

Narrative Aspects of Real-World Events

WAKERS'23 @ Stellenbosch, South Africa

Florian Plötzky

Institute for Information Systems
TU Braunschweig, Germany

The story so far

- I started my PhD in mid 2020 and since then we encountered:
 - A global pandemic (2020-2022?)
 - Attacks on the capitol in Washington D.C. (2021)
 - A US presidential election (2020) and a German federal election (2021)
 - A war between Russia and Ukraine (2022)
 - The football world cup in Qatar (2022)

— ...

Conclusion: events shape our lives in various forms

What are events?

- Events are interactions between participants bound in space and time
 - Can be instances of event types defined for different domains

Participants are entities, that stem from a target domain

Russia

Ukraine

24.02.2022

Well-known applications

- Extraction and Detection
 - Extract factual information about events mostly from news and social media texts
 - Open vs. Closed style extractions
- Prediction & Forecasting
 - Predict future events
 - Utilize events for improving forecasting robustness

Russian Invasion of Ukraine
Russia Steps Up Attacks on
Ukrainian Fortifications in the
East

Ehe New York Eimes

Role	Slot
War Party I	
War Party 2	
Date	
Location	

Role	Slot
War Party I	Ukraine
War Party 2	Russia
Date	24.02.2022
Location	Ukraine

- What about databases or information systems providing information about events?
 - Some are available, e.g., GDELT, Event Registry
 - Mostly: news collections with event schema and keyword search support

- Focus on event-centric information systems
 - i.e., information systems focusing on events with innovative access paths
 - high level objective: understand what happened in the event

Knowledge Graph Representation

- A knowledge graph is a collection of facts encoded as subject-predicate-object triples
 - e.g., (War, has_instance, Russia_Ukraine_War)
 - Is a way to represent and reason about knowledge
 - The largest general-purpose and public available
 - knowledge graph today is Wikidata
 - over 100m entities
 - named events

2022 Russia	n invasion of Ukraine (Q110999040)
major escalation of the R	usso-Ukrainian War
Putin's War Russia's in	vasion of Ukraine Russo-Ukrainian War War in Ukraine invasion of Ukraine Russian invasion of Ukraine
Ukrainian Patriotic Wa	r Russian attack on Ukraine Special military operation in Ukraine 2022-23 War in Ukraine
2022-23 invasion of Ul	kraine 2022-23 Ukraine invasion 2022-23 Russian invasion of Ukraine 2022-2023 Russian invasion of Ukraine
▶ In more languages	
Statements	
instance of	war
	▶ 1 reference

Wikidata and RUvsUKR

• **Example**: Wikidatas' representation of the 2022 Russian Invasion of Ukraine

		point in time	
Volodymyr Zele		start time	24 February 2022▼ 0 references
	▼ 0 references Volodymyr Zelenskyy ▼ 0 references	end time	no value▼ 0 references
country			

(RUvsUKR, significant person, Vladimir Putin) (RUvsUKR, significant person, Volodymyr Zelenskyy) (RUvsUKR, start time, 24 February 2022)

• • •

(simplified)

What we can express

- "When did the Russian Invasion of Ukraine started?"
 - -24.02.2022
 - SELECT ?time WHERE { wd:Q110999040 wdt:P580 ?time. }
- "Who was the president of Ukraine at the start of the Russian invasion?"
 - Volodymyr Zelenskyy

So far, so good. But what now:

- "Which battles [i.e. subevents] occurred in the RUvsUKR event?"
 - Attack on Snake Island, Siege of Mariupol, ...

What we can't, but want to express

- "Who was an aggressor in the conflict?"
 - aggressor is not part of the vocabulary of SOTA knowledge graphs
- "Was this a war or special military operation?"
 - Conflicting information, must be resolved

- "Which past war can be seen as a historical analogy?"
 - KGs allow for similarity queries but not analogical queries
 - Analogies, however, are often used in decision and sense making

What is missing?

- The problem was discussed already during the inception of Wikidata
 - Knowledge Graphs are constructed (mostly) from texts, i.e., from document collections
 - However, document collections contain more information than purely the sum of all extracted facts

The Atlantic

The Problem With Wikidata

By Mark Graham

APRIL 6, 2012

SHARE Y SAVED STORIES 7 SAVE
SAVE SAVED

What is missing?

- Knowledge graphs only contain ,pure facts' in form of triples
 - Different perspectives on a subject are not covered
 - Subtleties and frames are not covered
 - Complex facts are hard to represent
 - ... (compare Suchanek (2020))
 - Can we recover 'the whole story' behind an event from just a knowledge graph?

No.

What is missing?

- We need multiple sources to complete the picture
 - Leads to the problem of information fusion
 - Also: beside the facts we have additional aspects, e.g.:
 - temporal and/or causal dependencies
 - characterizations of event participants
 - developments enrolling over time
 - roles for participants
 - •
- Those aspects should **not** be stored in the KG itself.

Enter Narratives

- Idea: the beforementioned aspects can be modeled as an overlay over multiple knowledge sources
 - We call this a narrative overlay or narrative for short
 - Narratives contain a plot involving entities, events, and their relationships, modeled as a directed,

edge-labelled graph

 Edges of the narrative are bound to the underlying repositories to make the narrative plausible

Example Narrative

Narrative Information Access

- There are two layers:
 - Factual layer, i.e., facts about a event in a knowledge base.
 - Narrative layer, i.e., what is expressed in the discourse about the event
- Different data sources:

 Russia Invasion of Ukraine
 - Factual layer: structured repositories
 - Narrative layer: unstructured repositories

Ukraine was threat to Russia

Russia is_aggressor_in RUvsUKR

Event-Centric Information Systems

- Three tasks (to tackle the problem of understanding)
 - event-centric narrative queries:
- pure facts + narrative aspects
- e.g., "a war in the 20th century where the president of one country was a coward"
- narrative archetype categorization
- 2
- Can we tell the story of an event on the basis of an archetype
- event analogy queries:
 - e.g., "which **incident** was analogous to the 9/11 attacks?"

Queries: Narrative Prototypes

- Model a short story consisting of:
 - An event pattern
 - Event type or concrete named event
 - Refinements:
 - Value comparisons
 - Aggregations on factual data,
 - Subjective attributions, i.e., viewpoint dependent information

Through Different Eyes

- Core ingredients: viewpoints and attributions
 - Viewpoints allow the representation of multiple perspectives on events
 - Conflicting views on participant roles
 - Multiple valid interpretations
 - In contrast to attributes, attributions can change their values based on the viewpoint chosen
 - e.g., is somebody an 'aggressor' or not
 - Allows for a 'characterization' of the event and its' participants

Attributions – more formal

- Attributions can be modeled as functions with:
 - attribution(event, participant, viewpoint) \rightarrow {0, 1}
 - Where event is a named event from a KG, participant is a entity, and viewpoint stems from a set of viewpoints
 - e.g., is_aggressor('RUvsUKR', 'Russia', 'western world')
 - the viewpoint may be omitted, if the attribution should hold in all viewpoints. We then call it an *objective attribution*
- Evaluate attributions by witnesses, i.e., documents supporting the claim

Attributions – how to proceed?

Open problems

- Further definition of attribution characteristics
 - Domain for attributions?
 - Narrative roles (protagonist, nemesis,...) + characterization?
- Construction of data sets and evaluation algorithms
 - Basically a classification problem
 - Interweaving viewpoints is a challenge

Viewpoints

- A viewpoint specifies whether an attribution holds or not
 - Idea: allow multiple perspectives on events
 - Viewpoints are (for now) pre-determined and each document is attached to a certain viewpoint
 - Example: the role assigned to Russia in the current war depends on the viewpoint chosen. Chinese and Russian newspaper will tell a different story than German newspapers

Viewpoints in KGs (I)

Viewpoints in KGs (II)

participant	Russia object has role object has role	aggressor
	Belarus object has role • 0 references	staging area
	Donetsk People's Republic statement disputed by object has role start time end time • 0 references	Ukraine proxy 7 April 2014 30 September 2022
	Luhansk People's Republic statement disputed by object has role start time end time 0 references	Ukraine proxy 28 April 2014 30 September 2022

A view on ... viewpoints

- Shoehorning in viewpoints like this has multiple problems:
 - Generates a high number of triples (esp. with multiple viewpoints)
 - Complex to query
 - No viewpoint granularity available
 - A statement supported by ,Ukraine'?
 Questionable semantics anyway
 - No formal model of viewpoints, rather a pragmatic one
- How to solve this? Coming soon ©

• We have:

- A motivation and defined problem
- Narrative Prototypes (formalized + proof of concept)
 as a means to query

• We miss:

- A larger scale study on how to evaluate attributions
- Formalization of viewpoints and integration into the attributions

The next step

- Narrative prototypes allow to query for events by:
 - Setting a background for the narrative, i.e., an event type or a concrete event
 - Characterize the participants of the story with attributions
 - Determine the point of view from which the story is told

But, narratives are more!

What Narratives can do

- Narratives have a long-standing history as means of communication
 - Transportation of information, emotions, and moral judgements
 - Narratology and narrative psychology are active fields of research in this regard
 - Each narrative transports a number of associations
 - e.g., the narrative of David vs. Goliath (DvsG) typically associates sympathy with the David character

On archetypes

- David vs. Goliath can be seen as a narrative archetype
 - Also known as master narrative or master plot
 - A well-known story with common interpretation of the characters
 - Simple or abstract story to which one can reduce other stories, i.e., a pattern
- Associations in archetypes do not work universally, each archetype is part of a *narrative canon*

Casting RUvsUKR as DvsG

• "A vast invading army under the command of an autocrat ... a much smaller country under siege, its leader refusing to flee. The world is focused on Ukrainian President Volodymyr Zelensky, who is leading a defiant nation in this David vs. Goliath battle against Russia's Vladimir Putin."

CBS news, March 6, 2022 https://www.cbsnews.com/news/u kraine-vs-russia-a-modern-daydavid-vs-goliath-story/

Modeling archetypes

- Archetypes add another layer to the event discourse, namely, communicating the event with a certain intent and effect
- To model this sender-receiver communication we rely on speech acts (originally Austin(1962))
 - Three parts of speech:
 - Illocutionary act: intention of the sender
 - Locutionary act: the performance of the illocution
 - Perlocutionary act: the effect of the locution

(Coming back

Illocutionary act:

- Frame the Russian invasion as an act to be condemned
- Produce sympathy with Ukraine and the current president

Locutionary act:

Perlocutionary act:

- Possibilities:
 - Awake sympathy with Ukraine
 - Condemn Vladimir Putin

Approximating Archetypes

- Some archetypes can be modeled as narrative prototype, e.g., DvsG
- Leads to a categorization task, i.e., given an event *e* and a archetype *a*, can we categorize *e* as an event that can be told by *a*?

 NP: David vs. Goliath

 (i) Event pattern: conflict[super type]

 (ii) Refinements:

 is_underdog(X, conflict) ^ role(X, conflict) = 'winner'

Potential use cases

- Framing of events
 - While framing is a known problem in other disciplines, in CS it mostly is reduced to glorified topic modeling
 - Main problem: what is the frame in framing.
 - Frames are used to direct the recipients train of thought into a specific direction
 - Idea: use an archetype as a frame
 - Use case: can we frame an event by an archetype
- However, this research is at the very beginning...

- I. Events are composed of factual knowledge and narrative aspects.
- 2. Representing, reasoning, and querying both types of information is of great value to understand the event better.
- 3. In the end it might be possible, to use this base as a means to categorize events by possible archetypes.

If you have any questions, contact me via:

ploetzky@ifis.cs.tu-bs.de

Literature

- 1. Plötzky, F. and Balke, W.-T. (2022): It's the Same Old Story! Enriching Event-Centric Knowledge Graphs by Narrative Aspects. In 14th ACM Web Science Conf. (WebSci).
- 2. Xiang, W. and Wang, B. (2019). A survey of event extraction from text. IEEE Access, 7.
- 3. Radinsky, K., Davidovich, S., and Markovitch, S. (2012). Learning Causality for News Events Prediction. In 21st Int. Conf. on World Wide Web (WWW).
- 4. Kalifa, D., Singer, U., Guy, I., Rosin, G. D., and Radinsky, K. (2022). Leveraging World Events to Predict E-Commerce Consumer Demand under Anomaly. In Fifteenth ACM Int. Conf. on Web Search and Data Mining (WSDM).
- 5. Graham, M. (2012): The problem with Wikidata. *The Atlantic*. Online: https://www.theatlantic.com/technology/archive/2012/04/the-problem-with-wikidata/255564/
- 6. Kroll, H., Nagel, D., and Balke, W.-T. (2020). Modeling Narrative Structures in Logical Overlays on Top of Knowledge Repositories. In *Conceptual Modeling: 39th Int. Conf.* (ER).
- 7. Suchanek, F. (2020). The Need to Move beyond Triples. In Text2Story@ECIR.
- 8. Kroll, H., Plötzky, F., Pirklbauer, J., and Balke, W.T. (2022). What a Publication Tells You—Benefits of Narrative Information Access in Digital Libraries. In 22nd ACM/IEEE Joint Conf. on Digital Libraries (JCDL).
- 10. Plötzky, F. and Balke, W.-T. (2021). What it Boils Down to... The Case for Event Analogies to Combat Complexity in Digital Libraries. In DISCO@ JCDL.
- 11. László, J. (2008). The science of stories: An introduction to narrative psychology. Routledge.
- 12. Austin, J. (1962). How To Do Things With Words. Oxford University Press.