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Stochastic Description of Aircraft Simulation
Models and Numerical Approaches

Bojana V. Rosić and Jobst H. Diekmann

Institute of Scientific Computing, TU Braunschweig

wire@tu-bs.de

This paper is concerned with the uncertainty quantification of an air-
craft simulation model. Mathematically speaking the aircraft model rep-
resents a system of second order differential equations dependent on a
set of input parameters related to the mass, aerodynamics and the struc-
ture of the aircraft. The input aerodynamic parameters are modelled
as random variables and processes whose probability distributions are
chosen according to the maximum entropy principle and available ex-
perimental data. For a flight dynamics model the evolution of uncertain-
ties in the aircraft state trajectory is estimated with the help of so-called
non-intrusive numerical approaches, examples of which are the direct
integration method, the stochastic collocation approach and the pseudo-
Galerkin method. These numerical methods rely on a set of samples of
aircraft state trajectories simply obtained by solving the corresponding
systems of deterministic ordinary differential equations.
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Nomenclature

A = system matrix
B = input matrix
C = output matrix
CL0 = lift coefficient for zero angle of attack
CLα = linear lift coefficient
CD0 = parasite drag coefficient
Cm0 = pitch coefficient for zero angle of attack
Cmα = linear pitch coefficient
D = feed trough matrix
DKL = the Kullback-Leibler divergence
E = the mathematical expectation
F = σ algebra
F = the nonlinear mapping representing ODE
h = the altitude
I(ξ ) = the interpolation polynomial
k1,k2 = drag coefficients
P = probability measure
q = the pitch rate
SU1 = the first Sobol’ index
t = time
V = the Vandermode-like matrix
var(x) = the variance of variable x
VTAS = the true air speed
x = the state of the system
x̄ = the mean value of x
x̂ = polynomial chaos approximation of x
x̃ = the interpolated approximation of x
y = the system output
α = the angle of attack
Γx = the functional of x
η = elevator impulse
θ = the pitch attitude
ξ = basic random variable
ξ j = the sample point
Ψ(ξ ) = the multivariate polynomial
ω = event in a probability space
Ω = the space of all events
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1 Introduction

In order to enhance the quality and reliability of aircraft design an important engi-
neering goal is to understand and analyse aircraft behavior under the influence of
parameteric uncertainty. The sources of uncertainties can be several: parametric un-
certainty (e.g. the description of aerodynamic forces), model uncertainties arising
from a lack of scientific knowledge or model simplifications, and the uncertainties
appearing due to the measurement noise in experimental results used for the model
calibration.

The mathematical description of uncertain aircraft dynamics may be achieved by the
theory of stochastic ordinary differential equations (SODE) [25, 35, 33, 2], which is
gaining an increasing momentum in scientific work. The numerical solution of an
SODE requires several magnitudes higher computational efforts than the solution of
the corresponding ODE, but this computational power is presently becoming avail-
able. One may note that the probabilistic modelling of uncertainties is not the only
possibility [19, 14, 13], other approaches are the fuzzy set theory [17, 15], interval
arithmetics [20, 1], etc.

Since the main objective of this paper is the probabilistic study of the uncertainty
in flight dynamics, we may refer to the recently developed theory of the stochastic
partial differential equations [19, 14, 31] and re-use it for this specific SODEs prob-
lem. Several methods exist for propagating uncertainty through some mathematical
model. Often they can be classified into intrusive and non-intrusive variants with
respect to the use of the deterministic software, i.e. aircraft simulation model, in the
following named simulator for simplicity reasons. The non-intrusively implemented
method exploits the simulator without or with only slight changes in the code. Typ-
ical examples are the direct integration approaches such as the Monte Carlo method
and sparse-grid techniques [14, 4, 29, 30, 27, 22], as well as those based on stochas-
tic collocation [3, 18, 23, 4]. On the other hand, intrusively implemented methods
require significant modifications, for more information please see [31]. More pre-
cisely, both variants differ more in whether they rely on samples of independently
computed solutions, or whether they consider a coupled problem. The independent
computations may obviously be performed non-intrusively, and the coupled methods
can be implemented in both a non-intrusive and in an intrusive manner [31].

Uncertainty quantification of aircraft dynamics is a relatively new area of investi-
gation. In the literature one may find a few papers which describe the numerical
methods and the types of the uncertainties appearing in these kinds of problems.
For example, the sensitivity of a flight trajectory with respect to the random factors

7

http://www.digibib.tu-bs.de/?docid=00055749 21/02/2014



such as initial conditions, aerodynamic derivatives, thrust and misalignment is inves-
tigated in [22] with the help of the Monte Carlo integration. On the other side, [37]
studies how to increase the knowledge of the model’s validity by sensitivity anal-
ysis and the uncertainty sources in aircraft system development. The modelling of
the uncertainty in both the rocket dynamics and the atmospheric conditions using
stochastic parameters is presented in [5]. Similarly, [24] considers the flight of an
unguided, rocket-boosted, aircraft-launched missile with respect to the aleatory un-
certainty of the initial mass of the missile and the epistemic uncertainty in the thrust
of the rocket motor. However, most of these investigations utilitise the time-costly
Monte Carlo method for the propagation of uncertainties. Therefore, the goal of this
paper is to show how to overcome these difficulties with other kinds of non-intrusive
approaches.

The paper is organized as follows: Section 2 gives the deterministic description of
the model problem followed by its stochastic cousin in Section 3. Numerical algo-
rithms for the computation of the time-dependent response are studied in Section 4
and analyzed in Section 5, where the numerical results are presented. Finally, the
conclusion is drawn in Section 6.

2 Deterministic Description of the Model Problem

The model considered in this paper is a basic aircraft model (BACM) [28, 7], i.e. a
nonlinear flight mechanical model with six degrees of freedom (6 DoF). This model
offers the chance to simulate the flight dynamics of a conventional turboprop powered
aircraft by describing all forces FFF and moments (e.g. aerodynamics, gravity and
integrated subsystems, for example engines or actuators) MMM acting on the aircraft.
The model structure is shown on a block diagram in Fig. 1. Its upper-left part outlines
the subsystems and modules that generate forces and moments which further drive
the translational and rotational equations of motion, i.e.

mV̇VV k = ∑FFF , (1)

Iϖ̇k = ∑MMM.

Due to the paper concision and for more clarity, the focus is set here only on one
specific part of the diagram, i.e. the aerodynamics module which is playing one of the
central roles in the description of acting forces and moments. This module consists of
derivative models for the three forces: lift, drag and sideforce, and the three moments:
roll-, pitch- and yawing-moment. Each of these forces and moments are modelled
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Figure 1: Block diagram of the basic aircraft model structure including submodels
for forces and moments, equations of motion and the resulting aircraft mo-
tion fed back into the model

as the corresponding sum of dimensionless coefficients for the various aerodynamic
influences. For example, knowing the air density (ρ), the airspeed (V ) and the wing
reference area (S) one may express the lift force FL in the dimensionless form as

CL =
FL

ρ

2 ·V 2 ·S
, (2)

and use the sum

CL =CL0 +CLα ·α +CLStall +∆CLFlap + ... (3)

to model the lift for the aircraft’s longitudinal motion. Here, CL0 stands for the lift
coefficient for zero angle of attack (AoA), CLα is the lift slope with respect to the
angle of attack, CL,Stall considers the stall effect and ∆CL denotes further additional
influences described as increments, e.g. for the flap deflection ∆CLFlap. Most of these
coefficients are modelled as linear functions except the stall effect, which introduces
a nonlinearity.

For the given mean aerodynamic chord lµ , the dimensionless pitching-moment

Cm =
Mm

ρ

2 ·V 2 ·S · lµ

(4)

can be designed analogously to the lift model:

Cm =Cm0 +Cmα ·α +Cmq ·q∗+∆CmFlap + ... (5)
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Figure 2: The excitation and response of the aircraft model

Here, the coefficients have a similar meaning as those in Eq. 3, except that the stall
effects are neglected, and the term Cmq · q∗, which describes the aircraft’s pitching
moment reaction on a pitch rate q∗, is added. This term introduces the dynamic
coefficient Cmq representing the pitch damping.

The dimensionless drag force

CD =CD0 + k1 ·CL + k2 ·C2
L +∆CDFlap + ... (6)

is modelled as a function in terms of the parasite drag CD0 (the drag of the aircraft
if no lift is produced), the induced drag given as a second order polynomial function
dependent on the aircraft’s lift coefficient CL, and the drag increments for various
influences with similar meanings as in the lift model.

These equations introduce some of the important coefficients for the aircraft’s longi-
tudinal motion which play the cenral role in the following investigations. The model
is implemented in MATLAB-Simulink as a model library [28] and will be considered
as a black-box simulator code, or just simulator in the further text.

Gathering the translational (VVV ) and rotational (ϖϖϖ) degrees of freedom into the state
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vector xxx := (VVV ,ϖ)T , the previous model in Eq. 1 may be rewritten to:

ẋxx = fff (xxx,κ, t), xxx(0) = xxx0, (7)

i.e. the initial valued system of ordinary differential equations (ODE). Here, fff is a
nonlinear function describing the state evolution, xxx0 is the initial state, and κ is the
vector of input parameters describing, for example, lift (CL0,CLα ), drag (CD0,k1,k2),
pitch (Cm0,Cmα ), etc. Besides the described states of the system, the simulation
model implies further states for other subsystems, e.g. for actuators. However, they
are not the subject of this paper and hence will not be considered further.

In order to define an initial point xxx0 to start the simulation from, the model is lin-
earized at a predefined working point and transformed to the common state space
form

ẋxx = AAA · xxx+BBB ·uuu (8)
yyy =CCC · xxx+DDD ·uuu (9)

consisting of the state (Eq. 8) and the output (Eq. 9) equations. Here, xxx is the state, uuu
are the control input values and yyy are the output values. The system matrix AAA, input
matrix BBB, output matrix CCC and feed through matrix DDD describe the reactions of the
linearized system. Note that the control input values uuu differ from the input parame-
ters κκκ mentioned before. Namely, the input parameters consider the inputs relevant
for this investigation (e.g. CL0), whereas the control input values are the deflections
and settings of the primary and secondary flight controls, e.g. rudder deflections or
throttle lever positions.

The aircraft motion considered in this paper is an unaccelerated horizontal flight in a
predefined altitude and an airspeed for which the corresponding trimming point ( i.e.
the state and input values) is evaluated using an iterative trimming algorithm. The
obtained trim data are then used as the initial data set to start the simulation from.
System in Eq. 7 is excited by the elevator pulse of η = 1 [deg] initiated in time =1 [s],
and then integrated in a predefined time interval [0,50] [s]. The resulting trajectory
is shown in Fig. 2, where the typical peaks of the well known phugoid motion output
values (trajectories), e.g. AoA (α), pitch rate (q), pitch attitude (θ ), altitude (h) or
true air speed (VTAS), can be seen.

However, being a simulation based on numerical models for aerodynamics, e.g.
Computational Fluid Dynamics (CFD, [9]) or even more elementary preliminary
design tools (e.g. USAF Digital DATCOM [40]), those predicted trajectories may
not behave as they would if experimentally measured. The reasons for this can be
several:

11

http://www.digibib.tu-bs.de/?docid=00055749 21/02/2014



• the model in Eq. 1 is simplified compared to reality,

• neither the input parameters are fully known nor the initial state of the system,

• the measurements used for calibration are characterized by noise, etc.

In order to take into account this lack of knowledge, the unknown differences are
supplemented by adding the uncertainties into the model. This however requires the
reformulation of the model description in Eq. 1 to a more realistic one, as further
described.

3 Stochastic Description of the Model Problem

In this paper two kinds of uncertainties are introduced to the aircraft model: one in
the parameters κ(ω), and one in the initial xxx0(ω) condition. These uncertainties are
modelled as vectors of random variables (RVs) with finite variance, i.e. as mappings
[31, 14]:

κ(ω) : Ω →Q and xxx0(ω) : Ω →X (10)

from a probability space Ω with the measure P to a corresponding space of param-
eters Q, and the state space X , respectively. Introducing Eq. 10 into Eq. 1 the
deterministic model transforms to:

ẋxx(ω) = fff (xxx(ω),κ(ω), t), ∀t ∈T ,∀ω ∈Ω (P.−a.s.), (11)
xxx0 = xxx(0,ω),

i.e. the system of first order stochastic ordinary differential equations (SODEs) with
initial conditions. The model propagates the input uncertainties through the system
in Eq. 11 to the output solution xxx(t,ω)—a stochastic process—on the time interval
T . The solution represents a mapping:

xxx(t,ω) : T ×Ω →X ⊗S, (12)

and has values in a tensor-vector space X ⊗ S, where X and S := L2(Ω) are the
deterministic and stochastic spaces of defintion, respectively. Following this, the
numerical computation of Eq. 11 is thus only possible when the full discretisation of
the system in both time and in the stochastic sense is performed. For more details
please see Section 4.
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Table 1: The description of uncertain input parameters for the wing/fuselage combi-
nation

Symbol Interval [%]
CL0 ± 23.05
CLα ± 5.27
CD0 ± 12.4
k1 ± 89.16
k2 ± 379.74

Cm0 ± 10.46
Cmq ± 0.53

3.1 Description of input parameters

According to the first available data obtained from the comparison of the measure-
ments and DATCOM analysis (see [40]) one may describe the input parameters as
shown in Table 1. The mean values are chosen as the default values, and the intervals
(the minimal and maximal values) are prescribed from the data. This further means
that the source of uncertainty does not truly originate from the parameters’ nature but
from the modelling error accompanied by a measurement noise.

Initially, the uncertain parameters κ(ω) in Tab. 1 are modelled as Gaussian with the
prescribed mean values and the 99.7% intervals. However, this also means that 0.3%
of the normal random variables will not satisfy the limits given in Tab. 1. Therefore,
the uncertain parameters κ(ω) are also modelled as uniform random variables, see
Fig. 3 and Figs. 4 – 5 for the appropriate comparison analysis. As shown in Fig. 5,
the perturbation of the aircraft’s true air speed is larger for the uniform than for the
normal uncertainty. However, the goal of this paper is not to investigate this dif-
ference but rather to describe the methods used for the uncertainty quantification of
the system response. Namely, for the numerical computations performed in this pa-
per the uniform assumption of the input uncertainty is not of very high importance,
as the parameter descriptions can be improved to more realistic ones in a Bayesian
identification setting using existing measurement data [32, 26]. In addition, the co-
efficents are prescribed for the wing/fuselage combination. Hence, the lift, drag and
pitching moments of the horizontal tailplane of the aircraft are not influenced in this
investigation.
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assuming the input parameters to be normally and uniformly distributed.
The results are obtained by Monte Carlo simulation with 105 samples.
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Figure 5: The mean value of the true air speed VTAS and its 99% confidence region:
Normal - the 99% confidence region obtained by the Monte Carlo simula-
tion assuming the input uncertainty to be normal, Uniform - the 99% con-
fidence region obtained by the Monte Carlo simulation assuming the input
uncertainty to be uniform, Mean- the mean value obtaind by the Monte
Carlo simulation assuming the input uncertainty to be normal.

4 Numerical Computation

In order to solve Eq. 11 one has to separately discretise the solution in both time and
stochastic space. According to the Basic Aircraft Model [28, 7] the time discretisa-
tion is done with the explicit Runge Kutta method of order 4, which formally can be
written as:

xxxn+1(ω) = FFF(xxxn(ω),κn(ω), tn), ∀ω ∈Ω , (13)

where xxxn+1 and xxxn are the unknown and known solutions in the (n+ 1)-st and n-th
time step, respectively, and FFF is the corresponding mapping. However, as the sys-
tem is only semi-discretised one cannot solve it directly due to the dependance on
parameter ω . With respect to the discretisation of the stochastics, i.e. the represen-
tation of the RV propagated through the evolutionary model, one may distinguish
several numerical approaches for solving Eq. 13. Some possible choices of the RV
representation are:

(a) Sampling: the RV is described by its evaluation—called sample—xxx(ω j) in some
set of points {ω j}N

j=1 [36].
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(b) Distribution: the RV is characterised by its distribution [35].

(c) Moments: the RV is described by the corresponding moment equations [35]

(d) Functional approximation: the RV is approximated by a function of other, sim-
pler RVs [13, 19].

Note that only the representations a) and d) allow to reuse the original simulation
code. Choice b) leads to considerate Fokker-Planck types of equations, while c)
requires completely new equations to be derived. In this paper we only consider
methods from group a), as well as the particular group of methods d), which require
only non-coupled computations. Obviously, this choice is made to achieve a non-
intrusive implementation of the stochastic algorithm.

4.1 Direct Integration

The main goal of the uncertainty quantification is to compute some functional ϒxxx of
the solution xxx in a form:

ϒxxx = E(ϒ(t,ω,xxx(ω)) =
∫

Ω

ϒ(t,ω,xxx(ω))P(dω), (14)

where E(·) denotes the mathematical expectation. The simplest examples of ϒxxx are
the mean value

x̄xx = E(xxx) =
∫

Ω

xxx(ω)P(dω), (15)

or the second moment (i.e. the variance):

var(xxx) = E[(xxx(ω)− x̄xx)2] =
∫

Ω

(xxx(ω)− x̄xx)2P(dω) (16)

of the system state xxx.

In practical computation the random processes xxx(t,ω) and ϒ(t,ω,xxxn+1(ω)) in Eq. 14
are approximated by a finite set ξ := {ξ j(ω)}M

j=1 of independent RVs, for more
details see [14, 4, 29, 30, 27, 22]. This allows the integral in Eq. 14 to be evaluated
numerically via the finite sum

ϒxxx ≈
N

∑
j=1

ϒ(t,ξ j,xxxn+1(ξ j))w j, (17)
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where {ξ j}N
j=1 and {w j}N

j=1 are the sample points and their weights, respectively.
This corresponds to integration by a quadrature rule (the set of the deterministic
points and weights) or to the Monte Carlo method and its quasi-variants—the points
are selected according to the underlying probability measure [31, 14].

Following this, the direct numerical integration of SODEs reduces to a solution of
N-decoupled systems of deterministic size, i.e. to N-calls of the black-box BACM
simulator:

xxxn+1(ξ j) = FFF(xxxn(ξ j),κn(ξ j), tn), ∀ j = 1, ...N. (18)

This concept is the simplest as it only needs— usually very many— evaluations of the
deterministic model. However, this makes the method computationally very costly.
For example the convergence rate of the pure Monte Carlo method is O(N−1/2),
which means that one requires the order of 106 BACM runs to compute statistics
with accuracy on the third digit. The sparse grid methods [10, 16] are often bet-
ter because their rate is exponential with respect to the number of calls. However,
the rate strongly depends on the regularity of the solution, which makes the sparse
integration less robust compared to the Monte Carlo method.

4.1.1 Data compression using thin singular value decomposition

The size of data which have to be stored on a memory disk grows with the increase
of the number of BACM-calls in the direct integration run. Namely, storing only
105 Monte Carlo samples of important BACM output quantities requires already a
memory of 15.2 GB. This can be a problem if the number of calls grows or the
simulations have to be repeated with the different values of the input parameters. To
avoid this situation, one may apply the thin singular value decomposition (tSVD) on
the obtained data set [6] and store only the matrix factorials. However, this is not the
optimal solution as one first has to compute all solutions and then to build the tSVD,
which reduces the memory costs. As one would not like to store the original results,
but only their compressed versions, the tSVD has to be performed on the run with
each new coming group of samples. Therefore, the data compression can be realized
in the following scenario:

1) specify the size of the preferred group of samples

2) do tSVD on the first group of samples

17
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3) update tSVD with each new coming group.

Table 2 shows results of the updated tSVD for the example of the angle of attack α .
The total number of samples is 23000 (in total 300MB), and the size of the update
group is 1000 samples. The updated tSVD is performed several times with different
precisions (i.e. the number of terms in tSVD) starting from 1e-02 (corresponding to
one-term decomposition) up to 1e-12 (corresponding to 183 terms’ decomposition).
The number of updates equals 22. The procedure start takes the most of the compu-
tational time (as one does the decomposition of the initial sample group represented
by a matrix), while every following step is computationally cheaper (as one only up-
dates the tSVD). This is plotted in Table 2 in column mean time—the time of initial
tSVD—and in column std — the standard deviation of time necessary for the first up
to the last update. As one may notice, the memory saving is huge and the required
memory decreases from 300MB to 28MB. The memory improvement factor strictly
depends on the prescribed errors in second order statistics (the mean and variance).
If one requires a relative error in variance less than 1e-05, then the tSVD with 11
terms is the best choice with respect to the memory requirement.

Table 2: The accuracy of tSVD, compression time and memory requirements for the
data set of 23000 samples with initial storage of 300MB. Tol-the precision
of tSVD, No.-number of terms in tSVD, Time- the Mean (time of tSVD of
first compression) and the Std (standard deviation of update time), Error-
accuracy of second order statistics after compression, Memory- memory
requirement of the compressed data set

Tol No. Time [s] Error in Memory
Mean Std Mean Var

1e-2 1 11.93 3.77 1.31e-07 0.99 184 KB
1e-4 2 11.48 4.07 6.36e-11 7.03e-05 405KB
1e-8 11 15.65 2.00 1.94e-14 4.41e-10 2MB

1e-12 183 167.25 39.51 2.28e-14 3.19e-13 28 MB

4.2 Pseudo-Galerkin approach

The pseudo-Galerkin approach projects the solution xxxn+1(ξ ) in a Galerkin manner
onto the generalised orthogonal polynomial basis {Ψα}α∈J [42, 11, 31], where J
denotes the multi-index set. In other words, one approximates the state xxxn+1 by a
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Wiener polynomial chaos expansion (PCE) [39, 34]

x̂xxn+1 = ∑
α∈J

xxx(α)
n+1Ψα(ω), (19)

and evaluates the unknown polynomial coefficients xxx(α)
n+1 by projecting the system in

Eq. 13 in a Galerkin manner to:

xxx(α)
n+1 = E(xxxn+1Ψα) =

∫
Ω

xxxn+1ΨαP(dω). (20)

Furthermore, the integral in the last relation is evaluated by the numerical integra-
tion:

xxx(α)
n+1 =

N

∑
j=1

xxxn+1(ξ j)Ψα(ξ j)w j, (21)

where {ξξξ j}N
j=1 are the sample points and w j their corresponding weights. In this

manner the set of N decoupled deterministic ODEs xxxn+1(ξ j) is resolved indepen-
dently before the final sum is estimated.

Note that for computational reasons the system in Eq. 13 is not directly projected
onto the orthogonal basis, but first rewritten to

xxxn+1(ω) = xxx0(ω)+S(xxx0(ω),κ(ω), tn), (22)

where xxx0(ω) is the initial state and S(xxx0(ω),κ(ω), tn) is the transition function de-
scribing the change of the state in the desired time interval [0, tn]. After a Galerkin
projection, the previous equation reads

xxx(α)
n+1 = xxx(α)

0 +E(S(xxx0(ω),κ(ω), tn)Ψα(ω)), (23)

which means that the evaluation of the PCE of the system state requires the PCE
approximations of the initial condition and the change of the system state in time.
The former one is given a priori, while the latter one can be obtained with the help of
numerical integration such that

xxx(α)
n+1 = xxx(α)

0 +
N

∑
j=1

S(xxx0(ξξξ j),κ(ξξξ j), t)Ψα(ξξξ j)w j (24)

holds.
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4.3 Stochastic collocation

The stochastic collocation method is another approach to compute the solution of the
system of SODEs in Eq. 13 in a non-coupled manner [31]. The method requires the
estimation of the solution xxxn+1 in a set of points Ξ := {ξ j}N

j=1

xxxn+1(ξ j) = FFF(xxxn(ξ j),κn(ξ j), tn), ∀ j = 1, ..N, (25)

similarly to the direct integration approach, see Eq. 18. However, in contrast to
the direct integration techniques one does not estimate the value of the integral, but
interpolates the solution in a set of points [3, 18, 23, 4], or uses the linear regression
model to compute the response surface [41, 4].

4.3.1 Interpolation

The solution is approximated in the form of a polynomial:

x̃xxn+1(ξ ) =
N

∑
j=1

x̃xx( j)
n+1I j(ξ ), (26)

where I j(ξ ) are the multidimensional interpolating functions (e.g. Lagrangian poly-
nomials) satisfying

I j(ξ i) =

{
1 , i = j
0 , i 6= j . (27)

Polynomial x̃xxn+1(ξ ) approximates the sample value xxxn+1(ξ j) exactly in the interpo-
lation point ξ j such that

x̃xxn+1(ξ j) = xxxn+1(ξ j) (28)

is satisfied [23, 4]. This is the linear system of equations of type:

Vx̃n+1 = xn+1 (29)

where

V :=


I1(ξξξ 1) I2(ξξξ 1) · · · IN(ξξξ 1)
I1(ξξξ 2) I2(ξξξ 2) · · · IN(ξξξ 2)

...
...

. . .
...

I1(ξξξ N) I2(ξξξ N) · · · IN(ξξξ N)

 ∈ RN×N (30)

and
xn+1 := (· · · ,xxxn+1(ξξξ j), · · ·)T ∈ RN . (31)
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The Vandermode-like matrix V of coefficients is equal to identity due to the proper-
ties of the Lagrange polynomial given in Eq. 27. Hence, there is no need for solving
the linear system in Eq. 36, since the interpolating coefficients are equal to the sample
values x̃xx( j)

n+1 = xxxn+1(ξξξ j).

Assuming that the sufficient number of interpolating points Ξ is used, one may state
that xxxn+1(ξ )≈ x̃xxn+1(ξ ), and further compute the first moment of xxxn+1 as

E(xxxn+1(ξ ))≈ E(x̃xxn+1(ξ )) =
N

∑
j=1

xxxn+1(ξ j)
∫

Ω

I j(ξ )P(dω), (32)

where ∫
Ω

I j(ξ )P(dω) =
N

∑
k=0

I j(ξ k)wk =
N

∑
j=0

w j (33)

follows from the identity I j(ξ k) = δ jk and the numerical integration rules. Finally,
the first moment can be expressed as:

E(xxxn+1(ξ )) =
N

∑
j=1

xxxn+1(ξ j)w j, (34)

while the higher order moments can be computed in a similar manner.

4.3.2 Linear regression

The interpolation can be used for the computation of the polynomial chaos coeffi-
cients given in Eq. 19 by solving:

x̂xxn+1(ξ j) = xxxn+1(ξ j) (35)

for the given data set {xxxn+1(ξ j)}N
j=1. This is the linear system of equations of type:

Vxn+1 = d (36)

where

V := [Ψα,z] =


Ψ1(ξξξ 1) Ψ2(ξξξ 1) · · · ΨZ(ξξξ 1)
Ψ1(ξξξ 2) Ψ2(ξξξ 2) · · · ΨZ(ξξξ 2)

...
...

. . .
...

Ψ1(ξξξ N) Ψ2(ξξξ N) · · · ΨZ(ξξξ N)

 ∈ RN×Z (37)
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is the Vandermode-like matrix of coefficients, xn+1 := (. . . , xxx(γ)n+1, . . .)
T ∈ RZ are the

unknown PCE coefficients, and d := (xxxn+1(ξ 1), ...,xxxn+1(ξ N))
T ∈RN are the sample

values. Note that the system is undetermined when N < Z, and hence the number of
points has to be chosen with care. If N = Z the solution of Eq. 36 corresponds to the
intrpolation, otherwise for N > Z the regression approach is used.

Besides the system presented in Eq. 36 there is one more way of computing the
polynomial coefficients. Namely, from Eq. 35 and Eq. 28 one may state that

x̂xxn+1(ξ )≈ x̃xxn+1(ξ ), (38)

i.e.

∑
α∈J

xxx(α)
n+1Ψα(ξξξ ) =

N

∑
j=1

xxxn+1(ξ j)I j(ξ ). (39)

By Galerkin projection
xxx(α)

n+1 = E(xxxn+1Ψα) (40)

this leads to the explicit expression for the unknown coefficients:

xxx(α)
n+1 = E(x̃xxn+1Ψα) =

N

∑
j=1

xxxn+1(ξ j)

(∫
Ω

I j(ξ (ω))Ψα(ξ (ω))P(dω)

)
. (41)

Applying the numerical integration, the previous relation reduces to:

xxx(α)
n+1 =

N

∑
j=0

xxxn+1(ξ j)Ψα(ξ j)w j, (42)

i.e. the pseudo-Galerkin approach described in Eq. 24.

4.4 The method of least squares

The method of least squares searches for the function that minimises the mean
squares function. In this particular case, the goal of regression is to find the mul-
tivariate polynomial expansion which fits the data by minimising the following error
[41]:

min
x̂xxn+1

ε = min
x̂xxn+1

∫
Ω

[xxxn+1(ω)− x̂xxn+1(ω)]2P(dω), (43)

As the distance squared is minimised, this computes the orthogonal projection in
the corresponding inner product. The function x̂xxn+1 approximates the solution by
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a finite number of uncorrelated and independent RVs ξξξ := {ξ j}M
j=1, and hence the

integration in Eq. 43 may be evaluated numerically (see direct integration):

min
x̂xxn+1

ε̂ = min
x̂xxn+1

N

∑
z=1

[
xxxn+1(ξξξ z)−∑

α

xxx(α)
n+1Ψα(ξξξ z)

]2

w(ξξξ z). (44)

Further on the solution of Eq. 44 can be found from the optimality condition:

xn+1 := (xxx(α)
n+1)α∈J ∈ ∂

xxx(α)
n+1

ε̂ = 000, (45)

which in component form becomes:

∑
β

∑
α

N

∑
z=1

xxx(α)
n+1Ψα(ξξξ z)Ψβ (ξξξ z)wz = ∑

β

N

∑
z=1

xxxzΨβ (ξξξ z)wz, (46)

where xxxz := xxxn+1(ξξξ z) denotes the sample points and wz := w(ξξξ z) their integration
weights. In matrix notation the previous equation reduces to:

Jxn+1 := VT WVxn+1

= VT Wd, (47)

where J is the Gram matrix, V, xn+1 and d have the same meaning as before, and

W := diag [wk] ∈ RN×N . (48)

In the previous equations the coefficient set xn+1 is computed by solving the deter-
ministic residual equation at each independent grid point ξξξ z. This means that the
collocation approach already decouples the system into N smaller independent sys-
tems of equations before the linear system is solved. These solutions are obtained by
available deterministic solvers, while the solution of the linear system is computed
using the Krylov preconditioned techniques or any other type of methods for large
systems of linear equations.

5 Results

The numerical studies in this section are performed with the help of the stochas-
tic collocation, stochastic response and pseudo-Galerkin approaches, all described
in Section 4. For their comparison the result of the Monte Carlo simulation with
100 000 samples is introduced as the reference solution. The numerical investigation
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is carried out for the aircraft example in the clean cruise configuration as described
in Section 2. The uncertanties are assumed to be present in the description of the
aerodynamics according to Tab. 1. Note that these uncertainties originate from the
model error, and hence do not represent the parameter nature.

The aicraft motion is taken to be an unaccelerated horizontal flight initiated by a
Heaviside function at time t = 1 [s], see Section 2. In contrast to the deterministic
response in Fig. 2, the aircraft phugoid motion is random due to the aerodynamic
uncertainty, and hence represented by many possible trajectories (each corresponding
to one MC sample). However, these trajectories are not all characterised by the same
probability level of occurance. Some trajectories are more probable while others are
less probable to happen. To clarify this, the mean trajectories together with the 99%
confidence intervals are plotted in Figs. 6 and 7. To these are added the plots of the
corresponding probability density function (PDF) evolutions in time.

According to Fig. 6a) the angle of attack (AoA) admits sudden changes in the corre-
sponding uncertainty region and hence PDF. Initially, the uncertainty of AoA is quite
large, and the PDF is broad. However, after the system is initiated by the Heaviside
impulse the uncertainty in AoA starts decreasing. This causes a narrowing of the
PDF over time until t = 20 [s]. In this moment the 99% region admits the minimum
and the pick of PDF occurs such that the response becomes almost deterministic. Af-
ter t = 20 [s] the uncertainty in the response slightly grows following the trend of the
AoA mean value trajectory. In contrast to this, the uncertainty in the pitch attitude
(see Fig. 6b) grows with time until t = 20 [s] when the corresponding 99% region
admits maximum. After this, the uncertainty decays over time such that the pitch
attitude admits the minimal (almost deterministic) value at 40 [s]. Similarly to these,
one may also describe the uncertainties in the altitude, pitch rate and true air speed.
For more details please see Fig. 7.

Once the uncertainties are quantified, one may compare the modified coefficients of
variation (the ratios of the standard deviation to the mean maximum) for different
aircraft response characteristics as presented in Fig. 8. The comparison shows that
the uncertainty in the pitch attitude grows until circa 10%, while the second maximal
value takes the pitch rate, as expected. The least uncertain is the angle of attack
whose coefficient of variation is much smaller than 1%.
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Figure 6: The mean aircraft path and the 99% confidence intervals for the angle of
attack and the pitch attitude. The results are obtained by the Monte Carlo
simulation with 100000 samples
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Figure 7: The mean aircraft path and the 99% confidence intervals for the altitude,
pitch rate and true air speed. The results are obtained by the Monte Carlo
simulation with 100000 samples
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Figure 8: The coefficient of variation for the aircraft response characteristics: α- the
angle of attack, h - the altitude, q - the pitch rate, θ - the pitch attitude and
VTAS - the true airspeed

5.1 Accuracy analysis

The proxy models are built with the help of non-intrusive numerical approaches:
numerical integration by sparse grids (Int), pseudo-Galerkin technique (PG) and
stochastic collocation (COL) as described in Section 4. For this purpose are used the
nested and non-nested Smolyak Gauss-Hermite sparse grids [12] as shown in Fig. 9.
Note that for the same integration level, the nested grid is characterised by a much
smaller number of sample points (function calls) than the corresponding non-nested
grid.

In order to investigate the accuracy of the non-intrusive methods, the following error
estimates

εm(κ) =
|E(κ(ti))−E(κMC(ti))|

max |E(κMC(ti))|
, εv(κ) =

|varκ(ti)−varκMC(ti)|
max |varκMC(ti)|

, ∀ti ∈ [0,T ]

(49)
are introduced. The former one, εm(α), is the relative error in the response mean
over time, while the latter one, εv(κ) is the relative error in variance. To ensure
the well-conditioned estimates, the maximal value of the mean or variance are taken
into account in previous definitions. Here, κ(ti) respresents the response of the non-
intrusive method in time ti and κMC(ti) is the reference MC solution at the same time
moment.

As expected, the accuracy improves with the number of the sample points being
used for interpolation (see Section 4.3.1) or numerical integration (see Eq. 17). In
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a) b)

Figure 9: The two dimensional a) non-nested and b) nested Gauss-Hermite sparse
grids

Figs. 10 and 11 are plotted the evolutions of the relative errors εm(θ) and εv(θ) for
the pitch attitude in time. Based on these results one may notice that already 113
points are enough to achieve the same accuracy in three proxy models: integration
by sparse grids (Int), pseudo-Galerkin projection (PG) and stochastic minimisation
by least squares (COL1). However, the error in the response obtained by the interpo-
lation/linear regression (COL2) is slightly different than previous ones. Additionaly,
the errors continue to change with the increase of the number of sample points. Par-
ticularly this happens in the time region where the 99% region of the output uncer-
tainty decreases. This is expected behaviour as at this moment the response is almost
deterministic. The same conclusion can be made for the numerical results obtained
for the pitch rate (see Figs. 12 and 13) and the angle of attack (see Figs. 14 and 15).

For a more precise investigation, the pseudo-Galerkin method and the interpola-
tion/linear regression are analyzed with respect to the number of sample points, as
well as the polynomial order in Fig. 16. As shown, the relative error in the mean and
variance of pitch’ attitude are slightly oscillating with the increase of the number of
the non-nested points in the Gauss-Hermite rule. However, this is not the case when
the polynomial order is increased.

In order to smooth out the error oscillations one may use the nested Gauss-Hermite
rule in the numerical integration. This rule is compared to its non-nested cousin
in Figs. 17, 18 and Fig. 19 for the same polynomial order and the same grid level.
According to these results, the nested rule is shown to be more stable as the error
does not drastically change with the increase of the polynomial order, see Figs. 17
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Figure 10: Accuracy comparison of different numerical methods of second poly-
nomial order for the mean pitch attitude: Int-integration, PG-pseudo-
Galerkin, COL1-least square, COL2-interpolation/linear regression.
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Figure 11: Accuracy comparison of different numerical methods of second polyno-
mial order for the pitch attitude’ variance: Int-integration, PG-pseudo-
Galerkin, COL1-least square, COL2-interpolation/linear regression
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Figure 12: Accuracy comparison of different numerical methods of second poly-
nomial order for the mean pitch: Int-integration, PG-pseudo-Galerkin,
COL1-least square, COL2-interpolation/linear regression
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c) Results based on non-nested GH sparse grid with 2437 points

Figure 13: Accuracy comparison of different numerical methods of second polyno-
mial order for the pitch’ variance: Int-integration, PG-pseudo-Galerkin,
COL1-least square, COL2-interpolation/linear regression

32

http://www.digibib.tu-bs.de/?docid=00055749 21/02/2014



α
[d

eg
]

Time [s]
0 5 10 15 20 25 30 35 40 45 50

3.5

4

4.5

5
99%
Mean

a) Mean value and 99% uncertainty region obtained by MC simulation

lo
g(

ε m
(α

))

Time [s]
0 5 10 15 20 25 30 35 40 45 50

-17

-16

-15

-14

-13

-12

Int
PG
COL1
COL2

b) Results based on non-nested GH sparse grid with 15 points

lo
g(

ε m
(α

))

Time [s]
0 5 10 15 20 25 30 35 40 45 50

-18

-17

-16

-15

-14

-13

-12

Int
PG
COL1
COL2

c) Results based on non-nested GH sparse grid with 113 points

lo
g(

ε m
(α

))

Time [s]
0 5 10 15 20 25 30 35 40 45 50

-18

-17

-16

-15

-14

-13

-12

Int
PG
COL1
COL2

Figure 14: Accuracy comparison of different numerical methods of second poly-
nomial order for the mean AoA: Int-integration, PG-pseudo-Galerkin,
COL1-least square, COL2-interpolation/linear regression
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Figure 15: Accuracy comparison of different numerical methods of second polyno-
mial order for the AoA variance: Int-integration, PG-pseudo-Galerkin,
COL1-least square, COL2-interpolation/linear regression
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Figure 16: The evolution of the relative error in pitch’s attitude variance for : a)
pseudo-Galerkin approach with the non-nested Gauss-Hermite grid ,
b) stochastic interpolation/linear regression with the non-nested Gauss-
Hermite
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Figure 17: The evolution of the relative error in the AoA variance with respect to the
time and the polynomial order of the pseudo-Galerkin projection a) using
the non-nested rule b) using the nested-rule. Orders of projections are
PG1= 1 order, PG2=2 order, PG3=3 order, PG4=4 order
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Figure 18: The evolution of the relative error in the AoA variance with respect to the
time and the polynomial order used in linear regression (interpolation of
polynomial chaos expansion) with a) non-nested rule b) nested rule. The
polynomial orders are COL1= 1 order, COL2=2 order, COL3=3 order,
COL4=4 order
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Figure 19: The evolution of the relative error in the AoA variance with respect to
time and the number of the non-nested Gauss-Hermite sample points: a)
pseudo-Galerkin method b) interpolation

and 18. This is especially the true for the interpolation method. However, the increase
of the number of integration points shows that the pseudo-Galerkin method is more
stable than the interpolation, see Fig. 19. The instability of the interpolation method
happens due to the numerical inaccuracies or the interpolation problem itself. Hence,
its application is not very much advised.

Finally, the numerical comparison can also be done with respect to the Kullback-
Leibler divergence (KLD) of the probability density function obtained by numerical
integration from the one obtained by the MC simulation. In other words, by comput-
ing the integral

DKL(πNM‖πMC) =
∫

∞

−∞

ln
(

ρNM(x)
ρMC(x)

)
ρNM(x)dx, (50)

where ρNI and ρMC represent the densities of the quantity obtained by a non-intrusive
and MC method respectively, one may “measure” how much the PDF of the proxy
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Figure 20: The Kullback-Leibler divergence of the PDF for the aircraft altitude
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model differs from the original one. In case of the altitude this difference is drawn in
Fig. 20 at the end of the time interval. The three plots show that the KLD difference
drops down almost to noise with the increase of the number of samples.

5.2 Computation time

Excluding the direct integration approach by simple Monte Carlo simulation, the
computation times of numerical schemes presented in this paper are more or less
similar. If implemented in a sequential way, the computation cost of the Monte Carlo
procedure is:

tMC = N · (ttrim + tsim), (51)

where N is the number of BACM calls, ttrim is the time of trimming subroutine and
tsim ≈ 60[s] is the actual BACM simulation time. However, the Monte Carlo method
is “embarrassingly parallelisable” and hence the overall computation time can be re-
duced significantly [21, 8]. Even though the different parallelisation techniques can
be applied, the Monte Carlo method is still considered to be inefficient when com-
pared to the other non-intrusive numerical schemes. Namely, for the same accuracy
the pseudo-Galerkin and stochastic collocation methods use much smaller number
of BACM calls (samples) compared to the Monte Carlo method. Additionally, these
algorithms can also be parallelised in a similar manner as Monte Carlo procedure.
In this regard, their employment is greatly advised as the computational cost is more
than 20 magnitudes smaller than the Monte Carlo simulation time for the same accu-
racy. However, note that the pseudo-Galerkin and the collocation methods are char-
acterised by similar computation costs. This is due to the small number of random
variables describing the problem, i.e. small stochastic dimension.

5.3 Sensitivity analysis

The variance-based sensitivity analysis of the system behaviour on the uncertainty
in each of the input parameters is investigated with the help of the first-order Sobol’
sensitivity index [38]

S1 =
vari(κ)

var(κ)
, (52)

where vari(κ) is the partial variance of the response κ given uncertain input ξi,
and var(κ) is the total response variance when there are uncertainties in all inputs
ξ1,ξ2, · · · ,ξ7. Note here that ξ1,ξ2, · · · ,ξ7 are the RVs used to describe CL0, CLα ,
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Table 3: The sensitivity analysis of output using the first order Sobol’ index SU1

SU1 CL0 CLα Cw0 k1 k2 Cm0 Cmq

θ [deg] 0.1902 0.8093 1.8e-06 1.8e-06 1.8e-06 1.8e-06 1.8e-06
α [deg] 0.3477 0.6489 1.1e-06 1.1e-06 1.1e-06 1.1e-06 1.1e-06

h [ft] 0.2126 0.7869 9.3e-08 9.3e-08 9.3e-08 9.3e-08 9.3e-08
q [deg/s] 0.2797 0.7172 1.9e-04 1.9e-04 1.9e-04 1.9e-04 1.9e-04
VTAS [kt] 0.2188 0.7808 2.2e-08 2.2e-08 2.2e-08 2.2e-08 2.2e-08

CW0,k1,k2,Cm0,Cmα (see Tab. 1), while κ is the generic variable used to denote one
of the system responses presented in previous section.

The index in Eq. 52 is computed with the help of the PCE based proxy model such
that:

S1 =
∑β∈Ji κ2

β
β !

∑γ∈J κ2
γ γ!

, (53)

where J is the full multi-index set determined by all input random variables and
corresponding polynomial order, while Ji is the subset of J including all polyno-
mials dependent on the i-th random variable only. In other words, one segments the
polynomial chaos expansion to

κ(ξ ) = κ̄ + ∑
β∈J1

κβ Ψβ (ξ1)+ · · ·+ ∑
β∈J7

κβ Ψβ (ξ7)

+ ∑
β∈J12

κβ Ψβ (ξ1ξ2)+ · · ·+ ∑
β∈J67

κβ Ψβ (ξ6ξ7)+h.o.t, (54)

and uses only the first order terms to evaluate Eq. 53. Here, Ji j is the subset of multi-
index set J including the polynomials which depend only on the set of variables
(ξi,ξ j), i 6= j.

Using the previous formula, the sensitivity of the output variables is studied with
respect to each of the seven inputs in Tab. 3. By comparison one may conclude that
the parameters describing the lift have the highest impact on the output uncertainty.
The perturbations in other input variables such as the drag and pitch moments do
not influence the response statistics in a great manner. Thus, their impact can be
neglected. The reason for this is based on the fact that the lift compared to drag is the
predominating force component (about one order of magnitude difference).

In Fig. 21 the sensitivity evolution of AoA on input uncertainty is shown. Namely,
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Figure 21: Sensitivity analysis of the angle of attack, altitude and the pitch attitude
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Table 4: Comparison of the first sensitivity Sobol’ index obtained by polynomial
chaos (PCE) and Monte Carlo (MC) approaches

SU1 θ [deg] α [deg] h [ft] q [deg/s] VTAS [kt]
PCE 0.1902 0.3477 0.2126 0.2797 0.2188
MC 0.1887 0.3481 0.2099 0.2773 0.2160

before the initial pulse function is applied one may notice the strong correlation be-
tween the AoA and k1 and k2. However, after the excitation is imposed the aircraft
becomes sensitive to the perturbations of the lift parameters CL0 and CLα . These two
are co-dependent such that when one grows the other decays and vice versa. How-
ever, the correlation bewteen AoA and Cα is stronger than the correlation between
AoA and Cα0, except in the moment t = 20 [s] when the uncertainty in the output
becomes negligible. Similarly, the pitch attitude is also strongly correlated to CLα

and moderately to CL0. These two shortly exchange roles in time t = 40 when the
response becomes almost deterministic. In contrast to this, the sensitivity of the alti-
tude to the presence of uncertainty in the lift coefficient is almost constant over time
and takes the value of ca. 0.8 in case of CLα , and ca. 0.2 in case of CL0.

In order to check the accuracy of the previous results, the first senstivity index of
the output response with respect to the uncertainty in the initial lift coefficient is
computed with the Monte Carlo simulation and 100 000 samples. According to the
comparison analysis provided in Tab. 4 one may conclude that the sensitivity indices
match on the second decimal as expected.

6 Conclusions

The present paper deals with the propagation of uncertainty in input parameters
through the aircraft model in clean cruise configuration triggered by the elevator
pulse. For the numerical integration the non-intrusive stochastic approaches are used,
such as the direct integration, pseudo-Galerkin and stochastic collocation methods.
In addition, the paper presents some algorithms used to reduce the memory require-
ments for the response statistics, which is of high importance when one deals with
real problems such as aircraft dynamics.
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The numerical study has shown that the perturbations of the lift parameters have a
high impact on the system behaviour. This conclusion is verified with the help of the
stochastic collocation and stochastic Galerkin method. The comparison of the direct
integration and sparse grid algorithms goes in favour to the second approach as the
number of calls of the simulator is reduced to more than 20 times for a certain level of
accuracy. On the other hand, the comparison of the nested and non-nested grids has
shown that the former ones are more suitable for the aircraft model integration as they
are more stable with the increase of the number of samples. This allows us to strongly
believe that not only the considered problem but also the flight dynamics during the
landing phase can be resolved by the most popular stochastic finite element method
based on the Galerkin projection or stochastic collocation. However, note that the
stochastic interpolation has to be taken with care as the numerical solution can admit
strong oscilations with the increase of the polynomial order. As numerically efficient,
the non-intrusive methods can also be utilised for the identification of aerodynamical
coefficients in the Bayesian framework, which is the future subject of this work.
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