

Information Retrieval and Web Search Engines

Lecture 7: Document Clustering

Wolf-Tilo Balke
Muhammad Usman

Institut für Informationssysteme
Technische Universität Braunschweig

The Cluster Hypothesis

- The Cluster Hypothesis states:
 "Closely associated documents tend to be relevant to the same requests"
- "Closely associated" usually means "similar" (with respect to some kind of similarity measure)

The Cluster Hypothesis

- Experimental validation of the Cluster Hypothesis?
 - Proved to be problematic
 - Seems to be highly collection-specific
- Also depends on:
 - Representation of documents
 - Similarity measures
 - Queries
- But: It sounds reasonable and holds "often enough"
- In addition, real-world collections usually have a clear cluster structure
- Can we exploit clustering for information retrieval?

Document Clustering

- I. Applications
- 2. Issues in Clustering
- 3. Flat Clustering
- 4. Hierarchical Clustering

- In IR, results
 are typically
 presented by
 means of
 ranked lists
- What about clusters?

Top **201** results of at least **66,300** retrieved for the query **"wolf-tilo" balke** (<u>details</u>)

Did you mean: "wolf-till" blake

Sponsored Results

Balke bei eBay - Balke : Reihenweise Angebote Balke ? Ab zu eBay! - www.ebay.de/Balke

Wolf Thilo - Riesige Auswahl & niedrige Preise: Wolf Thilo garantiert günstig! - www.Shopping.de/Wolf+Thilo

Search Results

1. DBLP: Wolf-Tilo Balke 🖻 🔍 ⊗

2010; 58: Joachim Selke, Christoph Lofi, **Wolf-Tilo Balke**: Highly Scalable Multiprocessing Algorithms for Preference-Based Database Retrieval. DASFAA (2) 2010: 246-260 www.informatik.uni-trier.de/~ley/db/indices /a-tree/b/**Balke:Wolf=Tilo.**html · Cached page www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Balke:Wolf=Tilo.html - [cache] - Bing, Ask, Yahoo!

2. Wolf-Tilo Balke --- University of Hannover L3S Home Page 면 Q 용

Wolf-Tilo Balke Chair for Information Systems Technische Universität Braunschweig Director L3S Research Center University of Hannover, Germany . click here for L3S Homepage www.l3s.de/~balke · Cached page www.l3s.de/~balke - [cache] - Bing, Yahoo!, Ask

Prof. Dr. Wolf-Tilo Balke Institute Chair. Technische Universität Braunschweig Institut für Informationssysteme Mühlenpfordtstraße 23, 2.OG D-38106 Braunschweig www.ifis.cs.tu-bs.de/staff/balke · Cached page www.ifis.cs.tu-bs.de/staff/balke - [cache] - Bing, Yahoo!, Ask

Advantages:

- Scanning a few coherent groups
 often is easier than scanning many individual documents
- The cluster structure gives you an impression of what the result set looks like

Disadvantages:

- Finding informative labels for clusters is difficult
- "Good" clusterings are hard to find (example on the next slide)

Cluster structure found for query "apple":

Ideally, a clustering should look like this:

2. Scatter-Gather

- Scatter-Gather is a navigational user interface
- Search without typing!

Idea:

- I. Cluster the whole document collection into a small number of clusters
- 2. Users formulate queries by selecting one or more of these clusters
- 3. Selected clusters are merged and clustered again
- 4. Return to step 2 if not finished

2. Scatter-Gather

• Example from (Manning et al., 2008):

Collection: New York Times news stories

3. Collection Clustering

 Sometimes it makes sense to cluster the whole document collection hierarchically:

San Jose Mercury News - Chicago Sun-Times - National Post - FanHouse

all 701 news articles » Email this story

3. Collection Clustering

- Collection clustering is especially useful if...
 - The collections contains only a small number of topics
 - Each topic is covered by many documents in a similar fashion
- Advantages:
 - Enables exploratory browsing
 - Can be helpful even if users are unsure about which query terms to use

There's no clustering here!
But dmoz is an example
of using a global hierarchy
for navigation

4. Language Modeling

- Collection clustering can also be used to extend small result lists
- If there is only a small number of documents matching the query, add similar documents from the clusters containing the matching documents

5. Cluster-based Retrieval

- Also interesting:
 Use collection clustering to speed-up retrieval
- Idea:
 - Cluster the whole collection
 - Represent each cluster by a (possibly virtual) document,
 e.g., a typical or average document contained in the cluster
 - Speed-up query processing by first finding the clusters having best-matching representatives and then doing retrieval only on the documents in these clusters
 - I. Find best-matching clusters
 - 2. Build the set of documents contained in these clusters
 - 3. Find best-matching documents

Cluster Based Retrieval

Carrot2

- Open source!
- Cluster search results into thematic groups
- http://search.carrot2.org

Cluster Based Retrieval

- Artificial Intelligence Research (11 docs)
- Development of Artificial Intelligence (11 docs)
- Human Intelligence (11 docs)
- Machine Learning (11 docs)
- Computer Science (9 docs)
- Artificial General Intelligence (7 docs)
- Artificial Intelligence Courses (6 docs)
- **CSC 217** (5 docs)
- Response (4 docs)
- University of Melbourne (4 docs)
- Al Refers (3 docs)
- Applied AI (3 docs)

- Artificial Intelligence Marketing (3 docs)
- Artificial Intelligence in Fiction (3 docs)
- Engineering (3 docs)
- Generative Artificial Intelligence (3 docs)
- History of Artificial Intelligence (3 docs)
- Innovation (3 docs)
- MIT 823 (3 docs)
- Modern Approach (3 docs)
- Review (3 docs)
- Search (3 docs)

Cluster Based Retrieval

How are clusters formed?

- Document Representation:
 - TF-IDF, Bag of Words, Word embedding
- Similarity Computation:
 - Cosine similarity, Euclidean distance, or Jaccard similarity
- Clustering Algorithm:
 - k-means, hierarchical clustering, or density-based clustering

Document Clustering

- I. Applications
- 2. Issues in Clustering
- 3. Flat Clustering
- 4. Hierarchical Clustering

Issues in Clustering

- Clustering is more difficult than you might think
 - I. How many clusters?
 - 2. Flat or hierarchical?
 - 3. Hard or soft?
 - 4. What's a **good** clustering?
 - 5. How to **find** it?

I. How Many Clusters?

Let k denote the number of clusters from now on

- Basically, there are two different approaches regarding the choice of k
 - Define k before searching for a clustering,
 then only consider clusterings having exactly k clusters
 - Do not define a fixed k,
 i.e., let the number of clusters depend
 on some measure of clustering quality to be defined
- The "right" choice depends on the problem you want to solve...

2. Flat or Hierarchical?

Flat clustering:

2. Flat or Hierarchical?

2. Flat or Hierarchical?

Hierarchical:

3. Hard or Soft?

Hard clustering:

- Every document is assigned to exactly one cluster (at the lowest level, if the clustering is hierarchical)
- More common and easier to do

Soft clustering:

- A document's assignment is a distribution over all clusters (fuzzy, probabilistic, or something else)
- Better suited for creating browsable hierarchies
 (a knife can be a weapon as well as a tool)
- Example: LSI (k clusters/topics)

Abstract Problem Statement:

- Given:
 - A **collection** of *n* documents
 - The type of clustering to be found (see previous slides)
 - An **objective function** *f* that assigns a number to any possible clustering of the collection
- Task:

Find a clustering that minimizes the objective function (or maximizes, respectively)

Let's exclude a nasty special case:
 We don't want empty clusters!

- The overall quality of a clustering is measured by f
- Usually, f is closely related to a measure of distance between documents (e.g. cosine similarity)
- Popular primary goals:
 - Low inter-cluster similarity,
 i.e. documents from different clusters should be dissimilar
 - High intra-cluster similarity,
 i.e. all documents within a cluster should be mutually similar

Inter-cluster similarity and intra-cluster similarity:

Common secondary goals:

- Avoid very small clusters
- Avoid very large clusters
- ...

- All these goals are internal (structural) criteria
- External criterion:

Compare the clustering against a hand-crafted reference clustering (later)

5. How to Find a Good Clustering?

- Naïve approach:
 - Try all possible clusterings
 - Choose the one minimizing/maximizing f
- Hmm, how many different clusterings are there?
 - There are S(n, k) distinct hard, flat clusterings of a n-element set into exactly k clusters
 - $S(\cdot, \cdot)$ are the **Stirling numbers of the second kind**
 - Roughly: S(n, k) is exponential in n
- The naïve approach fails miserably...
- Let's use some heuristics...

Document Clustering

- I. Applications
- 2. Problem Statement
- 3. Flat Clustering
- 4. Hierarchical Clustering

- K-means clustering:
 - The most important (hard) flat clustering algorithm,
 i.e., every cluster is a set of documents
 - The number of clusters k is defined in advance
 - Documents usually are represented as unit vectors
 - Objective:
 Minimize the average distance from cluster centers!
- Let's work out a more precise definition of the objective function...

- Centroid of a cluster:
 - Let $A = \{d_1, ..., d_m\}$ be a document cluster (a set of unit vectors)
 - The centroid of A is defined as:

$$\mu(A) = \frac{1}{m} \sum_{i=1}^{m} d_i$$

- RSS of a cluster:
 - Again, let A be a document cluster
 - The **residual sum of squares** (RSS) of A is defined as:

$$RSS(A) = \sum_{i=1}^{m} \left\| d_i - \mu(A) \right\|^2$$

$$\mu(A) = \frac{1}{m} \sum_{i=1}^{m} d_i$$
 RSS(A) = $\sum_{i=1}^{m} ||d_i - \mu(A)||^2$

• In k-means clustering, the quality of the clustering into (disjoint) clusters $A_1, ..., A_k$ is measured by:

$$RSS(A_1, ..., A_k) = \sum_{j=1}^k RSS(A_j)$$

- K-means clustering tries to minimize this value
- Minimizing RSS($A_1, ..., A_k$) is equivalent to minimizing the average squared distance between each document and its cluster's centroid

The k-means algorithm (aka Lloyd's algorithm):

- I. Randomly select k documents as **seeds** (= initial centroids)
- 2. Create k empty clusters
- 3. Assign exactly one centroid to each cluster
- 4. Iterate over the whole document collection:
 Assign each document to the cluster with the nearest centroid
- 5. Recompute cluster centroids based on contained documents
- 6. Check if clustering is "good enough"; return to (2) if not
- What's "good enough"?
 - Small change since previous iteration
 - Maximum number of iterations reached
 - RSS "small enough"

• Example from (Manning et al., 2008):

I. Randomly selectk = 2 seeds(initial centroids)

Assign each
 document to
 the cluster
 having the
 nearest centroid

K-Means Clustering

5. Recompute centroids

K-Means Clustering

Result after 9 iterations:

K-Means Clustering

Movement of centroids in 9 iterations:

Variants and Extensions of K-Means

- K-means clustering is a popular representative of the class of partitional clustering algorithms
 - Start with an initial guess for k clusters,
 update cluster structure iteratively
- Similar approaches:
 - K-medoids:
 Use document lying closest to the centroid instead of centroid
 - Fuzzy c-means:
 Similar to k-means but soft clustering
 - Model-based clustering:

Assume that data has been generated randomly around k unknown "source points"; find the k points that most likely have generated the observed data (maximum likelihood)

Document Clustering

- I. Applications
- 2. Issues in Clustering
- 3. Flat Clustering
- 4. Hierarchical Clustering

Hierarchical Clustering

- Two major approaches:
 - Agglomerative (bottom-up):

Start with individual documents as initial clustering, create parent clusters by **merging**

Start with an initial large cluster containing all documents, create child clusters by **splitting**

Agglomerative Clustering

- Assume that we have some measure of similarity between clusters
- A simple agglomerative clustering algorithm:
 - I. For each document:Create a new cluster containing only this document
 - 2. Compute the similarity between every pair of clusters (if there are m clusters, we get an $m \times m$ similarity matrix)
 - 3. Merge the two clusters having maximal similarity
 - 4. If there is more than one cluster left, go back to (2)

Agglomerative Clustering

0.0

0.2

- Dendrogram
 from
 (Manning et al.,
 2008):
 - Documentsfrom 8Reuters-RCVIcollection 6
 - Cosine similarity

Cosine similarity of "Fed holds..." and "Fed to keep..." is around 0.68

Agglomerative Clustering

Get non-binary splits by cutting the dendrogram at prespecified, levels of similarity

Gives 17 clusters

Gives a cluster of size 3

Ohio Blue Cross -awsuit against tobacco companies suits against tobacco firms Indiana tobacco lawsuit Viag stays positive Most active stocks CompuServe reports loss Sprint / Internet access service German unions split Lloyd's CEO questioned loyd's chief / U.S. grilling Planet Hollywood Trocadero: tripling of revenues 3acktoschool spending is up

Similarity of Clusters

- We just assumed that we can measure similarity between clusters... But how to do it?
- Typically, measures of cluster similarity are derived from some measure of document similarity (e.g. Euclidean distance)
- There are several popular definitions of cluster similarity:
 - Single link
 - Complete link
 - Centroid
 - Group average

Single-link clustering:

Similarity of two clusters

= similarity of their most similar members

Problem:

Single-link clustering often produces long chains

Complete-link clustering:

Similarity of two clusters

= similarity of their most dissimilar members

· Problem:

Complete-link clustering is sensitive to outliers

Similarity of Clusters

- Centroid clustering:
 - Similarity of two clusters
 - = average inter-similarity (= similarity of centroids)

Problem:

Similarity to other clusters can improve by merging (leads to overlaps in dendrogram)

Group average clustering:

Similarity of two clusters = average of all similarities

Problem:

Computation is expensive

- How does divisive clustering work?
- We won't go into details here
- But there is a simple method:
 - Use a flat clustering algorithm
 as a subroutine to split up clusters (e.g. 2-means clustering)
- Again, there might be constraints on clustering quality:
 - Avoid very small clusters
 - Avoid splitting into clusters of extremely different cardinalities
 - **–** ...

- Finally, how to evaluate clusterings?
- We already used internal criteria
 (e.g. the total centroid distance for k-means clustering)
- Compare against a manually built reference clustering involves external criteria
- Example: The Rand index
 - Look at all pairs of documents!
 - What percentage of pairs are in correct relationship?
 - True positives: The pair is correctly contained in the same cluster
 - True negatives: The pair is correctly contained in different clusters
 - False positives: The pair is wrongly contained in the same cluster
 - False negatives: The pair is wrongly contained in different clusters

- Relevance Feedback
- Classification

