
Master thesis: Separating longtime behavior and learning of mechanisms

Mathematical modeling of complex systems is challenging and becomes even harder if the underlying principles
are partly unknown. Life-science application are examples of such processes, where the role of individual particles
is often unclear. Furthermore, experiments are expensive or even impossible because the interactions are strongly
coupled processes. As many of the processes take place inside the body, observations are even more difficult.
Therefore, mathematical models are useful for gaining insight in the underlying mechanisms of the complex processes
and for testing hypothetical treatments of diseases. Viral liver inflammations like hepatitis B and C are a prominent
example for such complex processes with unknown mechanisms leading to either healing or chronic infection courses.

Figure 1: Left: Development of chronic inflammation after a transient phase (Bowen & Walker, 2005). Right: Pathological
image of a chronic liver inflammation with spatial heterogenous spead of immune cells (Kanel 2018)

The infection courses show a transient phase in the beginning, cf. Figure 1: The human body reacts on the
virus in the tissue and tries to eliminate it. After this active battle, the infection is either eliminated or remains as
a chronic disease. From the mathematical point of view, the interaction of the virus and the immune cells of the
body can be described by differential equations

u̇ = f(u) =
∑
i

fi(u). (1)

The occurrence of an infection courses is the tendency to a stationary state of the system after a transient phase.
By means of machine learning algorithms, we want to discover the model mechanisms fi behind the dynamical

processes which are responsible for the shifting behavior, compare [1]. Therefore, we propose a set of functions fi,
including for example polynomials of the system states, and aim to select those functions fi fitting the transient
phase and the longtime behavior best. The selected functions fi may explain the dynamics of the hidden processes.

This master thesis explores the possibility of learning mechanisms fi with physics-informed neural network
(PINN) [4] algorithms if the system behavior takes place on several time scales; for instance, if the longtime
behavior depends only weakly on short-time effects. In the PINN approach, the idea to employ a neural network
uθ to discretize the differential equation eq. (1) by optimizing the loss function∑

tj

∥∥u̇θ(xj)−
∑
i

fi(uθ)(tj)
∥∥2.

Our idea is to impose specific structures into the network function. For instance, in the case of two temporal
scales, we want to construct

uθ = g(ūθ̄, ûθ̂),

where ūθ̄ is a model that describes the behavior on a macroscale and ûθ̂ describes the microscale behavior; then,

θ = (θ̄, θ̂). The function g is a generic function that represents the coupling of the time scales. We will consider
and/or design different types of coupling approaches during the thesis project; one example is to use a multi-level
domain decomposition approach as in [2].



Figure 2: Visualization of a projection of the loss landscape based on [3]: network without (left) and with (right) skip
connections. Images taken from https://github.com/tomgoldstein/loss-landscape.

A first toy problem is the equation for saturated growth

u̇ = u(C − u)

which tends towards C for initial values u(0) = u0 > 0. In the introduced example of liver inflammation, this
equation models the growth of the virus population in the liver tissue.

A second model is the competition between two species u1 and u2 with dynamics

u̇1 = u1(C1 − α1u1 − α2u2)

u̇2 = u2(C2 − β1u1 − β2u2)

which tends for certain parameter values αi, βi to a stationary co-existence state. Interpreting u1 and u2 as virus
and immune cells, this is a model for chronic inflammation courses.

We are also interested in the question of how this multiscale approach influences the loss landscape of the neural
network model compared against a simple PINN model cf. Figure 2.

For implementation, we will employ state-of-the-art deep learning libraries, such as tensorflow (https://www.
tensorflow.org/) or PyTorch (https://pytorch.org/). Programming experience in Python is beneficial.
Good communication skills in English or German are required.

The project is in collaboration of TU Braunschweig (Germany) and TU Delft (the Netherlands). We will try to
enable research visit(s) during the time of the project (e.g. by using PROMOS grants at TU Braunschweig).
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