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The one-dimensional lattice ODE
(1) Uj = pj+1 —2p; +pj—1 with p; = u; —signy;
admits solutions with propagating phase interfaces and provides a microscopic
justification for macroscopic hysteresis models. Here, the two phases correspond
to the sets {u < 0} and {u > 0}, on which the bistable function u +— u — signu is
strictly increasing.

Microscopic dynamics. For a finite system with N < oo particles and either
periodic or Neumann boundary conditions, equation (1) can be regarded is a mi-
croscopic H™'-gradient flow for u. In particular, it satisfies the energy balance

E(t)=-D(t), &:= %ZP?7 D:= Z(pj+1 - pj)?,

so there is a strong tendency to reach a state with small dissipation. However, due
to phase transitions (one of the u;’s changes sign) there exist small time intervals
with huge dissipation and strong microscopic fluctuations, see Figures 1 and 2 for
an illustration.
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FIGURE 1. Two snapshots for u; (Black) and p; (Gray) for a nu-

merical single-interface solution with 20 particles: The phase interface
(vertical line) propagates to the right since the particles undergo a
phase transition one after another.
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FIGURE 2. Evolution of us and the (rescaled) dissipation D for the
simulation from Figure 1; the particle j undergoes a phase transition
at time t}.



Macroscopic dynamics. The parabolic scaling limit

T = e, E=¢j
has been investigated in [1] for a system with infinitely many particles and under
certain assumptions on the microscopic initial data; the main result can be formu-

lated as follows: The discrete p-data converge as € — 0 strongly to a limit function
P, which is uniquely determined by the hysteretic free boundary problem

(2) 0-(P(1, &) + u(r, §)) = ZP(r, &),  nul, &) =R[P(, &)].

Here, R abbreviates the hysteresis operator from Figure 3 and the limit U of the
u-data satisfies U = P 4 u. The well-posedness of the initial value problem to (2)
has been proven in [2].
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FIGURE 3. The relay operator R describes the hysteresis of phase
interfaces in the macroscopic scaling limit.
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