Vector spaces

A vectorspace over a field IK is a set V and a field IK, equipped with two operations:

1. Vector addition "+": VXV->V which fulfills for all u.v., wev:

$$\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$$
 association

• 
$$\overrightarrow{JOEV}$$
:  $\overrightarrow{O+V} = \overrightarrow{V+O} = \overrightarrow{V}$  uneutral e

• 
$$J(-\vec{v}) \in V$$
:  $\vec{v} + (-\vec{v}) = (-\vec{v}) + \vec{v} = \vec{0}$  yi  
•  $\vec{v} + \vec{u} = \vec{u} + \vec{v}$  (come

Previously





inverse element"



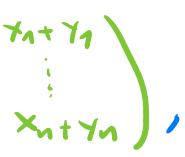
## nfills for all



$$(\alpha + \beta) \vec{v} = \alpha \vec{v} + \beta \vec{v}$$
  
 
$$- (\alpha \cdot \beta) \vec{v} = \alpha \cdot (\beta \cdot \vec{v})$$

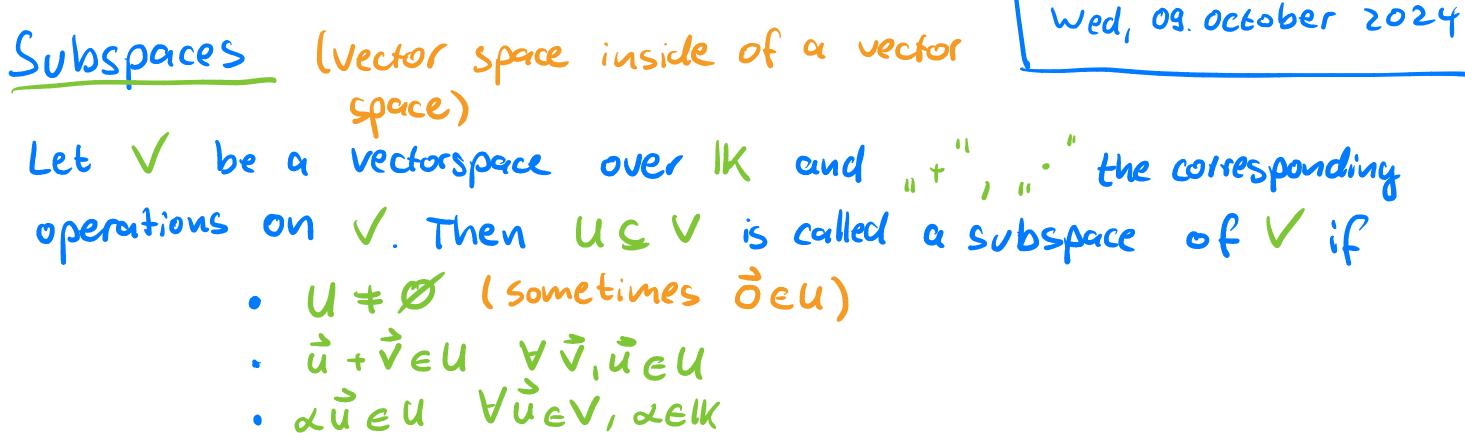
· 11. V = V (where 11 is the neutral element in IK)

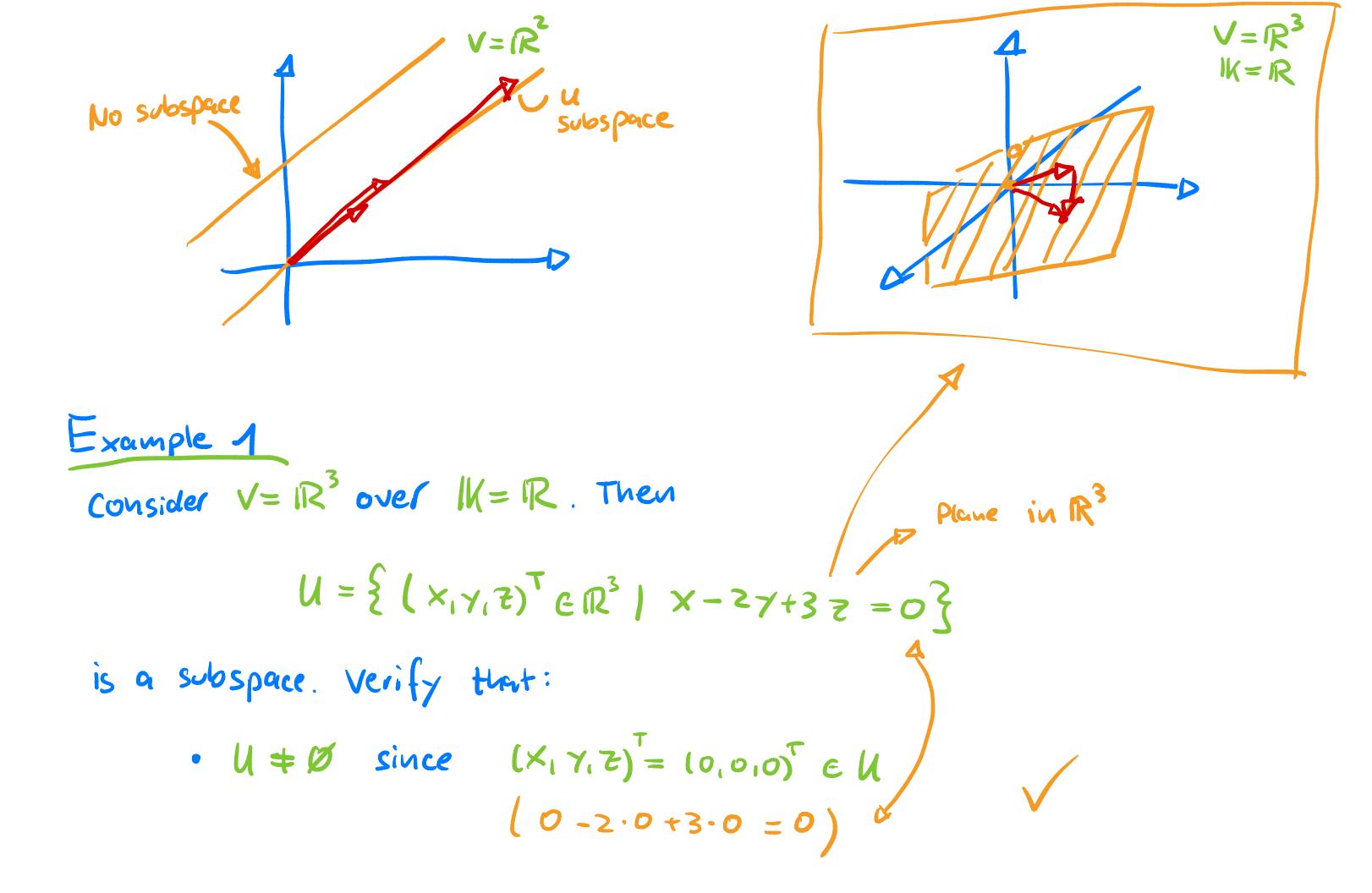
Example 1  
space of n-tuples in 
$$\mathbb{R}^{n}$$
:  
Elements in  $\mathbb{R}^{n}$ :  $\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}$ , Addition:  $\begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} + \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} x_{1} \\ x_{n}$ 





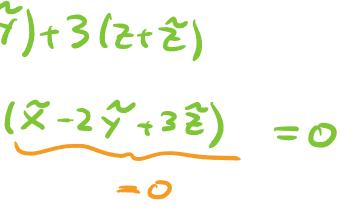
Example 2 space of all functions from IR to IR, i.e.  $|K = |R, V = \{f: |R - P|R\} f$  is a function  $\}$ Addition: (f+g)(x) := f(x) + g(x)Multiplication: (df)(x) := d·f(x)





• Let 
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
,  $\begin{pmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{pmatrix} \in \mathcal{U}_{i}$ , i.e. it holds  $x - 2\gamma + 32 = x - 2\hat{\gamma} + 3\hat{z} + \hat{z}$   
Since  $(x + \hat{x}) - 2 \cdot (\gamma + \hat{\gamma}) = (x - 2\gamma + 3\hat{z}) + (x - 2\gamma + 3\hat{z}) + (x - 2\gamma + 3\hat{z}) + (x - 2\gamma + 3\hat{z}) = x - 2\hat{\gamma} + 3\hat{z} = x - 2\hat{\gamma} + 3\hat{z$ 

## = 0 = 0





## +3( < 2) 32) = <.0 = 0

Example 2

$$V = IR^{3}$$
,  $IK = IR$ . Show that  
 $U = \begin{cases} (x_{1}y_{1}z)^{T} \in IR^{3}I + 3y + 2z = 1 \end{cases}$   
is not a subspace.  
In order to show that, we show that  $\vec{o} \notin U$ 

that

$$0-3.0+0=0+1$$
  
 $4 \delta \epsilon u$   
 $4 \delta \epsilon u$ 

Example 3 Let V be the vector space of all real functions f: IR -> IR. Then  $U = \{f: R \rightarrow R \mid f \text{ continious} \} = C^{\circ}(R) = C^{\circ}(R, R)$ 

## . In fact it holds

## is not a subspace

- is a subspace
  - U ≠ Ø since f(x) = 0 is continious
  - · Since the sum of of two continious functions is continious again, we have (f +g)(x) e u for f(x), g(x) e u
  - . Since
    - (Lf) (x) eu fos fos eu and de R the third property is also fufilled.

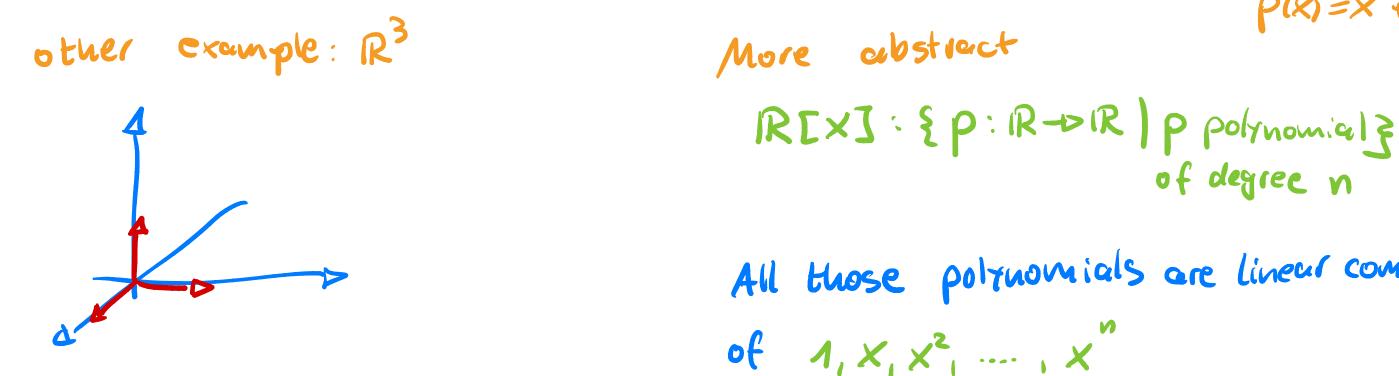
Basis of Vector Spaces

- U is a subspace (and therefore a Vectorspace us well)

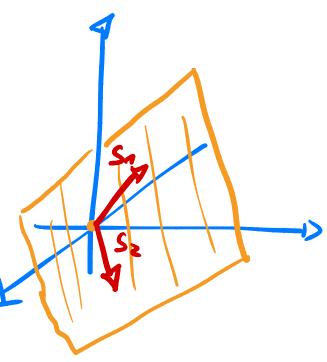


X-27+32=0 A plane can be parameterized by  $\vec{x} = \lambda \vec{s}_1 + \mu \vec{s}_2$ 

The vectors  $5_1$ ,  $5_2$  span the plane and each vector which points into the plane can be represented as a linear combination of si and sz.



$$P(X) = 3 X^2 - 0 X + 1$$



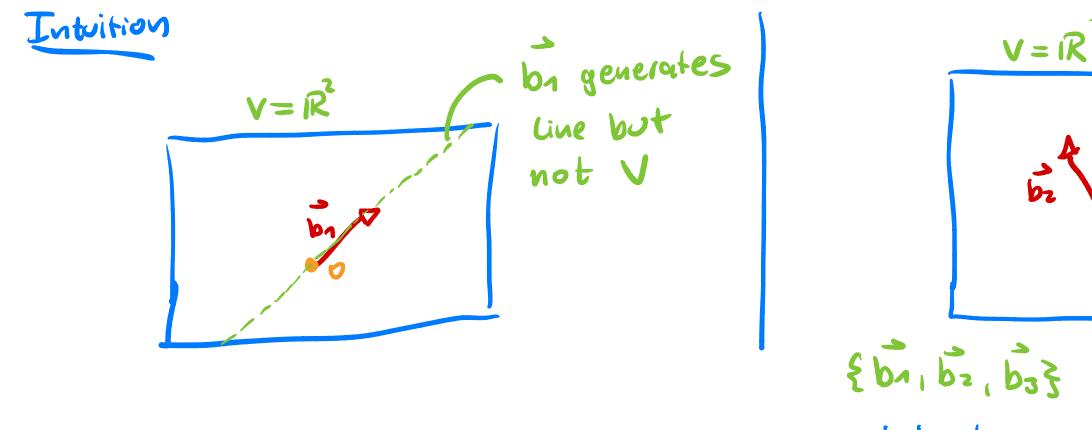
P(X) = X + ... + ×+1

## of degree n

All those polynomials are linear combinations

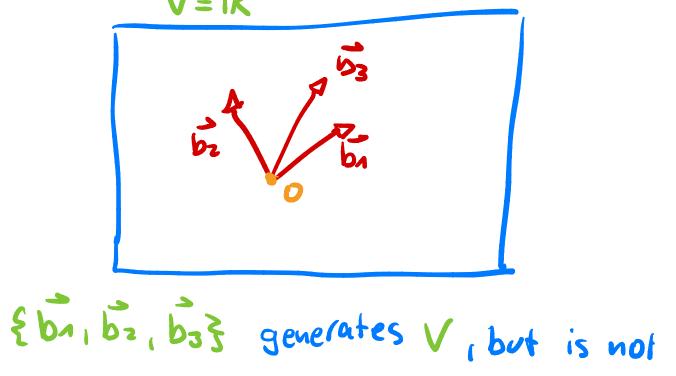
In order to formalise this, let  $span_{v_1-1}v_n = \{ \overline{z} \neq v_1 \}$ we call {b, , , b, } a basis (generating set) of a vector space V if

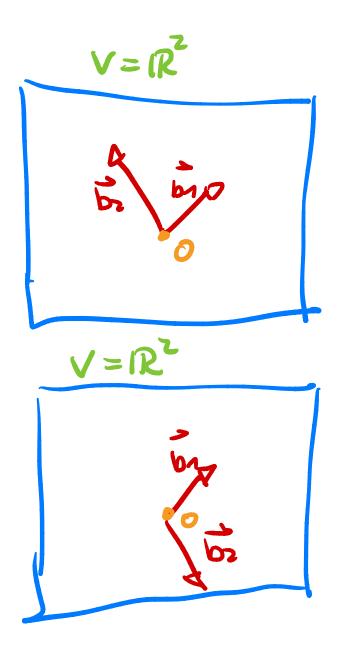
2 brin bn are linear independent h basis is minimal



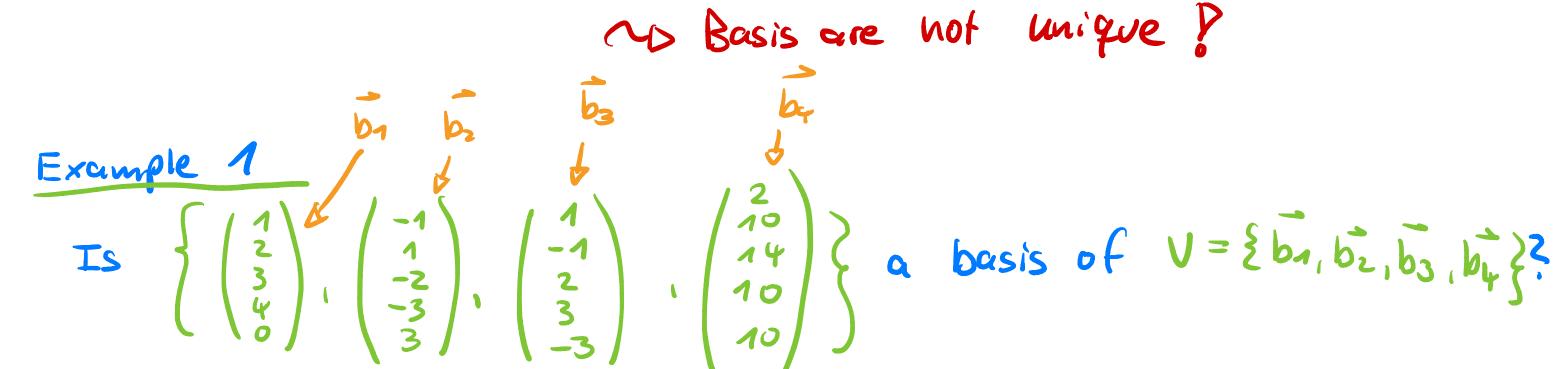
minimal.

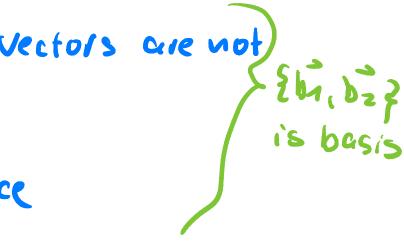






- No Right amount of vectors (vectors are not linear dependent)
  - no {b, bz} spans the vetoispace
    - no some is true here Lo New choice of vectors also forms a basis





we have to check two properties from the definition: 1. V = span { b1, b2, b3, b4 } is fulfilled by definition 2. Are the vectors linear independent?

~> {b1, b2, b3, b4} not a basis!

But what if we only take {b1, b2, b4} as possible basis?  $V = Span \{ b_1, b_2, b_4 \}$  is fulfilled ]

Chek for linear independence:

+ d2 b2 + dy by = 0



We want to show that this is a vector space, i.e. we show that it is a subspace of the vector space of all function,

• 
$$L^{2}(E0.1J) \neq \emptyset$$
 Since  $f(x) = 0$  is an element  $L^{2}$   
 $\int_{0}^{1} |0|^{2} dx = 0 < \infty$ 

• Addition of  $f,g \in L^2(E0,1]$  is in  $L^2(E0,1]$  again, since

$$\int_{0}^{n} |f(x) + g(x)|^{2} dx \leq \int_{0}^{n} |f(x)|^{2} + 2|f(x)|g(x)| + |g(x)|^{2}$$
$$= \int_{0}^{n} |f(x)|^{2} dx + 2 \cdot \int_{0}^{n} |f(x)g(x)|$$
  
Cauchy -schwarz  
in equality 
$$\leq \int_{0}^{n} |f(x)|^{2} dx + 2 \left[ \int_{0}^{n} |f(x)|^{2} dx \right]$$

# $< \infty \zeta$

## ([0,1]) since

<sup>z</sup> d×

 $dx + \int_0^{1} |g(x)|^2 dx$  $\left(\int_{0}^{1} \left(g(x)\right)^{2} dx\right) = \int_{0}^{\frac{1}{2}} \int_{0}^{1} \left(g(x)\right)^{2} dx$ 



. Multiplication of fel ([0,1]) with Lelk is in L'([0,1]) Since

$$\int_{0}^{1} |df(x)|^{2} dx = |d|^{2} \cdot \int_{0}^{1} |f(x)|^{2} dx \quad < \infty$$

no A basis of this vectorspace is given as  $\begin{cases} b_1(x) = 1, b_{2j}(x) = \frac{1}{\sqrt{21}} \cos(2j\pi x), b_{2j+1}(x) = \frac{1}{\sqrt{21}} \sin(2j\pi x) \end{cases}$ 

## < 00

## NO & f & L^2 ([0,1])

## -> L<sup>2</sup>([U,1]) is a Subsipace

# for j=1,2,... }

Normed Vector spaces

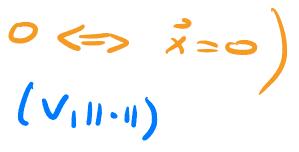
Let V be a IK = IR or IK = C Vector space. II. II: V-P IK is called a norm (on V) if it holds for all X, YEV, welk that

1. 
$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$$
  
2.  $\|\vec{a} \cdot \vec{x}\| = |\vec{a}| \cdot \|\vec{x}\|$   
3.  $\|\vec{x}\| = 0 \implies \vec{x} = 0 \implies \vec{x} = 0$  ( $\|\vec{x}\| = 0$   
A vector space with a norm is a normed vector space (  
Intuition

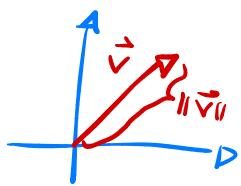
A norm measures the distance to zero / length of a vector

A feu examples





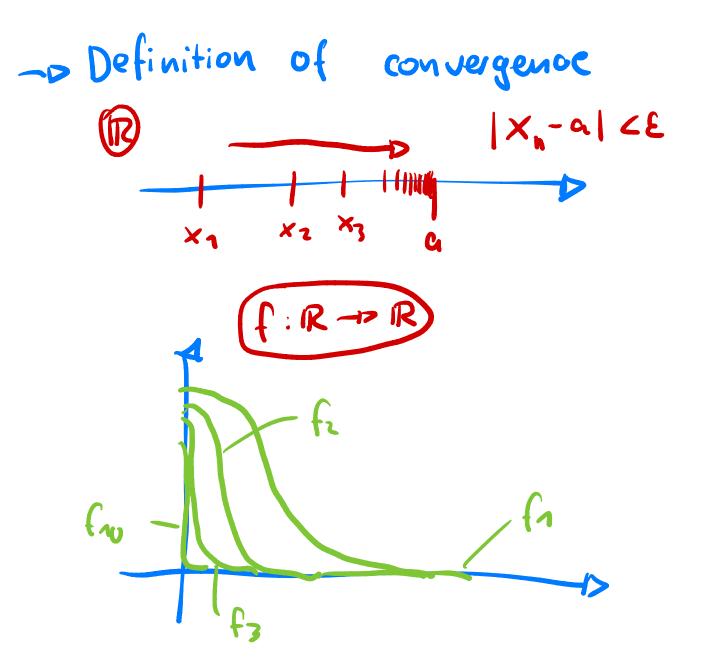


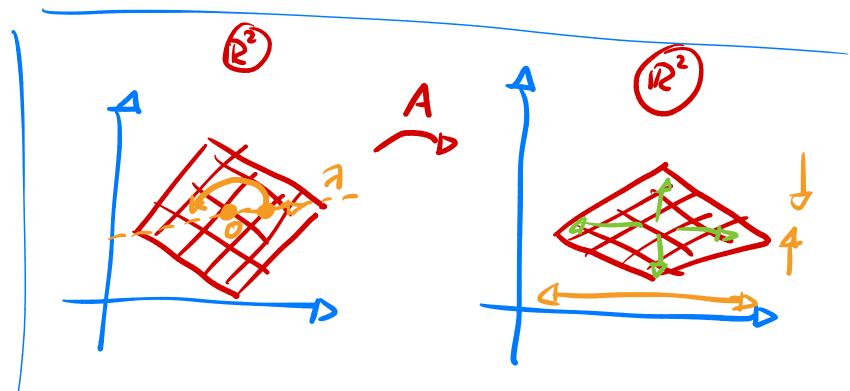


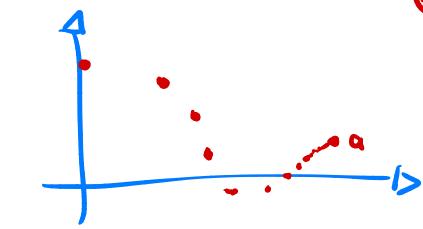
1. eucledean norm  
let 
$$V = \mathbb{R}^{n}$$
, then  $\|\vec{x}\|_{2} = \sqrt{x_{1}^{2} + \dots + x_{n}^{2}}$  is a norm on  
2. Taxicab norm/Manhattan norm  
Let  $V = \mathbb{R}^{n}$ , then  $\|\vec{x}\|_{1} = |x_{1}| + |x_{2}| + \dots + |x_{n}|$   
Let's compare  $1 \notin 2$ :  
We drawing the unit Cicle  
 $B_{1}(0) = \{\vec{x} \in \mathbb{R}^{n} \mid \|\vec{x}\| = 1\}$   
(unit circle for  $\|\cdot\|_{2}$   
unit circle for  $\|\cdot\|_{2}$ 



$$\frac{3 \cdot L^2 - norm}{\sqrt{-1^2(\Sigma_{0,1}, 1)}, \text{ then } \|f\|_{2,2}} = \left(\int_{-1}^{1} |f(x)|^2 dx\right)^{\frac{1}{2}}$$







## ( Jo I f (x) I dx) is a norm on V.



Eigenvalues

Let V be a IK vector space. Jelk is called eigenvalue of a linear mapping A: V-DU, if it holds  $\exists x \in v \setminus \{o\}$ :  $A \times = A \times$ x. is called eigen vector for A.

Eigenvalues for Matrices let AEIR<sup>man</sup>. Then the eigenvalues can be computed as follows  $A\vec{x} = \vec{\lambda}\vec{x}$  (=>  $A\vec{x} - \vec{\lambda}\vec{x} = \vec{o}$  (=>  $(A - \vec{\lambda}\vec{L})\vec{x} = \vec{o}$  (=>  $det(A - \vec{\lambda}\vec{L}) = \vec{O}$ 



Charateristic polynomials = det(ZI-A) = 0

Let 
$$A = \begin{pmatrix} 1 & -3 \\ -3 & 2 \end{pmatrix}$$
. Then  $det(A - \lambda I) = det\begin{pmatrix} 1 - \lambda & -3 \\ -3 & 2 - \lambda \end{pmatrix}$ 

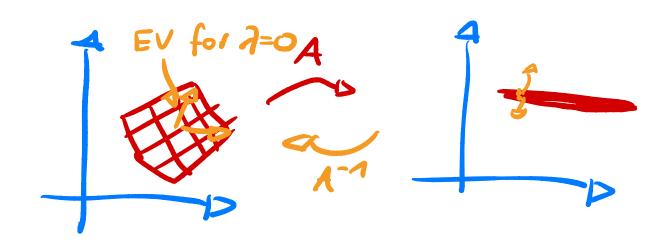
Hence, continue to compute the Zeros of the char. polynomial

$$0 = \lambda^{2} - 3\lambda - 9 = \lambda^{2} - 2 \cdot \frac{3}{2}\lambda + \left(\frac{3}{2}\right)^{2} - \left(\frac{3}{2}\right)^{2} - 9$$
  
$$= \left(\lambda - \frac{3}{2}\right)^{2}$$
  
$$(\lambda - \frac{3}{2})^{2} - \left(\frac{3}{2}\right)^{2} - 9 = 0$$
  
$$\lambda_{N_{2}} = \frac{3}{2}$$

The eigenvalue O Ax = OThe eigenvalue O exists. If O occurs as an eigenvalue, A is not invertible anymore

## $= (1 - \lambda)(z - \lambda) - g$ $= \lambda^{2} - 3\lambda - g$

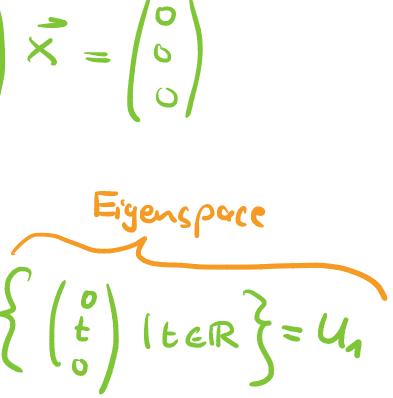
 $Ax = b \quad \neg p \quad x = A^{-1}b$ 



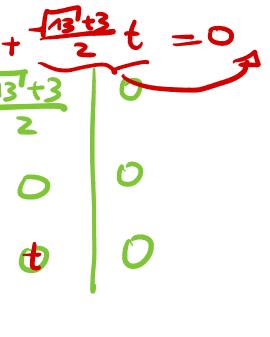
$$\frac{E \times comple}{M} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & -2 \end{pmatrix}$$

Start with eigenvalues:  $O \stackrel{!}{=} det (M - \overline{A}T) = det \begin{pmatrix} (n-\overline{A}) & \overline{O} & -n \\ \overline{O} & (n-\overline{A}) & \overline{O} \\ -1 & \overline{O} & (-2-\overline{A}) \end{pmatrix}$  $= (1-3)^{2} \cdot (-2-3) - (1-3)$  $= -\lambda^{3} + 4\lambda - 3$  $\lambda_{1} = 1$   $\lambda_{2/3} = -1 \pm 13^{2}$ 

Eigenvectors for  $\lambda_1 = 1$  $\dot{X}$  are those vectors which fulfill  $(M - \lambda, I) \dot{X} = \vec{0}$  $\mathcal{L} = \left( \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & -2 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right) \stackrel{-}{\times} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ Hence, solve this linear system of equations: ence, solve this the system of the particular system of the particular system of the particular terms of te Eigenvectors for  $\lambda_2 = \frac{1+\sqrt{3}}{2}$  $(M - \lambda_2 I) \stackrel{\rightarrow}{x} = \stackrel{\rightarrow}{0} (=) \begin{pmatrix} \frac{3 - \sqrt{3}}{2} & 0 & -1 \\ 0 & \frac{3 - \sqrt{3}}{2} & 0 \\ -1 & 0 & -\frac{3 - \sqrt{3}}{2} \end{pmatrix} \stackrel{\rightarrow}{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ 

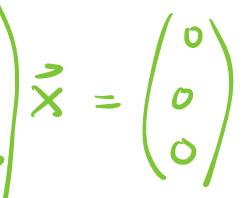






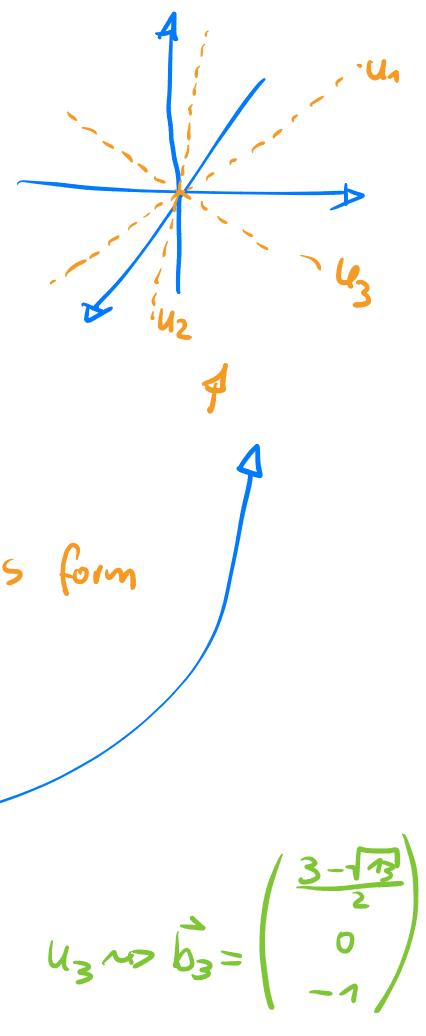
## $t \in \mathbb{R} = U_2$

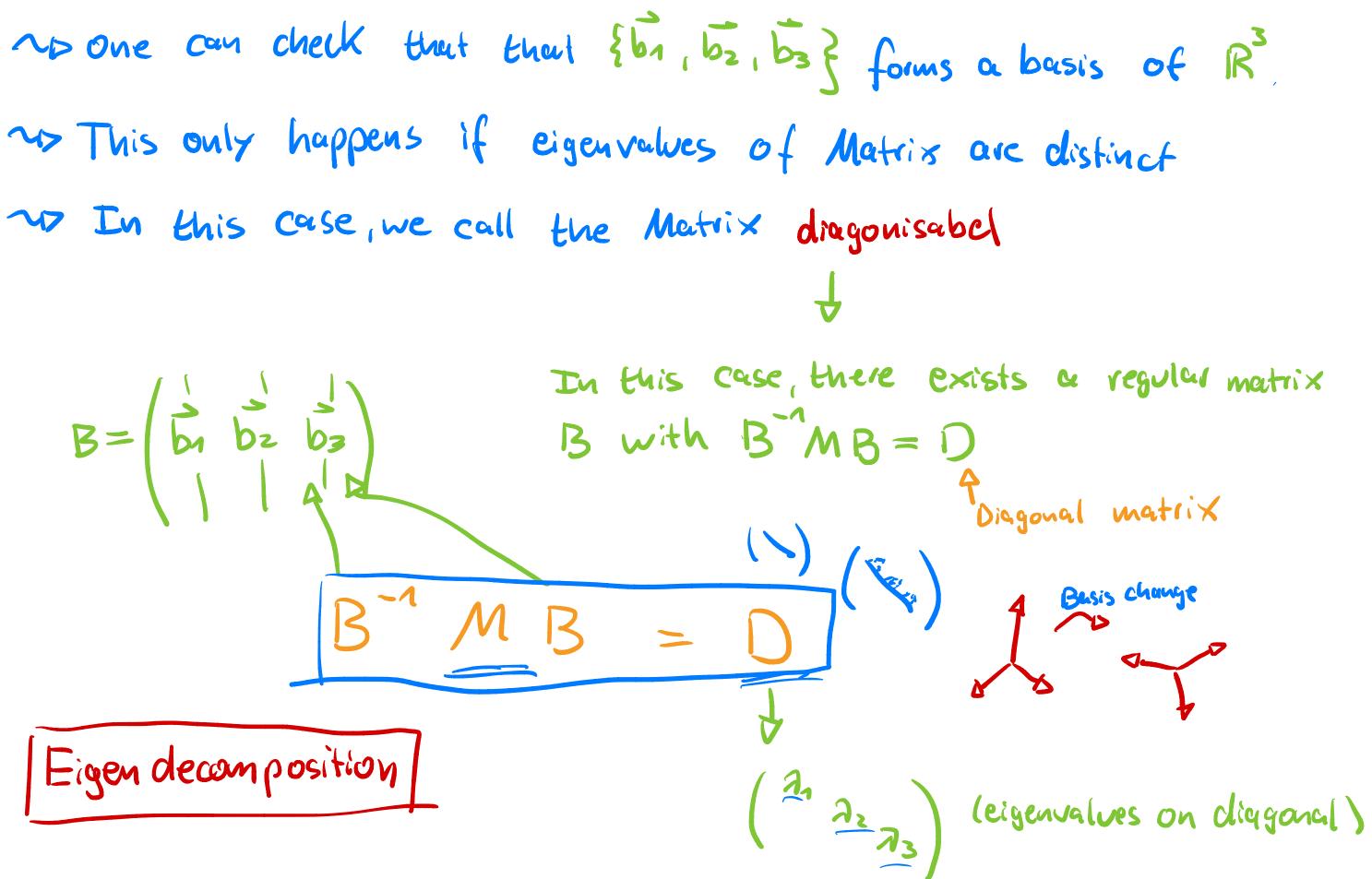
for 72



$$\underbrace{\begin{array}{c} Gauss}{\searrow} \\ \searrow \\ \searrow \\ \searrow \\ \searrow \\ \searrow \\ X \in \left\{ \begin{pmatrix} 3 - \sqrt{3} \\ 2 \\ 0 \\ -t \end{pmatrix} \mid t \in \mathbb{R} \right\} = U_{3}$$

- Notice that the eigenspaces are vectorspaces No their dimension adds up to the dimension V in case that all EVs are distinct
- All eigenvectors belonging to the same eigenvalues form a subspace of V For the previous example: Un , Uz , Uz are subspaces of  $\mathbb{R}^{3}$ with basis vectors:  $U_{1} \sim \tilde{b}_{1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ ,  $U_{2} \sim \tilde{b}_{2} = \begin{pmatrix} -\frac{1}{3}t+3 \\ 0 \\ -1 \end{pmatrix}$  $U_{3} \sim \tilde{b}_{3} = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$





15 In case that not all eigenvalues are distinct: Jordan-Normal form.