictions in eight selected macroscopic points which cover all
three waves, and again we find a good matching between the microscopic and
the macroscopic predictions. This result is quite surprising as the Riemann
initial data are not cold but have temperature.

Example R3

In this example we consider a Riemann-problem for the Toda chain with binary
oscillations at both sides of the initial jump. We set v odd(α) = v even(α) = 0
and

r odd(α) =











0 for α < 0.38,

2 for α ≥ 0.38,
, r even(α) =











1 for α < 0.38,

3 for α ≥ 0.38,

so that the initial jump is located at α = 0.38. The resulting atomic data for
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Figure 32. Example R3. Atomic distances and velocities at t = 0.0, t = 0.22 and
t = 0.44. The vertical lines separate waves from constant states. ⋄
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Figure 33. Example R3. Snapshots of several macroscopic fields at t = 0.44. ⋄

N = 16000
ma_final_time = 4.4E-01 mi_final_time = 7.04E+03
mi_time_delta = 2.0E-02 mi_time_steps = 352000
mv_win_t_len = 2782 mv_win_p_len = 40
df_win_t_len = 475 df_win_p_len = 1
df_win_prm = 100

Table 10
Numerical parameters for Example R3. ⋄

47



-0.15 distance +3.15

-2.04

+0.78

ve
lo

ci
ty

distribution function, Pos= +0.54

-0.15 distance +3.15

-2.04

+0.78

ve
lo

ci
ty

distribution function, Pos= +0.62

-0.15 distance +3.15

-2.04

+0.78

ve
lo

ci
ty

distribution function, Pos= +0.70

-0.15 distance +3.15

-2.04

+0.78
ve

lo
ci

ty

distribution function, Pos= +0.78

-0.15 distance +3.15

-2.04

+0.78

ve
lo

ci
ty

distribution function, Pos= +0.86

0. 1.
+0.02

+1.50

+2.98
Distances, Time=0.44

Figure 34. Local distribution functions for Example R3 in five selected points at
t = 0.44 right of the second wave; the α-coordinates are marked by the vertical
lines in the bottom right picture. Gray and Black correspond to microscopic dis-
tribution functions and macroscopic predictions, respectively. Interpretation. The
microscopic oscillations within this region can be described by modulated traveling
waves. ⋄

N = 16000 are presented in Figure 32, and Figure 33 contains the profiles of
various macroscopic fields. We can identify four consecutive waves, which all
are separated by constant states.

At first we study the third and the fourth wave, which we classify as rar-
efaction waves. Note that the temperature remains constant within the fourth
wave. We choose five macroscopic points right of the second wave, and com-
pare the microscopic distribution functions with their macroscopic predictions.
The results are presented in Figure 34. We observe a good matching between
microscopic and macroscopic data, and can conclude that the microscopic os-
cillations within this region are generated by a modulated traveling wave.

The microscopic oscillations within the first two waves cannot be described by
modulated traveling waves, and thus modulation theory with periodic traveling
waves must fail here. To justify this assertion again we compare microscopic
distribution functions with macroscopic predictions, see Figure 35. This com-
parison is now carried out in nine macroscopic points which all are very close
to each other so that the macroscopic predictions almost coincide. In contrast
to the preceding examples, here the underlying space-time windows contain
only one particle so that all microscopic distribution functions in Figure 35
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Figure 35. Local distribution functions for Example R3 in nine selected points in
the neighborhood of

(

t = 0.44, α = 0.17
)

, compare the bottom right picture in Fig-
ure 34. Gray and Black correspond to microscopic distribution functions (for one
single particle) and macroscopic predictions, respectively. Interpretation. The mi-
croscopic distribution functions oscillate around the macroscopic predictions. ⋄

describe the temporal statistics of a single particle. These one-particle distri-
butions do not meet the macroscopic predictions but oscillate around them.
We mention that the same behavior can be found within the second wave.

The data from Figure 35 suggest that every one-particle distribution function
is still equivalent to a traveling wave. However, these traveling waves now os-
cillate on the microscopic scale. For harmonic lattices this phenomenon can be
understood in terms of Wigner-measures which allow for the fast modulation
of wave number and frequency, see [Mac02,Mac04,Mie06]. Unfortunately, no
similar concept is presently available for nonlinear system.
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