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Abstract
Recent advances in acoustic research have revealed that making the trailing edges of
aircraft wings porous results in significant noise reductions. Such usage of porous
media on aerodynamic bodies amongst others requires the development of accurate
prediction tools of how the aerodynamics are affected by the presence of porous
parts. The present work is a step towards understanding this and demonstrates a
complete development process, from the derivation of the theoretical methods over
to the integration of the theory into a finite-volume flow solver up to the validation
of the methods with DNS-data and experiments.

The derivations of this work are based on the aerodynamic condition of high
Reynolds numbers, very fine porous structures and flow velocities up to the range
of transonic Mach numbers. These requirements mirror the premise that the porous
media are used in civil aviation for noise reduction purposes. The overall strategy
to derive the theoretical framework for the simulation of flow over porous media
under the given conditions is based on averaging the Navier-Stokes equations in
space and time, while always keeping the equations in their compressible form.
The unknown terms which occur from the averaging process are modelled with the
Darcy and Forchheimer terms which describe the effect of the porous medium on
the air. A Reynolds-stress model is used for modelling the turbulent effects.

Special conditions are derived at the surfaces of the porous media such that
the flow that penetrates across the so-called nonporous-porous interface contin-
ues through the porous regions in a physically correct way. The relationships for
the flow variables like velocity, density or pressure are based on the conservation
of convective fluxes across the interface where the entropy is also held constant.
Further relations for several gradients which are needed for the diffusive fluxes are
derived on the basis of the jump conditions of Ochoa-Tapia and Whitaker.

The implementation of the theoretical models into a finite-volume flow solver
is briefly presented. After verification with simple test cases, the models are ex-
tensively calibrated and validated. The calibration process adjusts the unknown
parameters of the models with data from direct numerical simulations in a partly
porous channel resulting in good agreement for both velocity and Reynolds-stress
profiles. For the final validations, aerodynamic wind-tunnel experiments of a wing
with porous trailing edge are performed. Measurements of the lift coefficient and
of the flow field over the porous trailing edge compare well with the the numerical
results.



Übersicht
Kürzlich durchgeführte akustische Untersuchungen zeigen, dass poröse Tragflügel-
hinterkanten den Flugzeuglärm deutlich verringern können. Die Simulationsmög-
lichkeiten für solche Verwendungen von porösen Materialien an Flugzeugen und
auch an anderen aerodynamischen Gegenständen sind bisher sehr begrenzt. Die
vorliegende Arbeit nimmt sich diesem Problem an und beschreibt den gesamten
Entwicklungsprozess einer möglichen Erweiterung für numerische Strömungslöser
zur Berechnung turbulenter Strömungen über porösen Materialien, beginnend mit
der Herleitung der theoretischen Modelle, über deren Integration in einen Strö-
mungslöser, bis hin zur Validierung der Modelle anhand von DNS-Daten und Ex-
perimenten.

Die Randbedingungen der zu simulierenden Strömungen kommen aus der zivilen
Luftfahrt und sind unter anderem hohe Reynoldszahlen, sehr feine poröse Struk-
turen und Geschwindigkeiten im transonischen Machzahlbereich. Um solche Strö-
mungen effektive lösen zu können werden die Navier-Stokes-Gleichungen in ihrer
kompressiblen Form räumlich und zeitlich gemittelt. Dadurch entstehenden zu
modellierende Terme, welche zum einen den Effekt von porösen Materialien auf
die Strömung und zum anderen den Effekt der Turbulenz beschreiben. Das ver-
wendete Modell der für die porösen Materialien zuständigen Terme basiert auf den
Gesetzen von Darcy- und Forchheimer, und Turbulenzterme werden mit Hilfe eines
Reynoldsspannungsmodells modelliert.

An der Übergangsfläche zwischen porösemMedium und freier Strömung werden
zusätzliche Bedingungen notwendig. Denn beim Auftreffen der Strömung auf ein
poröses Medium muss ihr Zustand so transformiert werden, dass sie ihren Weg im
porösen Medium physikalisch sinnvoll fortsetzt. Die Transformation basiert haupt-
sächlich auf Erhaltungsgleichungen von Masse und Energie. Außerdem wird die
Entropie beim Einströmen ins poröse Medium erhalten. Die Berechnung diffusiver
Flüsse an der Übergangsfläche erfordert weitere Zusammenhänge für die Gradien-
ten einiger Strömungsvariablen, welche auf den Sprungbedingungen von Ochoa-
Tapia und Whitaker basieren.

Nach der Herleitung der benötigten Theorie wird kurz auf deren Implementie-
rung in einen finite-Volumen Strömungslöser eingegangen. Die Funktionsfähigkeit
wird anhand von einfachen Testfällen gezeigt, um sich dann der Kalibrierung und
Validierung der theoretischen Modelle zu widmen. Kalibriert werden die Modell-
parameter mit Hilfe von DNS-Daten einer Kanalströmung. Die Lösungen mit den
final festgelegten Parameterwerten zeigen gute Übereinstimmung mit DNS-Daten.
Für die Validierungwerden aerodynamischeWindkanaluntersuchungen an dem an-
fangs beschriebenen Flügel mit poröser Hinterkante durchgeführt. Der Effekt der
porösen Hinterkante auf den Auftriebsbeiwert wird durch die numerischen Simula-
tionen gut wiedergegeben. Ein näherer Vergleich zwischen Experiment und Rech-
nung anhand des Strömungsfelds nahe der porösen Hinterkante zeigt außerdem,
dass der Strömungslöser die Strömungsphysik korrekt reproduziert.
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Glossary
Latin Letters
A Area; flatness factor of Reynolds stresses.
a Turbulent anisotropy tensor; speed of sound.
A2 Second invariant of Reynolds-stress anisotropy tensor a, A2 =

aijaji.
A3 Third invariant of Reynolds-stress anisotropy tensor a, A3 =

aijajkaki.
Afs Pore surface area of a porous medium which is faces fluid.
c Chord length.
cd,p Constant in model for turbulent diffusion term Dp.
cd,p,eff Effective constant in model for turbulent diffusion term Dp.
cε,F Modelling coefficient of gradient diffusion model in Forchheimer

term of turbulent dissipation-rate equation.
cF Forchheimer coefficient.
cl Local lift coefficient.
cµ Modelling coefficient for computing the eddy viscosity, cµ = 0.09.
cp Heat capacity for constant pressure; pressure coefficient, cp =

p−p∞
ρ
2 v

2
∞

.
cϕ General constant in gradient diffusion hypothesis.
cs Gradient diffusion modelling constant of Daly-Harlow model.
ct Gradient diffusion modelling constant of Hanjalić-Launder model.
cV Heat capacity for constant volume.
cwd Model parameter for increasing the effective distance to the porous

interface used in the Reynolds-stress redistribution model.
D Turbulent diffusion term.
d Distance to porous interface; typical pore dimension.
Da Darcy number Da = κ

L2 .
deff Effective distance to porous interface.
Dε Sum of viscous, turbulent and pressure diffusion term of turbulent

dissipation-rate equation.
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Latin Letters

D(ν) Viscous diffusion of Reynolds stresses.
Dp Turbulent diffusion term for modelling extra diffusion inside

porous media.
dp Pore diameter.
D(p) Turbulent pressure diffusion term of Reynolds-stress equation.
E Total specific fluid energy, E = e+ v2

2 ; flatness factor of turbulent
dissipation-rate.

e Specific inner energy; dissipation anisotropy tensor.
E2 Second invariant of dissipation anisotropy tensor of Reynolds

stresses e, E2 = eijeji.
E3 Third invariant of dissipation anisotropy tensor of Reynolds

stresses e, E3 = eijejkeki.
F Force; flux.
∆g Functional to describe the magnitude of gradient jumps over

nonporous-porous interfaces.
H Total specific fluid enthalpy, H = E + p

ρ ; channel height.
h Specific enthalpy.
k Turbulent kinetic energy, k = 1

2v
′′
i v

′′
i .

kd Heat conduction.
k(t)
d Turbulent heat transport.

L Characteristic length.
M Reynolds-stress term which contains the compressibility effects.
Ma Mach number.
N Navier-Stokes momentum equation.
n Normal direction.
P Turbulent production term.
p Pressure.
P (Darcy) Darcy term of Reynolds-stress equation.
P (Darcy)
ε Darcy term of turbulent dissipation-rate equation.

P (Forch)
ε Forchheimer term of turbulent dissipation-rate equation.

P (Darcy)
εh Darcy term of homogeneous turbulent dissipation-rate equation.

P (Forch)
εh Forchheimer term of homogeneous turbulent dissipation-rate

equation.
Pε Production term of turbulent dissipation-rate equation.
P (Forch) Forchheimer term of Reynolds-stress equation.
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Greek Letters

p∗ Dimensionless pressure, p∗ = p
ρ
2 v

2
0
.

R Flow resistivity.
Re Reynolds number.
Recrit Critical Reynolds number where flow starts to become turbulent.
Reκ Reynolds number where the length scale is based on the perme-

ability κ, Reκ = ρv
√
κ

µ .
Reτ Reynolds number createdwith shear stress velocity uτ , Reτ = uτL

ν .
Rs Specific gas constant.
Sε4 Pressure gradient term in homogeneous turbulent dissipation-rate

equation.
Sl Length scale limiter of homogeneous turbulent dissipation-rate

equation.
T Temperature; turbulent diffusion; time interval.
t Time.
Tε Turbulent transport term of turbulent dissipation-rate equation.
uτ Shear stress velocity.
V Volume.
v Velocity.
w Arbitrary conservative variable.
x Coordinate direction.
x∗ Dimensionless coordinate, x∗ = x

L .
Y Dissipation term of turbulent dissipation-rate equation.
y Coordinate direction.

Greek Letters
α Angle of attack; heat transfer coefficient; scaling factor for artificial

dissipation.
α∗ Integral value of heat flux coefficient α.
β Jump coefficient defining jump of velocity gradient at porous in-

terfaces.
βt Turbulent jump coefficient defining jump of Reynolds-stress gradi-

ents at porous interfaces.
ρ Density.
ε Deviation variable in Taylor expansion.
ε Turbulent dissipation-rate.
εh Homogeneous turbulent dissipation-rate.
ε̂h Isotropic part of homogeneous turbulent dissipation-rate.
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Typical Indices

γ Isentropic exponent.
κ Permeability.
κ2 Blending function for artificial dissipation.
κ4 Blending function for artificial dissipation.
λ Thermal conductivity.
λeff Effective thermal conductivity.
λ∗ Expansion viscosity, λ∗ = − 2

3µ.
µ Dynamic viscosity.
µt Eddy viscosity.
ν Kinematic viscosity, ν = µ

ρ .
φ Porosity.
Φε Pressure transport term of turbulent dissipation-rate equation.
Π Pressure-strain correlation.
Πw Near wall pressure-strain correlation term.
σ Stress; Prandtl number.
σt Turbulent Prandtl number.
τ Viscous stress tensor.

Operator commands
|ϕ| Absolute value of a arbitrary variable ϕ; vector length if ϕ is a

vector.
ϕ Density-weighted time average of arbitrary variable ϕ.
ϕ′′ Deviation of arbitrary variable ϕ from its density-weighted time

average, ϕ′′ = ϕ− ϕ.
∇2 Laplacian operator.
〈ϕ〉 Spatial average of arbitrary variable ϕ.
ϕ/ Deviation of arbitrary variable ϕ from its spatial average, ϕ/ =

ϕ− 〈ϕ〉.
〈ϕ〉s Superficial spatial average of arbitrary variable ϕ.
〈ϕ〉F Density-weighted spatial average of arbitrary variable ϕ.
ϕ� Deviation of arbitrary variable ϕ from its density-weighted spatial

average, ϕ� = ϕ− 〈ϕ〉F .
ϕ Time average of arbitrary variable ϕ.
ϕ′ Deviation of arbitrary variableϕ from its time average, ϕ′ = ϕ−ϕ.

Typical Indices
0 Reference variable value.
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Abbreviations

b Bulk value, this refers to the mean value in the nonporous part of
porous-bottom channel computations.

f Fluid; nonporous side of nonporous-porous interface; fibre.
n Normal direction.
p Porous; porous side of nonporous-porous interface; pore.
r Offset direction, perpendicular to normal and tangential directions.
s Structure, refers to variables at the solid porous structure; stream-

line direction; sphere.
t Tangential direction.
t Turbulent.
∞ Variable value at farfield.

Abbreviations
DLR Deutsches Zentrum für Luft- und Raumfahrt (i.e. German

Aerospace Center).
DNS Direct numerical simulations.
JHh-v2 Jakirlić-Hanjalić homogeneous version 2 (Reynolds-stress turbu-

lence model based on homogeneous turbulent dissipation-rate as
length scale variable).

PA Porous aluminum.
PIV Particle image velocimetry.
RANS Reynolds-averaged Navier-Stokes.
SBP Sintered bronze powder.
SFB Sonderforschungsbereich (i.e. Collaborative Research Center).
SFF Sintered fibre felt.
VRANS Volume- and Reynolds-averaged Navier-Stokes.

9





1. Introduction
The title of this work reads Volume-Averaged RANS-Simulation of Turbulent
Flow over Porous Media. In order to clarify this title, the three different terms
Volume-Averaged RANS-Simulations, Turbulent Flow and Porous Mediamust be iden-
tified. Beginningwith the last, the porousmedia in this work are understood as rigid
materials which contain voids. These voids have to be connected with the outer
surface of the rigid material in a way that the fluid can pass through the material
with increased efforts (see figure 1.1 to the right). It is of interest to predict the fluid
flow over porous media. This prediction is performed with volume-averaged RANS-
simulations which will be described further in the theoretical part of this work. The
last term turbulent flow complicates the simulations since the fluid particles are now
allowed to move over time in superimposed small-scale fluctuations.

fluid particle

free flow (can be al-
ready simulated)

closed pores (not con-
siderd in this work)

open pores (hard
to get through)

Figure 1.1.: Schematic of flow through porous media.

This work is part of the Collaborative Research Center SFB 880 [61] where funda-
mentals of high-lift for future commercial aircraft are investigated. Part of this col-
laborative project is the research effort on low-noise take-off and landing [21]. One
point of the investigation is aircraftwings with porous trailing edges (see figure 1.2).
This specific setup can significantly reduce the trailing edge noise as demonstrated
by Herr et al. [33, 34]. However, for the evaluation of the aerodynamic properties of
the new quiet wing, there is a lack of reliable tools to simulate the flow in the vicin-
ity of porous media. This provides the motivation for the present work to develop a
reliable method for aerodynamic simulations over porous media. For the develop-
ment of the required theory, several technical challenges must be considered:

1. The Reynolds numbers of the flow around the wing is rather high. Hence,
the small-scale structures of the turbulent flow cannot be resolved with to-
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1. Introduction

days simulations capabilities. This is a well-known problem, which is solved
by using the Reynolds-averaged Navier-Stokes equations together with an
appropriate turbulence model.

2. The pore sizes of the porous media are very small. This means that the flow
inside the pores cannot be resolved with sustainable efforts. This issue can
be solved by a volume-averaging procedure. However, models of the integral
effect of the porous medium must be developed.

3. High flight speeds and high-lift wing configurations lead to high flight Mach
numbers. Thus, compressibility effects must be retained while deriving the
theoretical models.

4. High-lift devices also lead to high streamline curvatures which is a critical
task for many turbulencemodels. As a consequence, a high-fidelity Reynolds-
stress model is used for the turbulence modelling.

loud quiet

Figure 1.2.: Noise emission of a wing with and without trailing edge.

Even though this work has its direct motivation in aircraft aerodynamics, several
other applications can be imagined. Starting with incompressible and laminar flow,
there is the filtration of water through sand. This actually led to the development of
the law of Darcy [20]. This law was extended by Forchheimer [26] for more general
use at higher flow velocities. The given laws (Darcy with Forchheimer extension)
are the basis for many other investigations e.g. for flow through heat exchangers
as discussed in by Antohe et al. [3]. For even higher velocities, turbulent flow must
be considered. This appears in nuclear reactors for example where the fuel rods
constitute the porous structure and the cooling water is the fluid (see Chandesris,
Serre and Sagaut [17]). In this case, the flow phenomena are already so complex that
the complete Navier-Stokes equations have to be solved and turbulence is modelled
with the help of additional transport equations. Not only incompressible but also
compressible flow applications can be imagined besides the wing with porous trail-
ing edge. One example is the supersonic wind-tunnel design (see Wu [82]) where
the flow straighteners can be computed as porous medium.

Many more applications for flow over and through porous media exist. They in-
clude the simulation of wind parks close to forests (the trees constitute the porous
medium) [57], canopy flow through cities [30] (where the buildings define the struc-
ture of the porous medium), flow through catalytic converters [84], delivery of gas

12



1.1. State of the art

from hydraulically fractured gas wells [35] or the tightness of dikes as shortly men-
tioned in [26].

1.1. State of the art
Under the given conditions of high Reynolds numbers, very fine pore structures
and complex applications, the only reasonable flow prediction method is to solve
the RANS-equations (Reynolds-averaged Navier Stokes equations) while modelling
the effect of the porous media. It is common practice to model the porous media
effect as drag forces based on the Darcy and Forchheimer terms. When it comes
to turbulence, the most common turbulence model is the k-ε-model. Several varia-
tions exist which try to accurately predict the turbulence inside porous media. The
most prominent models originate from Nakayama and Kuwahara [52, 51] and from
Pedras and Lemos [56]. The main difference can be expressed that the turbulence
will decay to zero deep inside the porous medium for the Pedras and Lemos-model
while the model of Nakayama and Kuwahara predicts finite values. Especially the
model of Pedras and Lemos is adopted by several authors for further investigations,
as given in [13, 64, 39, 5] to name a few. On the other side, Guo [29] showed good
results for the Nakayama and Kuwahara model. Also, their general idea is adopted
in the model given by Chandesris, Serre and Sagaut [17]. Besides of the two main
lines, one can find several more variants of the k-ε-model in porous media, e.g. [2,
28, 77]. The large amount of variants without a clear winner already indicates the
complexity of the topic.

Some publications state that the two transport equations of the k-εmodel are not
enough and rather additional transport equations should be introduced. The final
set of transport equations allows them to describe the micro-scale turbulence inside
the porous structure and the macro-scale turbulence throughout the structure sepa-
rately. Special terms connect the equations describing the energy transfer between
the scales. Kuwata, Suga and Sikurai [42] propose micro-scale k- and ε-equations
while Drouin, Grégoire and Simonin [23] use the transport equation of the disper-
sive kinetic energy and the wake dissipation as additional equations. Note, that the
latter model replaces the standard ε-equation by an algebraic relation and thus only
has to solve three transport equations.

One further step to increase complexity is to drop the Boussinesq-hypothesis.
Rather than solving the k-ε-equations, the Reynolds-stress equations are solved di-
rectly. This will mainly decouple the turbulent stresses from viscous stresses allow-
ing to describe more complex flow phenomena. Such a Reynolds-stress model is
used by Kuwata and Suga [41, 40] coupled with a micro-scale k-ε-model.

The ideas above concentrate mainly on the existing turbulence modelling strate-
gies inside porous media. However, it should be noted that the present work needs

13



1. Introduction

to predict flow over porous media and, thus, the transition between nonporous and
porous regions have to be also correctly modelled. While the several stated pub-
lications mention such scenarios, there are specialized papers on this very topic.
The most straightforward procedure is to completely disregard the transition to the
porous region but describing the porous models in a way that they automatically
fall back to the standard (nonporous) equations in the nonporous regions. Such
approach is used by Hang and Li [30]. A more accurate model for the nonporous-
porous transition area can be defined by using a smooth blend of the porous prop-
erties until they adopt the final value inside the porous regions, as in the work of
Kuwata and Suga [41]. Instead of determining the correct smooth behaviour of the
porous properties, discrete jump conditions between nonporous and porous media
can be defined. The most prominent conditions have their origin in the work of
Ochoa-Tapia and Whitaker [55] for non-turbulent flows, and have been adapted to
k-ε-models by Silva and Lemos [70, 45, 71] and Chandesris and Jamet [15].

1.2. Necessity and limitations of this work
Section 1.1 demonstrates that a certain amount of research has already been con-
ducted for turbulent flow over porous media. This leads to the question why yet an-
other model for computing flow over porous media is needed. The reasons are man-
ifold. Firstly, to the author’s knowledge all developments are completely devoted to
incompressible flowwhereas the todays aircraft operate at transonic speeds. Hence,
models are needed which have the potential to compute compressible flow. This is
achieved in this work by using a Reynolds-stress turbulence model which is cali-
brated to provide reliable results at transonic speeds. In addition to that, the con-
ditions across the nonporous-porous interface are redefined in a way to operate
consistently at both, incompressible and compressible flows.

A second reason for the current work is its intention to implement the theory
into an established flow solver with the aim to make it accessible for many users.
Hence, the theoretical derivations are held very general, valid in 3D-space. And
finally, the work focuses on the validation of the theoretical models with realistic
applications and, thus, proves its usability.

Despite the intention of this work to provide very general simulation capabilities,
some limitations must be defined. The two most restricting ones are:

• The porous media are assumed to be isotropic which means that their prop-
erties do not depend on the orientation in space.

• Inside a porous region, the properties of the medium are taken to be constant.

Note that both of these issues are part of the successor project of the Collaborative
Research Center SFB 880. Further limitations are
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1.3. Outline

• Only rigid porous media are considered.

• Heat transfer between fluid and porous structure has no effect on the flow.

These two issues are of no interest for this work and are, thus, either ignored or
only roughly covered.

1.3. Outline
Chapter 2 begins with a description of the derivation of volume-averaged Navier-
Stokes equations which can already be solved for laminar flow. The interface con-
ditions from nonporous to porous flow for laminar flow will also be derived and
the rules for computing the integral forces on porous bodies will be set up. The
extension from laminar to turbulent flow with the help of time averaging is per-
formed in chapter 3. This chapter is organized similar to the chapter of laminar
flow but also writes down the complete JHh-v2 turbulence model which is needed
for determination of the Reynolds stresses.

The subsequent chapter 4 describes a way to implement the theoretical models
into a flow solver such as the DLR-TAU-Code. Firstly, this chapter covers the diffi-
culties of implementing the volume treatment of computation grid cells inside the
porous media. Then, details about the flux computation over the nonporous-porous
interface are explained. The final implementation into the DLR-TAU-Code is veri-
fied for porous channel computations in chapter 5.

Chapter 6 describes calibrations for the unknown model parameters with the
help of DNS-results of a laminar and a turbulent channel (section 6.1). Afterwards,
the code is applied to a realistic application of a wing with porous trailing edge
(section 6.2) comparing the lift and demonstrating the detailed flow phenomena.

Finally, chapter 7 concludes the current work and provides an outlook for future
work.
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2. Laminar Flow in Porous Media

The simulation of flow around complex bodies requires solving the Navier-Stokes
equations. Special treatment is needed when porous media are involved, at least
when the flow inside the porous structure needs not be resolved. The usual proce-
dure for deriving the suitable equations is by volume averaging the Navier-Stokes
equations and then modelling the resulting unknown terms. The primary objective
of this chapter is to demonstrate this procedure and present the special treatment
at the interface between porous and nonporous regions. Since the final set of equa-
tions completely defines laminar flow this chapter is titled “laminar flow in porous
media”. In addition, the results of this chapter define the basic infrastructure for
developing the models for turbulent flow over porous media which is then covered
in chapter 3.

Before starting with the derivation of the governing equations for laminar flow
in porous media a short introduction to the principal effects of flow through porous
media is given. Later on, this will help to model the unknown terms in the volume-
averaged Navier-Stokes equations. But first the definition of the porosity φ has to
be clarified: It is defined as the void space or rather the entrapped fluid volume
inside the porous medium,

φ =
fluid volume
total volume

=
Vf

V
(2.1)

where Vf is the fluid volume and V is the total volume including also the porous
structure (see figure 2.1).

fluid volume Vf total volume V

Figure 2.1.: Definition of the fluid volume Vf inside a porous medium and of the total
volume V containing also the solid structure.
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2. Laminar Flow in Porous Media

Figure 2.2.: Left hand side: Porous medium composed of many thin channels; right
hand side: Porous medium composed of many small particles hindering the flow
on its way past the porous medium.

2.1. Effect of porous media on fluid flow
Firstly, assume a porous medium to be a solid structure crossed by several thin
channels (see figure 2.2 left). For such kind of channels one can write down the
proportionality

∂p

∂x
∝ v · µ (2.2)

as long as the flow in the channel is laminar. In this equation, ∂p
∂x is the pressure

gradient in the porous medium, µ is the dynamic viscosity and v is the fluid’s aver-
aged flow velocity. Literally, equation (2.2) states that the drag inside porous media
is linearly dependent on the flow velocity v and the dynamic viscosity µ. Though,
another perspective for describing a porous medium can be given. This is a medium
consisting of several small (connected) particles which hinder the flow on its way
through (see figure 2.2 to the right). Flow separation behind the particles leads to
pressure drag which is proportional to the square of the flow velocity v and linearly
proportional to the density ρ:

∂p

∂x
∝ ρv2 (2.3)

Combining the two perspectives leads to the law of Darcy with the Forchheimer
extension [26],

∂p

∂x
= −φ

µ

κ
v︸ ︷︷ ︸

Darcy term

− φ2 cF√
κ
ρv2︸ ︷︷ ︸

Forchheimer term

, (2.4)

where the proportionality constants of this law are constructed with the perme-
ability κ, the Forchheimer coefficient cF and the porosity φ. The three parameters
are properties of the porous medium. The permeability κ is generally measured
with the help of experiments at very small flow velocities where the Forchheimer
term can be neglected. The Forchheimer coefficient cF itself is determined by either
further experiments or by empirical relations (e.g. the Ergun-equation [46]).
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2.2. Navier-Stokes equations

Equation (2.4) in its present form can already predict the pressure drop in porous
media for a constant velocity. However, in order to solve more complex flow it must
be included into the Navier-Stokes equations.

2.2. Navier-Stokes equations
The governing equations for flow in porous media are derived based on the Navier-
Stokes equations in their differential form:

∂ρ

∂t
+

∂ρvi
∂xi

= 0 (2.5a)

∂ρvi
∂t

+
∂ρvivj
∂xj

+
∂p

∂xi
− ∂τij

∂xj
= 0 (2.5b)

∂ρE

∂t
+

∂ρviH

∂xi
− ∂viτij

∂xj
+

∂kd,i

∂xi
= 0 (2.5c)

Here, the Einstein notation is used. The nomenclature of the symbols is as follows:
ρ is the density, vi is the velocity component in the coordinate direction xi, p is the
pressure, τij is the tensor of viscous stresses and kd,i is the ith component of the
heat flux vector. The total energy E1 consists of internal energy e and the kinetic
energy vivi

2 (E = e+ vivi
2 ). The total enthalpy H is defined as H = E + p

ρ .

2.3. Volume-averaging rules
The spatial average of an arbitrary fluid property ϕ inside the volume V is defined
through the integral

〈ϕ〉 = 1

Vf

∫
Vf

ϕ dV . (2.6)

This is generally referred to as intrinsic average. Furthermore, the superficial aver-
age value is defined:

〈ϕ〉s = 1

V

∫
Vf

ϕ dV (2.7)

Both, intrinsic and superficial averages are related by the factor of the porosity:

〈ϕ〉s = φ · 〈ϕ〉 (2.8)
1Strictly speaking, the different energy variables and components E, e, H , h, kd,

vivi
2

are specific
values, i.e. energy components per mass. Note that for convenience, the word specific is omitted
throughout this work.
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2. Laminar Flow in Porous Media

Applying one of the averaging operators (2.6) or (2.7) onto the Navier-Stokes equa-
tions in their compressible form would lead to several additional complex terms. A
simpler derivation can be obtained by using the density-weighted averaging oper-
ator which is defined as

〈ϕ〉F =
〈ρϕ〉
〈ρ〉

=
1

〈ρ〉Vf

∫
Vf

ρϕ dV . (2.9)

In order to derive the volume-averaged Navier-Stokes equations, the treatment
of the volume-averaged gradients and the time derivatives must be described. What
is needed, is a relationship between the average of a gradient and the gradient of an
average. The same applies to the time derivatives. The required relationships are
given by Bear and Bachmat [4]. The relation for the time derivative is〈

∂ϕ

∂t

〉s
=

∂ 〈ϕ〉s

∂t
− 1

V

∫
Afs

ϕvs,ini dA (2.10)

where ni is the i-th component of the normal vector ~n and Afs is the surface area
of the porous structure (see figure 2.3). The variable vs is the velocity of this pore
surface. Since the present work only considers rigid porous media, the velocity vs is
always zero and the integral term of equation (2.10) vanishes. Hence, the averaging
operator can be pulled into the time derivative without additional concerns. This is
different for the spatial gradients where the relation is given as〈

∂ϕ

∂xi

〉s
=

∂ 〈ϕ〉s

∂xi
+

1

V

∫
Afs

ϕni dA . (2.11)

Here, the integral is not always zero. Rather, it describes the effect of porous media
onto a fluid inside the volume-averaged Navier-Stokes equations.

solid phase
fluid phase

~n

Afs

Figure 2.3.: Definition of the pore surface Afs and its normal vector ~n.
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2.3. Volume-averaging rules

x

ϕ

0

0.5

1

V

ϕ

〈ϕ〉
〈〈ϕ〉〉

x

-0.5

0

0.5

ϕ/

〈ϕ/〉

Figure 2.4.: Effect of double averaging the arbitrary variable ϕ within an averaging
volume of size V .

Both relations (2.10) and (2.11) are defined for the superficial volume average.
Converting them to the intrinsic counterparts results in additional termswhich con-
tain the gradients of the porosity φ:〈

∂ϕ

∂t

〉
=

∂ 〈ϕ〉
∂t

+ 〈ϕ〉 ∂φ
∂t

+
1

Vf

∫
Afs

ϕvs,ini dA (2.12)

〈
∂ϕ

∂xi

〉
=

∂ 〈ϕ〉
∂xi

+ 〈ϕ〉 ∂φ

∂xi
+

1

Vf

∫
Afs

ϕni dA (2.13)

Additionally, relations of statistical origin will be needed for the derivation of
the volume-averaged Navier-Stokes equations. With a given volume-averaged ar-
bitrary flow variable ϕ its fluctuation value can be defined:

ϕ/ = ϕ− 〈ϕ〉 (2.14)

In the subsequent derivations it is assumed that the rules

〈〈ϕ〉〉 = 〈ϕ〉 and 〈ϕ/〉 = 0 (2.15)

are valid. Strictly speaking, this is an approximation which is also presented in fig-
ure 2.4 showing the double average for an arbitrary function φ(x). It can be easily
recognized that the double average does not exactly overlap the single average. The
figure also shows that the average of the fluctuation value φ/ is not identically zero.
In terms of “flow in porous media” this implies that the rules (2.15) are only applica-
ble so long as the averaging procedure eliminates the small-scale fluctuations inside
the single pores but retains the large-scale flow phenomena.

Besides the fluctuations for the standard volume average (2.6) the fluctuations of
the density-weighted average (2.9) can be defined as

ϕ� = ϕ− 〈ϕ〉F . (2.16)
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2. Laminar Flow in Porous Media

The same rules applied to the standard volume average are assumed to be valid for
the density-weighted averages:

〈〈ϕ〉F〉F = 〈ϕ〉F and 〈ϕ�〉F = 0 (2.17)

Additional relationships which can be directly obtained from rules (2.15) or (2.17)
are

〈ϕA + ϕB〉 = 〈ϕA〉+ 〈ϕB〉 ; 〈cϕ〉 = c 〈ϕ〉 ; 〈ϕ/ 〈ϕ〉〉 = 0 (2.18)

where c is an arbitrary spatial constant. The relationships are valid for the density-
weighted average as well.

With this the required basic relationships and assumptions are complete and the
volume-averaged Navier-Stokes equations (2.5) for flow through porous media can
be derived.

2.4. Volume averaging of the Navier-Stokes
equations

The starting point for averaging the Navier-Stokes equations (2.5) in space is the
averaging operator (2.6). It is applied on the complete set of equations. The volume-
averaged mass conservation equation (2.5a) reads〈

∂ρ

∂t
+

∂ρvi
∂xi

〉
= 0 .

Using the relations (2.18), (2.12) (2.13) this can be stated as

∂ 〈ρ〉
∂t

+
∂ 〈ρvi〉
∂xi

+ 〈ρvi〉
∂φ

∂xi
+

1

Vf

∫
Afs

ρvini dA = 0

where the assumptions of a rigid porous structure (vs = 0) as well as the time inde-
pendence of the porosityφ are inherent. Section 1.2 alreadymentioned that porosity
gradients will not be considered in the present work. Consequently, those terms are
set to zero. Furthermore, the integral will also vanish since the velocity vi at the
pore surface Afs is zero due to the no-slip condition. Thus, the volume-averaged
equation for mass conservation reduces to

∂ 〈ρ〉
∂t

+
∂ 〈ρvi〉
∂xi

= 0
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2.4. Volume averaging of the Navier-Stokes equations

which can be rewritten by using the definition of the density-weighted average (2.9):

∂ 〈ρ〉
∂t

+
∂ 〈ρ〉 〈vi〉F

∂xi
= 0 (2.19)

The derivation of the remaining conservation equations will be covered quickly
applying exactly the same principles used for obtaining the volume-averaged equa-
tion for mass conservation. Following similar reductions, the momentum conser-
vation equation (2.5b) becomes

∂ 〈ρ〉 〈vi〉F
∂t

+
∂ 〈ρ〉 〈vivj〉F

∂xj
+
∂ 〈p〉
∂xi

− ∂ 〈τij〉
∂xj

+
1

Vf

∫
Afs

pni−τijnj dA = 0 . (2.20)

Here, the integral over the surfaceAfs does not vanish completely and the pressure p
and the viscous stress tensor τij remain in the integral. Both of these variables can
further be rewritten in terms of fluctuation values,∫

Afs

pni − τijnj dA =

∫
Afs

(〈p〉+ p/)ni −
(
〈τij〉+ τ/ij

)
nj dA

=

∫
Afs

〈p〉ni − 〈τij〉nj dA+

∫
Afs

p/ni − τ/ijnj dA

≈ 〈p〉
∫
Afs

ni dA− 〈τij〉
∫
Afs

nj dA+

∫
Afs

p/ni − τ/ijnj dA

=

∫
Afs

p/ni − τ/ijnj dA

as the integral
∫
Afs

ni dA is zero for large averaging volumes with constant poros-
ity φ.

The second term of equation (2.20) can be split into two by using the averaging
rules (2.18):

〈vivj〉F =
〈
(〈vi〉F + v�i )

(
〈vj〉F + v�j

)〉
F

=
〈
〈vi〉F 〈vj〉F

〉
F +

〈
〈vi〉F v�j

〉
F +

〈
〈vj〉F v�i

〉
F +

〈
v�i v

�
j

〉
F

= 〈vi〉F 〈vj〉F +
〈
v�i v

�
j

〉
F

The term
〈
v�i v

�
j

〉
F on the right hand side is generally called subfilter stress or dis-

persion. Following the given relationships, the final form of the volume-averaged
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2. Laminar Flow in Porous Media

momentum equation reads

∂ 〈ρ〉 〈vi〉F
∂t

+
∂ 〈ρ〉 〈vi〉F 〈vj〉F

∂xj
+

∂ 〈ρ〉
〈
v�i v

�
j

〉
F

∂xj

+
∂ 〈p〉
∂xi

− ∂ 〈τij〉
∂xj

+
1

Vf

∫
Afs

p/ni − τ/ijnj dA = 0 .
(2.21)

Here, the subfilter stresses
〈
v�i v

�
j

〉
F and the surface integral

∫
Afs

p/ni + τ/ijnj dA
are unknown and, thus, must be modelled.

Finally, the energy conservation equation (2.5c) is averaged over space:

∂ 〈ρ〉 〈E〉F
∂t

+
∂ 〈ρ〉 〈viH〉F

∂xi
− ∂ 〈viτij〉

∂xj
+

∂ 〈kd,i〉
∂xi

+
1

Vf

∫
Afs

kd,ini dA = 0

which reduces to

∂ 〈ρ〉 〈E〉F
∂t

+
∂ 〈ρ〉 〈vi〉F 〈H〉F

∂xi
+

∂ 〈ρ〉 〈v�iH�〉F
∂xi

−
∂ 〈vi〉F 〈τij〉F

∂xj

−
∂ 〈vi〉F

〈
τ�ij
〉

∂xj
−

∂ 〈v�i 〉 〈τij〉F
∂xj

−
∂
〈
v�i τ

�
ij

〉
∂xj

+
∂ 〈kd,i〉
∂xi

+
1

Vf

∫
Afs

kd,ini dA = 0

(2.22)

because 〈〈ϕ〉F〉 = 〈ϕ〉F is approximately valid (see section A.1). The additional un-
knowns generated by the volume-averaging procedure are the correlations 〈v�iH�〉F ,〈
v�i τ

�
ij

〉
and the volume-averaged fluctuations 〈v�i 〉 and

〈
τ�ij
〉
. Besides that, the sur-

face integral over the heat conduction kd,i is unknown. Additionally, note that in
the terms representing the average of the total energy E and the total enthalpy H ,
there exist some hidden fluctuations:

〈E〉F = 〈e〉F +
〈vi〉F 〈vi〉F

2
+

〈v�i v�i 〉F
2

〈H〉F = 〈E〉F +

〈
p

ρ

〉
F
= 〈E〉F +

〈p〉
〈ρ〉

= 〈e〉F +
〈vi〉F 〈vi〉F

2
+

〈v�i v�i 〉F
2

+
〈p〉
〈ρ〉

At this point all relevant equations are derived in their volume-averaged form.
In order to close them, several unknown terms have to be modelled. The following
section will reason that several terms can be set to zero and describe models for the
unknown terms which remain.
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2.5. Closure models for the unknown terms of the volume-averaged equations

2.5. Closure models for the unknown terms of the
volume-averaged equations

The unknown terms of the volume-averaged Navier-Stokes equations can be sub-
divided into three categories. First, the integrals over the surface Afs of the porous
structure ∫

Afs

p/ni − τ/ijnj dA ,
∫
Afs

kd,ini dA ,

second, the different variances and correlations of fluctuation values〈
v�i v

�
j

〉
F , 〈v�iH�〉F ,

〈
v�i τ

�
ij

〉
and finally, the spatial average of the density weighted fluctuations

〈v�i 〉 ,
〈
τ�ij
〉

.

All of the three categories will be briefly discussed in the following sub-sections.

2.5.1. Integrals over the surface of porous structure
In order to get an explicit expression for the surface integrals∫

Afs

p/ni − τ/ijnj dA

of the momentum equations, flow through a channel according to figure 2.5 is as-
sumed. This channel is completely filled with a porous medium and has slip walls.
The flow is forced through the channel by a pressure gradient.

For incompressible flow, all gradients of themomentum equations are zero except
the pressure gradient ∂p

∂x along the channel. Hence, the momentum equation (2.21)
reduces to

∂ 〈p〉
∂xi

= − 1

Vf

∫
Afs

p/ni − τ/ijnj dA .

This simplified equation can bematchedwith the empirical laws of Darcy and Forch-
heimer as discussed in section 2.1. In multidimensional space an appropriate model
for the surface integral can be written as (see e.g. [10])

1

Vf

∫
Afs

p/ni − τ/ijnj dA = φ
〈µ〉
κ

〈vi〉F + φ2 cF√
κ
〈ρ〉 〈vi〉F · |〈~v〉F | . (2.23)
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porous medium

slip wall

slip wall

p1 p2

Figure 2.5.: Sketch of a completely porous channel.

The second surface integral ∫
Afs

kd,ini dA , (2.24)

which appears in the volume-averaged energy equation is assumed to have a mi-
nor influence on the fluid motion and therefore no modelling is required. It would
rather influence the heat flux or, in other words, the temperature distributionwhich,
as already stated, is not the focus of the present work. However, for the sake of com-
pleteness a short discussion about the term is provided within this section.

The specific heat flux kd from fluid into porous structure can be computed with
a heat transfer coefficient α and the temperature difference between the fluid and
the porous structure:

kd,i = α(Ts − Tf)ni (2.25)

Here, Ts is the temperature of the porous structure and Tf is the temperature of the
fluid. If both of these temperatures are equal at the surface of the porous structure,
the integral (2.24) will vanish. This is a valid assumption for flows with small tem-
perature gradients and porous structures which are not externally heated or cooled.
Assuming that the temperatures Ts and Tf differ, the modelling of the integral (2.24)
becomes important. Following Nield and Bejan [53] an appropriate model is

1

Vf

∫
Afs

kd,ini dA =
α∗

φ
(〈Ts〉 − 〈Tf〉) . (2.26)

The coefficient α∗ describes an integral value of the heat flux coefficient α and is
dependent on the porous medium. The model (2.26) supplies a source term for the
energy equation (2.22) which heats or cools the passing fluid. Typical application
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2.5. Closure models for the unknown terms of the volume-averaged equations

candidates for this term would be heat exchangers or the simulation of flow over
porous ice agglomerations on airplane wings.

2.5.2. Variance and correlations of fluctuation components
The variances of the velocity fluctuations 〈v�xv�x〉F ,

〈
v�yv

�
y

〉
F and 〈v�zv�z〉F are ex-

pected to be in the order of the mean kinetic energy 1
2 〈vi〉F 〈vi〉F . This is estimated

based on the fact that the actual velocities vi will range from zero (no-slip at pore
surfaces) to values considerably higher than the mean velocity. An effect of high
variances can for example be expected in porous ducts where the law of energy con-
servation would predict an influence of the variances on the pressure distribution
(see figure 2.6 where the pressure will drop to lower values in the duct as soon as
the variances are considered).

duct position

va
ria

bl
e
va

lu
es

duct contour

〈vx〉F

〈v�xv�x〉F

p (no variances)

p (with variances)

Figure 2.6.: Depiction of flow quantities along a porous duct. All lines are normal-
ized with the values leftmost of the channel. The pressure is plotted for a non-
fluctuating velocity (no variances) and for a fluctuating velocity (with variances).

One possible way to model the velocity variances would be

〈v�xv�x〉F =
〈
v�yv

�
y

〉
F = 〈v�zv�z〉F = a · 〈vi〉F 〈vi〉F (2.27)

where the parameter a depends on the porous medium. The model is based on
the consideration that the fluctuations occur due to the fluid movement around the
porous structure. The fluctuation magnitudes in different spatial directions are con-
sidered to be equal as long as the structure of the porous medium is isotropic. Such
a model is expected to become important in regions with high velocity gradients
in stream-wise direction. However, the applications of the present work do not fall
into this category. And since no literature was found by the author to further assess
the model or the parameter a the variances are neglected in the further derivations.

27



2. Laminar Flow in Porous Media

Furthermore, the unknown correlations
〈
v�i v

�
j

〉
F , 〈v�iH�〉F and

〈
v�i τ

�
ij

〉
or rather

their gradients are also set to zero:

∂ 〈ρ〉
〈
v�i v

�
j

〉
F

∂xi
=

∂ 〈ρ〉 〈v�iH�〉F
∂xi

=
∂
〈
v�i τ

�
ij

〉
∂xi

= 0 (2.28)

This can be justified for the gradient of the velocity correlation
〈
v�i v

�
j

〉
F by the order

of magnitude discussions of Whitaker [80] and Breugem [10]. Both suggest that the
velocity correlations are small as long as certain conditions are fulfilled. Whitaker
provides the conditions

dp � Lv and Rep ·
dp

Lv
=

〈ρ〉 〈v〉 dp

〈µ〉F
dp

Lv
� 1

whereLv is the characteristic length scale over which the averaged velocity 〈v〉will
change. In contrast, Breugem states the conditions than either the Reynolds number
Rep is small or that the representative pore diameter dp is much smaller than the
representative size of a solid particle in the porous structure. The last condition
can normally be reduced to the requirement of small porosity values. The given
estimations are confirmed by the assumptions of Raupach [63, 62] whose findings
are based on experimental data.

Due to a lack of DNS or experimental data, the correlations ∂〈ρ〉〈v�
i H

�〉F
∂xi

and
∂
〈
v�
i τ

�
ij

〉
∂xi

are assumed to behave in a similar fashion as the velocity correlations and
therefore have been set to zero. However, a model for the velocity-temperature cor-
relations given by Saito and de Lemos [65] exists, which could describe parts of the
gradient of the velocity-enthalpy correlation ∂〈ρ〉〈v�

i H
�〉F

∂xi
. They suggest a gradient

diffusion model which increases the diffusive heat flux inside the porous medium.
Since the present work concentrates on the fluid dynamics and not on the heat flux
problem it seems reasonable to neglect this term.

2.5.3. Density-weighted fluctuations
The density-weighted fluctuations 〈v�i 〉 and

〈
τ�ij
〉
which appear in the energy equa-

tion (2.22) can be assumed to be responsible for transport of energy due to density
fluctuations. As soon as there are no density fluctuations the terms which include
〈v�i 〉 or

〈
τ�ij
〉
disappear. However, it is anticipated that the terms will be small even

for high Mach numbers and the density weighted fluctuations can be set to zero:

〈v�i 〉 =
〈
τ�ij
〉
= 0

This assumption can only be supported from the point of view of turbulence mod-
elling where the density-weighted time fluctuations are considered to be small (see
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2.6. Summary of closed Navier-Stokes equations in porous media

e.g. [72]). Due to the lack of any numerical or experimental data no further asser-
tions can be presented that this is also true for the volume-averaged quantities.

2.6. Summary of closed Navier-Stokes equations in
porous media

With all the closure models discussed in the previous sections, a closed set of equa-
tions can be written which describes complex flows inside porous media:

∂ 〈ρ〉
∂t

+
∂ 〈ρ〉 〈vi〉F

∂xi
= 0 (2.29a)

∂ 〈ρ〉 〈vi〉F
∂t

+
∂ 〈ρ〉 〈vi〉F 〈vj〉F

∂xj
=− ∂ 〈p〉

∂xi
+

∂ 〈τij〉
∂xj

−φ
〈µ〉
κ

〈vi〉F − φ2 cF√
κ
〈ρ〉 〈vi〉F · |〈~v〉F |

(2.29b)

∂ 〈ρ〉 〈E〉F
∂t

+
∂ 〈ρ〉 〈vi〉F 〈H〉F

∂xi
=

∂ 〈vi〉F 〈τij〉F
∂xj

− ∂ 〈kd,i〉
∂xi

(2.29c)

These equations rely on further relations of the fluid itself. For an ideal gas, the state
variables which include pressure p, temperature T and density ρ are connected by

p = ρTRs or 〈p〉 = 〈ρ〉 〈T 〉F Rs (2.30)

where Rs is the specific gas constant with a value of 287 J kg−1 K−1 for air. Further,
assuming a calorically perfect gas, the enthalpy h and the inner energy e can be
computed from the temperature T :

e = cV T or 〈e〉F = cV 〈T 〉F (2.31a)
h = cpT or 〈h〉F = cp 〈T 〉F (2.31b)

with the heat capacities cV and cp for constant volume and constant pressure. The
dynamic viscosity µ can be deduced from the temperature T if the Sutherland law
is applicable:

µ = µrefT
1.5 1 +

110.4 K
Tref

T + 110.4 K
Tref

(2.32)

where the reference viscosity µref for air is 1.716× 10−5 kgm2 s−1 and the reference
temperature Tref is 273 K. It is assumed that the law is also valid for the relationship
between the averaged viscosity 〈µ〉 and the temperature 〈T 〉F without any modifi-
cations.
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2. Laminar Flow in Porous Media

Up to now, the tensor of viscous stresses τij was used without any comments. In
order to define it, a Newtonian fluid is assumed. This leads to the relationship

τij = λ∗ · δij
(
∂vk
∂xk

)
+ µ

(
∂vi
∂xj

+
∂vj
∂xi

)
or 〈τij〉 = 〈λ∗〉 δij

(
∂ 〈vk〉F
∂xk

)
+ 〈µ〉

(
∂ 〈vi〉F
∂xj

+
∂ 〈vj〉F
∂xi

) (2.33)

where λ∗ = − 2
3µ. The Kronecker delta δij will correspond to 1 for i = j and 0

otherwise. The averaged counterpart of the equation is only valid as long as the
viscosity µ does not correlate with the velocity gradients and the density-weighted
fluctuations are negligible.

In order to define the heat flux kd,i Fourier’s law is applied

kd,i = −λ
∂T

∂xi
or 〈kd,i〉 = −λ

∂ 〈T 〉
∂xi

− λ

Vf

∫
Afs

Tni dA (2.34)

with the thermal conductivity λ. The integral over the pore surfaces can be mod-
elled to be proportional to the gradient of the averaged temperature (consult e.g.
d’Hueppe [32]) and therefore expression (2.34) can be reduced to

〈kd,i〉 = −λeff
∂ 〈T 〉
∂xi

(2.35)

where λeff is the effective thermal conductivity inside the porous medium. Note,
that this equation requires the volume-averaged temperature T whereas in the pre-
ceding equations only the density-weighted volume-averaged form of the temper-
ature T is used. Nevertheless, it is assumed that equation (2.35) is also valid for the
density-weighed average of the temperature,

〈kd,i〉 = −λeff
∂ 〈T 〉F
∂xi

(2.36)

inline with the similar case of equation (2.33).

2.7. Demonstration of computations of flow
through a porous channel

The effects of the Darcy and Forchheimer term are now quickly demonstrated by a
flow through a channel which is completely filled with an arbitrary porous medium.
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2.8. Interface treatment between porous and nonporous regions

The channel geometry is shown in figure 2.7. The permeability κ is given in terms
of the Darcy number which is defined as

Da =
κ

L2
= 2.5× 10−6 (2.37)

where L is a characteristic length. It is taken to be equal to the channel length. Two
cases with different Forchheimer coefficients cF are computed here. In the first case
cF is set to zero and, thus, it does not consider effects of the Forchheimer term at all.
In the second case cF is 0.1.

The inflow into the channel is an ideal gas with the incoming velocity v0 and the
pressure p0. The Reynolds number at this point is set to

Re =
ρ0v0L

µ0
= 400 000 .

At the channel outflow the Mach number Ma is fixed to 0.3.

L

φ = 0.8,Da = 2.5× 10−6, cF = 0.1
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w
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Figure 2.7.: Geometry of channel completely filled with a porous medium.

The results for the velocity 〈v〉F , the pressure 〈p〉, the density 〈ρ〉 and the temper-
ature 〈T 〉F are shown in figure 2.8. The pressure and density drop simultaneously
along the channel. As a consequence of the decreasing density the velocity increases
in a way that the mass flow rate is constant. If the flow had been incompressible the
velocity would have to be constant along the whole channel length. The tempera-
ture is constant. This implies that the porous drag terms only reduce the pressure
but do not influence the inner energy.

2.8. Interface treatment between porous and
nonporous regions

In the previous sections only flow inside a porous medium are considered, where
the properties of the porous media (porosity φ, permeability κ, Forchheimer coeffi-
cient cF) are always held constant. This is a reasonable choice for many applications
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Figure 2.8.: Behaviours of the velocity 〈v〉F , the pressure 〈p〉, the temperature 〈T 〉F
and the density 〈ρ〉 for the flow through a channel completely filled with a porous
medium.

of flow simulations through porous media. However, the focus of the present work
is flow around porous media. While the flow outside and inside the porous medium
can be solved with the given equations, caution is needed at the outer surface of the
porous medium. At this nonporous-porous interface the porosity will jump from
the value of φ = 1 in the nonporous region to some value less than one for the
porous medium. Similarly, the permeability will change from infinity to some fi-
nite value and the Forchheimer coefficient rises from zero to the actual value in the
porous region (figure 2.9). Since the changes in the porosity φ have been explicitly
excluded during the derivation of the equations (2.29) it is not guaranteed that the
Darcy and Forchheimer terms will still give valid results for sudden spatial changes
of the permeability κ or the Forchheimer coefficient cF. As a result, the interface
requires special treatment.

There are mainly two approaches for addressing the interface problem, stated
below:

1. Separate the porous and nonporous regions along the interface and derive
explicit relationships between the flow properties of the two regions.

2. Derive equations (2.29) without excluding porosity gradients and model the
porosity behaviour at the interface with explicit relationships. Supply this
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porous region, φ < 1, κ < ∞, cF > 0

Figure 2.9.: Sketch of fluid which hits a porous medium.

porosity behaviour to the newly emerging terms of the Navier-Stokes equa-
tions with porosity gradients.

The most prominent relation for the first approach is given by Ochoa-Tapia and
Whitaker [55]. They suggest to hold the flow variables constant over the interface
but let the viscous stresses jump. Investigations based on their propositions are
conducted in many publications, e.g. [43, 1, 14]. For example, a numerical imple-
mentation of this interface condition is given by Silva and Lemos [69]. Breugem [8]
also confirms that their interface condition provides comparable results as DNS-
simulations.

The second approach where the properties of the porous medium are blended
smoothly at the interface region is applied by Breugem [7] and Kuwata and Suga
[41]. Here, no sharp interface has to be defined but the flow field is supplied with
a porosity, permeability and Forchheimer coefficient distribution. This is attrac-
tive for the interface treatment in the numerical solvers in terms of implementation
complexity and robustness and it is also favorable for the creation of computation
meshes. However, this second method has a drawback that the distributions of the
different parameters have to be known. This is especially critical for the perme-
ability as no monotone blending is possible but it will temporarily drop to a small
value at the interface before it begins growing again inside the porous region (see
Breugem [8]).

The present work sticks to the first method by defining a sharp interface and
applying interface conditions very similar to those of Ochoa-Tapia and Whitaker
[55]. The conditions are modified in order to also cover compressible flow. Special
attention is paid to conserve fluxes which is regarded as an essential requirement to
obtain realistic results. Thereby, it is assumed that conservation of convective and

33



2. Laminar Flow in Porous Media

diffusive fluxes can be treated separately. Note, that the flux conservation procedure
also helps to compute the integral forces which act on the porous medium. This
is especially needed for the evaluation of flows around aerodynamic bodies with
porous surfaces.

The following derivations are kept as general as possible by defining the interface
of two stacked porous media instead of considering an interface between a porous
medium and free flow. The special case of an interface between free flow and a
porous medium can be recovered by setting the porosity on the nonporous interface
side to a value of 1 and the permeability to infinity.

2.8.1. Interface treatment of convective fluxes
Figure 2.10 shows the interface between two different porous media with different
properties. Around the interface a very thin control volume is defined. Note, that
the convective fluxes can only pass at positions with no solid structure. This is also
depicted as “effective flow area A” in figure 2.11. As a result, conservation of mass
directly provides

φ1 〈ρ1〉 〈vn,1〉F = φ2 〈ρ2〉 〈vn,2〉F (2.38)

where vn is the velocity component normal to the interface. Furthermore, conser-
vation of energy reads

φ1 〈ρ1〉 〈vn,1〉F

(
| 〈~v1〉F |2

2
+ 〈e1〉F +

〈p1〉
〈ρ1〉

)
= φ2 〈ρ2〉 〈vn,2〉F

(
| 〈~v2〉F |2

2
+ 〈e2〉F +

〈p2〉
〈ρ2〉

)
which reduces to

| 〈~v1〉F |2

2
+ 〈e1〉F +

〈p1〉
〈ρ1〉

=
| 〈~v2〉F |2

2
+ 〈e2〉F +

〈p2〉
〈ρ2〉

(2.39)

when combined with the mass conservation relation (2.38).
Momentum conservation across the interface is not as straightforward as the pre-

vious conservation laws since the porous structure at the interface causes additional
stresses onto the fluid. One canwrite themomentum conservation for the stresses σ
as

φ1

(
〈ρ1〉 〈vn,1〉2F + 〈p1〉

)
− φ2

(
〈ρ2〉 〈vn,2〉2F + 〈p2〉

)
= σn (2.40a)

φ1

(
〈ρ1〉 〈vn,1〉F 〈vt,1〉F

)
− φ2

(
〈ρ2〉 〈vn,2〉F 〈vt,2〉F

)
= σt (2.40b)

where vn is the velocity component normal to the interface and vt is the velocity
component tangential to the interface, as sketched in figure 2.11. It can be seen
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2.8. Interface treatment between porous and nonporous regions

control volume

porous medium side 1:
φ1, κ1, cF,1

flow variables of side 1:
〈~v1〉F , 〈p1〉, 〈ρ1〉, 〈e1〉F

porous medium side 2:
φ2, κ2, cF,2

flow variables of side 2:
〈~v2〉F , 〈p2〉, 〈ρ2〉, 〈e2〉F

Figure 2.10.: Control volume for calculating the change of flow variables over the
interface between different porous regions.
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Figure 2.11.: Vector geometry at two sides of the interface between two different
porous media (left) and definition of effective flow area (right).
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2. Laminar Flow in Porous Media

that these conditions bring no direct benefit as they introduce two new unknown
stresses σn and σt. Nevertheless, these conditions are important since they help to
define the integral forces acting on the interface.

The three conservation laws (2.38), (2.39) and (2.40) still contain unknown vari-
ables in a way that further relations are needed. One assumption in order to gain
an additional relation is that the direction of the velocity does not change over the
interface:

〈vt,1〉F
| 〈~v1〉F |

=
〈vt,2〉F
| 〈~v2〉F |

or
〈vn,1〉F
| 〈~v1〉F |

=
〈vn,2〉F
| 〈~v2〉F |

(2.41)

This cannot be proven due to a lack of experimental data or resolved computation
results. On the other side, it is defined in the same way as the generally accepted
conditions of Ochoa-Tapia and Whitaker [55] for incompressible flow. Note, that at
this point the incompressible problem is already completely defined as the internal
energy e in equation (2.39) is not dependent on the pressure p and the density ρ.
Thus, e could be assumed equal on both interface sides. However, in order to solve
the compressible interface conditions more relations are needed which can be given
by assuming an ideal gas. The internal energy of an ideal gas is directly related to
the pressure and the density and the energy conservation (2.39) results in

| 〈~v1〉F |2

2
+

γ

γ − 1

〈p1〉
〈ρ1〉

=
| 〈~v2〉F |2

2
+

γ

γ − 1

〈p2〉
〈ρ2〉

(2.42)

where γ is the isentropic exponent. The last missing information to fully complete
the interface conditions is obtained by assuming a reversible flow change over the
interface which means that entropy must be constant. For an ideal gas this implies
the isentropic condition:

〈p1〉
〈ρ1〉γ

=
〈p2〉
〈ρ2〉γ

(2.43)

There is no explicit relation to solving the compressible set of interface condi-
tions. However, the problem can be effectively solved for the pressure 〈p2〉 by us-
ing a Newton solver. Combining equations (2.38), (2.41), (2.42) and (2.43) in order to
eliminate the density 〈ρ2〉 and the velocities 〈vn,2〉F and 〈~v2〉F the implicit function
for pressure 〈p2〉 becomes

a · 〈p2〉b + c · 〈p2〉d + e = 0 (2.44)

with
a =

γ

γ − 1

〈p1〉
1
γ

〈ρ1〉
; b = 1− 1

γ
; c =

1

2

(
| 〈~v1〉F | 〈p1〉

1
γ
φ1

φ2

)2

d = − 2

γ
; e = − γ

γ − 1

〈p1〉
〈ρ1〉

−
| 〈~v1〉F |2

2
.

36



2.8. Interface treatment between porous and nonporous regions

The Newton iterations can be formulated as follows:

〈p2〉i+1 = 〈p2〉i −
f(〈p2〉i)
f ′(〈p2〉i)

(2.45)

with

〈p2〉0 = 〈p1〉

f(〈p2〉i) = a · (〈p2〉i)
b
+ c · (〈p2〉i)

d
+ e

f ′(〈p2〉i) = a · b · (〈p2〉i)
b−1

+ c · d · (〈p2〉i)
d−1

.

After solving the equations for the pressure 〈p2〉, the density 〈ρ2〉 and the velocity
vector 〈~v2〉F are given by

〈ρ2〉 = 〈ρ1〉
(
〈p2〉
〈p1〉

) 1
γ

; 〈~v2〉F = 〈~v1〉F · φ1 〈ρ1〉
φ2 〈ρ2〉

. (2.46)

If the additional stresses σ acting on the porous interface are required they can now
be explicitly computed by following the momentum conservation laws (2.40).

To summarize the present section, relationships between the flow variables on the
two interface sides are established. The conditions describe a fluid which undergoes
a reversible process. This also means that the flow change can be computed over the
interface and back again reaching the original flow state. Note, that the isentropic
interface assumption breaks when high Mach numbers come into play. Strictly
speaking, no valid solution exists anymore after the Mach number in the porous
medium reaches the value of 1. Thus, special conditions would have to be defined
which would particularly replace the isentropic condition (2.43). This would result
in a higher complexity level since the direction of the flow would appear as an
additional variable. Since such kinds of flows are not considered in the present
work no further relations are derived at this point.

As an example for the convective interface conditions, figure 2.12 shows a setup
of a channel where the flow has to pass through a porous region. The conditions
are applied twice: when the fluid enters the porous region and again when leaving
it.

In this example, the Reynolds number of the channel is set to 200 000 and is based
on the length of the porous region and on the inflow conditions. The porosity φ of
the porous region is set to 0.5. The permeability κ is given in terms of the Darcy
number which is Da = κ

L2 = 1× 10−5. The Forchheimer coefficient cF is set to
zero. The computations are accomplished for three different Mach numbers which
are fixed at the channel outflow boundary. The computed results for the velocity
and the density are shown in figure 2.13. Incompressible flow is represented by the
small Mach number Ma of 0.01. This case shows that the velocity v doubles on its
way into the porous medium which is a direct consequence of continuity of mass
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Figure 2.12.: Setup of a channel in which the flow passes through a porous region
— an example to visualize the convective jump conditions.

and the constant density ρ. The case with the high Mach numberMa = 0.3 displays
the need of compressible interface conditions. The density ρ jumps significantly
and, thus, leads to a significantly higher velocity inside the porous region compared
to the small Mach number case. An intermediate case of Ma = 0.15 shows small
compressibility effects where the velocity is very similar to the small Mach number
case. Obviously, such cases could still be computed with acceptable accuracy by
using the incompressible conditions.

2.8.2. Interface treatment of diffusive fluxes

If the fluxes in the Navier-Stokes equations were only of convective nature the treat-
ment of the nonporous-porous interface would be complete by the relationships of
the previous section. However, as soon as viscosity comes into play relations for the
diffusive fluxes must be found. This leads to the problem that the gradients of the
velocity ~v and the temperature T must be related between the two interface sides.

A difference must be made between gradients in direction parallel to the interface
and gradients in direction normal to the interface (see also figure 2.14). Gradients in
directions parallel to the interface are already defined since they are directly based
on the flow variables themselves, which are computed with the relations of sec-
tion 2.8.1. In contrast, there exists no such relation for the gradients in the direction
normal to the interface. Here, further modelling is required.

Before deriving the relations for the gradients, the coordinate systems aligned to
the interface must be clarified, as sketched in figure 2.15. It is important to note,
that the coordinate axis normal to the interface always points into its own porous
region. The other two coordinate axes coincide on both interface sides. They are
alignedwith the interface area and the coordinate axis xt points into the direction of
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Figure 2.13.: Density and velocity along the length of the channel where the flow
passes through a porous region at different Mach numbers.
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Figure 2.14.: Sketch showing gradients on the adjacent sides of the interface of two
different porous media. Right hand side: velocity gradients normal to the inter-
face area; Left hand side: gradients parallel to the interface area.

39



2. Laminar Flow in Porous Media

the velocity vector projected onto the interface2. Consequently, the velocity vector
component in direction of the third coordinate axis xr is zero.

xr

xn,1

xt

xn,2
xt

porosity φ1

porosity φ2

Figure 2.15.: Coordinate systems aligned with the interface between two different
porous regions. The normal directions xn point into the porous regions. The
direction xt is aligned with the interface. The direction xr is aligned with the
interface where at the same time the velocity vector projected onto xr becomes
zero.

With the coordinate systems defined above, relations for the gradients normal to
the interface can be given. Literature search reveals several possible relations for
the velocity gradients. An overview of most available conditions is given by Alzami
and Vafai [1]. It consists of proposals to set the superficial gradients equal [79],

∂ 〈vt〉s

∂xn

∣∣∣
porous

= −∂ 〈vt〉
∂xn

∣∣∣
nonporous

⇔ φ
∂ 〈vt〉
∂xn

∣∣∣
porous

= −∂ 〈vt〉
∂xn

∣∣∣
nonporous

or weighting this relation by an effective viscosity µeff [58] in the porous region:

φµeff
∂ 〈vt〉
∂xn

∣∣∣
porous

= −µ
∂ 〈vt〉
∂xn

∣∣∣
nonporous

As already mentioned, there exists the condition of Ochoa-Tapia and Whitaker [55]
who let the gradients of the intrinsic velocities jump over the interface

∂ 〈vt〉
∂xn

∣∣∣
porous

+
∂ 〈vt〉
∂xn

∣∣∣
nonporous

= −β
φ√
κ

〈
vt,nonporous

〉
(2.47)

with the jump coefficient β that depends on the porous medium. Several different
flavours of the condition (2.47) can be found which for example use an effective
viscosity [43]

φµeff
∂ 〈vt〉
∂xn

∣∣∣
porous

+ µ
∂ 〈vt〉
∂xn

∣∣∣
nonporous

= −β
φµ√
κ

〈
vt,nonporous

〉
2Note, that the coincidence of the coordinate axis xt on both interface sides is guaranteed since the

direction of the tangential velocity is equal per definition as implied by equation (2.41).
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or where the right hand side includes an inertial term [54],

∂ 〈vt〉
∂xn

∣∣∣
porous

+
∂ 〈vt〉
∂xn

∣∣∣
nonporous

= −β1
φ√
κ

〈
vt,nonporous

〉
− β2φ

2

〈
ρporous

〉
µporous

·
〈
vt,nonporous

〉2
with the two jump coefficients β1 and β2. Using equation (2.47) as a basis, a more
generalized relation can be obtained which should also be applicable if both inter-
face sides face a porous medium.

In terms of viscous fluxes, a fluid which runs along the interface will pass mo-
mentum to both, the solid porous structure and to the fluid inside the porous struc-
ture. Inside the porous medium, the momentum flux into the porous structure is
accounted by the Darcy term but at the interface special treatment is needed. In
order to explain this, consider that the porous region is machined from a big porous
block. Thus, in the microscopic sense of view, at the outer surface of the porous
region (i. e. the interface) additional surface area faces the fluid. This is also il-
lustrated by figure 2.16. In the macroscopic sense of view, this means that at the
nonporous-porous interface a locally increased drag force would act on the fluid.
For the approach where the interface is treated smoothly (as explained at the be-
ginning of section 2.8) the increased drag can be modelled by a locally decreased
permeability κ ([16, 8]). In contrast, at a discontinuous interface as it is used in the
present work the additional stresses at the interface must be explicitly modelled.

machined interface

additional surface area facing the fluidnonporous region

porous region

Figure 2.16.: Additional surface area at the nonporous-porous interface which ap-
pears by machining the porous region from a big porous block.

In order to define an appropriate model for the jump of velocity gradients, the
conservation of viscous fluxes can be written as

〈
µnonporous

〉 ∂ 〈vi〉F
∂xn

∣∣∣
nonporous

= −
(
φ
〈
µporous

〉 ∂ 〈vi〉F
∂xn

∣∣∣
porous

+ (1− φ) 〈µstructure〉
∂ 〈vi〉F
∂xn

∣∣∣
structure

)
,

(2.48)

41



2. Laminar Flow in Porous Media

a relation which is also described in figure 2.173.

∂〈vt〉F
∂xn

∣∣
porous∂〈vt〉F

∂xn

∣∣
structure

xn ∂〈vt〉F
∂xn

∣∣
nonporous

Figure 2.17.: Left hand side: Velocity gradients over the structure and over the fluid
regions of a porous medium. Right hand side: Averaged gradient on the non-
porous side of the interface.

Relation (2.48) can be generalized if there are porous media on both sides of the
interface:

φ1 〈µ1〉
∂ 〈vi〉F
∂xn

∣∣∣
1
+ (1− φ1) 〈µs,1〉

∂ 〈vi〉F
∂xn

∣∣∣
s,1

= −
(
φ2 〈µ2〉

∂ 〈vi〉F
∂xn

∣∣∣
2
+ (1− φ2) 〈µs,2〉

∂ 〈vi〉F
∂xn

∣∣∣
s,2

) (2.49)

where the index s is a shortcut for “structure” and, thus, indicates the different quan-
tities over the porous structure. Since these quantities are unknown a-priori, they
have to be modelled, which is achieved by using the quantities of the fluid phase
inside the porous medium as an initial value which is then corrected with a newly
introduced functional ∆g:

〈
µs,1/2

〉 ∂ 〈vi〉F
∂xn

∣∣∣
s,1/2

=
〈
µ1/2

〉 ∂ 〈vi〉F
∂xn

∣∣∣
1/2

+∆gi,1/2 (2.50)

Inserting equation (2.50) into (2.49) results in

〈µ1〉
∂ 〈vi〉F
∂xn

∣∣∣
1
+ (1− φ1)∆gi,1 = −

(
〈µ2〉

∂ 〈vi〉F
∂xn

∣∣∣
2
+ (1− φ2)∆gi,2

)
or, rewritten similar to (2.47)

〈µ1〉F
∂ 〈vi〉F
∂xn

∣∣∣
1
+ 〈µ2〉F

∂ 〈vi〉F
∂xn

∣∣∣
2
= −(1− φ2)∆gi,2 − (1− φ1)∆gi,1 . (2.51)

3Strictly speaking, equation (2.48) will only represent conservation of viscous fluxes if there is no ve-
locity normal to the interface and flow is incompressible. Still, this relation is assumed to be good
enough to create a general model for relating the velocity gradients normal to the interface.
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2.8. Interface treatment between porous and nonporous regions

Finally, an expression for the functional ∆g must be found. It is defined in a way
which leads to a relation similar to the condition of Ochoa-Tapia andWhitaker given
in equation (2.47):

∆gi,1/2 = β1/2

φ1/2

〈
µ1/2

〉
√
κ1/2

〈
vi,1/2

〉
F (2.52)

The appropriateness of this relationship requires further discussion. Recall, that
the functional ∆g supports the modelling of the unknown viscous stress over the
porous structure (equation (2.50)). The stress is modelled by using the stresses of the
fluid at the porous interface side (i. e.

〈
µporous

〉 ∂〈vi〉F
∂xn

∣∣
porous) as an initial value and

correcting it with the functional∆g. The correction can be developed with the help
of dimensional analysis by using characteristic values of a velocity, a length scale
and a viscosity and adjusting the final term by a modelling constant. As a charac-
teristic velocity serves the velocity 〈vi〉F at the interface, or rather, its superficial
counterpart φ 〈vi〉F in order to match the relation of Ochoa-Tapia and Whitaker
better. This velocity changes at the interface within the order of a typical length
scale which is taken to be the square root of the permeability κ. This seems ap-
propriate because the magnitude of

√
κ is proportional to the pore diameter of the

porous medium and, thus, gives a typical value for the range along which the inter-
face affects the flow. The characteristic viscosity is approximated by the viscosity
of the fluid inside the pores. The whole expression (2.52) is multiplied by the mod-
elling constant β which is generally called “jump coefficient”. It is worthmentioning
that the expression (2.52) together with relation (2.51) will lead to the condition of
Ochoa-Tapia andWhitaker (2.47), the only difference being that the jump coefficient
varies by the factor (1− φ).

The equations (2.51) and (2.52) completely define the relation of velocity gradi-
ents across the two interface sides. This leaves the relation for the temperature
gradient as the final relation which is required for solving the volume-averaged
Navier-Stokes equations over the interface between two different porous media.
The temperature gradient appears in the energy equation (2.29c) in the form of the
heat flux kd,i (equation (2.36)). If it is assumed that energy is not dissipated into the
solid porous structure at the interface, the heat flux has to be conserved. However,
the energy equation (2.29c) consists of one more flux,

∂ 〈vi〉F 〈τij〉F
∂xj

,

which is already defined but is not conserved by itself. Therefore, it is assumed that
the flux difference of this term will be turned into an additional heat flux. Hence,
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2. Laminar Flow in Porous Media

the temperature gradient normal to the interface is defined by

φ1 ·
(
〈vj,1〉F 〈τij,1〉F n1,i + λeff

∂ 〈T 〉F
∂xn

∣∣∣
1

)
= −φ2 ·

(
〈vj,2〉F 〈τij,2〉F n1,i + λeff

∂ 〈T 〉F
∂xn

∣∣∣
2

) (2.53)

where ni is the i-th component of the normal vector ~n at the interface.
With all interface conditions for the diffusive fluxes defined an example is shown

which demonstrates the effect of the velocity jump given by equation (2.51). The
setup is shown in figure 2.18 and consists of a channel in which the lower half is
porous. A quasi-1D flow is obtained by applying periodic boundary conditions for
inflow and outflow. The fluid is driven through the channel by an artificial forcing
term which replaces the pressure gradient.

no-slip wall

no-slip wall

interfaceperiodic
to outlet

periodic
to inlet

H

H

φ = 0.5

Figure 2.18.: Setup of a laminar channel where the lower half is filled with a porous
medium and the upper half is free flow.

The results for three different jump coefficients β are shown in figure 2.19. For
all curves, the velocity jumps at the interface. This is a consequence of the interface
treatment of convective fluxes as given in section 2.8.1. Note, that for incompress-
ible flows the factor between the velocities at the nonporous side and at the porous
side is equal to the porosity φ. The velocity profile inside the nonporous region is
a parabola and as a consequence the progress of the gradients along the channel
height is linear in this region. Inside the porous region the velocity drops exponen-
tially and so do the gradients.

The effect of the jump coefficients β is best visible in the discontinuity of the
velocity gradients ∂〈vx〉F

∂y over the interface. A jump coefficient of zero will give a
continuous gradient profile. For non-zero values this is not the case. The effect of the
jump coefficient onto the velocity profile can be described in a way that a negative
coefficient will drag the velocity at the interface to smaller values and correspond-
ingly positive coefficients push the interface velocity to higher values. Finally, it can
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2.8. Interface treatment between porous and nonporous regions

be recognized that the gradients at the interface always have a kink at the interface
i.e. the curvature is always discontinuous. This is an effect of the sudden start of
the additional drag forces inside the porous region.

When the upper half of the channel is also filled with a porous media an illustra-
tive result is shown figure 2.20.

〈vx〉F
vb

0 0.5 1 1.5 2 2.5

0.
05
H

∂〈vx〉F
∂y

/
∂〈vx〉F

∂y

∣∣
top

−1 −0.5 0 0.5 1

0.
05
H

β = −1
β = 0
β = 1

Figure 2.19.: Velocity profile and velocity gradients for varying jump coefficients β
for the laminar channel of figure 2.18.

2.8.3. Summary of interface conditions
All the interface conditions defined in the previous sections are summarized in the
following. The relations for the flow variables between the two interface sides are
defined by conservation of mass

φ1 〈ρ1〉 〈vn,1〉F = φ2 〈ρ2〉 〈vn,2〉F , (2.54)

and the conservation of energy

| 〈~v1〉F |2

2
+ 〈e1〉F +

〈p1〉
〈ρ1〉

=
| 〈~v2〉F |2

2
+ 〈e2〉F +

〈p2〉
〈ρ2〉

. (2.55)

These equations are closed by maintaining the velocity direction constant, i. e.

〈vt,1〉F
| 〈~v1〉F |

=
〈vt,2〉F
| 〈~v2〉F |

or, alternatively
〈vn,1〉F
| 〈~v1〉F |

=
〈vn,2〉F
| 〈~v2〉F |

. (2.56)
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〈vx〉F
vb

0 0.25 0.5 0.75 1.0 1.25

0.
07
H

∂〈vx〉F
∂y

/
∂〈vx〉F

∂y

∣∣
top

−1 −0.5 0 0.5

0.
07
H

β = −1
β = 0
β = 1
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Figure 2.20.: Velocity profile and velocity gradients for varying jump coefficients β
in a laminar channel where the lower and upper half are filled with different
porous media.

If the fluid was incompressible the equations are already closed as the internal en-
ergy e can be removed from the equation (2.55), otherwise it must be defined. As-
suming an ideal gas it is

e =
1

γ − 1

〈p〉
〈ρ〉

. (2.57)

An important assumption is the isentropic condition which implies that the flow
change over the interface is reversible:

〈p1〉
〈ρ1〉γ

=
〈p2〉
〈ρ2〉γ

(2.58)

The whole set of equations can be solved iteratively by the Newton method. The
missing flow quantities like temperature or viscosity can then be explicitly com-
puted by the ideal gas laws and Sutherland’s law.

Additional interface conditions have to be defined for the velocity and tempera-
ture gradients. They take the final form as

〈µ1〉
∂ 〈vi〉F
∂xn

∣∣∣
1
+ 〈µ2〉

∂ 〈vi〉F
∂xn

∣∣∣
2
= −(1− φ2)∆gi,2 − (1− φ1)∆gi,1 (2.59)

with the stress offset ∆g as

∆gi,1/2 = β1/2

φ1/2

〈
µ1/2

〉
√
κ1/2

〈
vi,1/2

〉
F (2.60)
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and

φ1 ·
(
〈vj,1〉F 〈τij,1〉F n1,i + λeff

∂ 〈T 〉F
∂xn

∣∣∣
1

)
= −φ2 ·

(
〈vj,2〉F 〈τij,2〉F n1,i + λeff

∂ 〈T 〉F
∂xn

∣∣∣
2

)
.

(2.61)

There is no need for giving explicit relations for the velocity gradients tangential to
the interface as these can be directly computed from the flow variables themselves.

2.9. Computation of integral forces acting on
porous media

During his preparation for the next snowball fight Paul is doing his homework
for high-precision snowball throws. His basic sketch of the setup is shown in fig-
ure 2.21. To enable long-distance shots Paul prepared snowballs which consist of

long distance

target snowball

Paul

Figure 2.21.: Sketch of snowball fight.

a heavy ice core but are camouflaged with a snow shell (figure 2.22). Paul also
successfully performed a CFD computation of the snowball where he modelled the
snow shell as a porous medium. The next question of how he can compute the drag
coefficient is described in the following paragraphs.

For solid surfaces the computation of the forces is straightforward by calculating
the forces which are caused by pressure and by viscous stresses. In contrast, if
porous media cover the solid body, additional efforts are required to compute the
body forces. Three different issues have to be discussed sketched in figure 2.22:

• Forces originating from the flow inside the porous medium (Darcy and Forch-
heimer terms)

• Forces acting on the interface between the free flow and the porous medium
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2. Laminar Flow in Porous Media

~nwall
~nint

V FV,por

Aint

Awall FA,wall
FA,int

φ1

φ2

interface

viscous wall

snowball

solid ice

porous snow

Figure 2.22.: Illustration of forces on a porous structure and on the wall beneath the
porous structure.

• Forces acting on solid walls which are covered by a porous medium

The forces acting on the porous structure inside the porous medium are described
by the Darcy and Forchheimer terms in the way they appear in the momentum
equations. Inside a fixed control volume V , the force integrates to

FV,por,i =

∫
Vf

φ
〈µ〉
κ

〈vi〉F + φ2 cF√
κ
〈ρ〉 〈vi〉F · |〈~v〉F | dV . (2.62)

Note, that the integral is restricted to the fluid volume Vf and not to the total volume
V which contains the porous structure as well.

The second force to be considered comes from the pressure and stresses onto the
interface. This force can be split into two parts: The first is due to the conservation
of convective fluxes over the interface and the second part is required to obtain the
jump of viscous fluxes over the interface. This can be computedwith themomentum
conservation (2.40) where σn and σt are the stresses acting on the interface, leading
to

FA,int,i =

∫
Aint

φ1

(
〈ρ1〉 〈vn,1〉F 〈vi,1〉F + ni 〈p1〉

)
− φ2

(
〈ρ2〉 〈vn,2〉F 〈vi,2〉F + ni 〈p2〉

)
dA .

(2.63)

The viscous part of the forces acting on the interface can be described by the offset
of viscous stresses at the interface as:

FA,int,visc,i =

∫
Aint

nj (φ2 〈τij,2〉 − φ1 〈τij,1〉) dA (2.64)
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2.9. Computation of integral forces acting on porous media

An additional force which has to be specially treated is the force acting on a
viscous wall that is covered by a porousmedium. Such kinds of walls have a reduced
area that is affected by the pressure and the viscous stresses. The reduction factor
is the porosity φ. Hence, the force can be written as:

FA,wall,i =

∫
Awall

φ (nj 〈τij〉 − ni 〈p〉) dA . (2.65)
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3. Turbulent Flow in Porous Media
Chapter 2 discusses laminar flow through and over porous media. But for aero-
dynamics of aircraft the flow is mostly turbulent. The present chapter extends the
previous discussions to turbulent flow through and over porousmedia. It is assumed
that the flight Reynolds numbers are high and, consequently, direct numerical sim-
ulations or large-eddy simulations are far too expensive. In order to avoid this,
the volume-averaged Navier-Stokes equations are averaged in time, a procedure
which leads to several additional unknown terms. The modelling of these terms
in nonporous regions is commonly performed by one-equation, two-equation or
Reynolds-stress models. The present chapter extends the theory of the Reynolds-
stress models such that the physics inside porous media is also captured. The choice
to use a Reynolds-stressmodel ismotivated by the fact that suchmodels have the po-
tential to predict highly complex flow phenomena where the simpler models would
fail. Besides that, the derivation of this type of model is more straightforward than
the derivation of one- or two-equation models. Finally, it is assumed that the newly
modelled terms can be transferred to the one- and two-equation models much eas-
ier.

The present chapter will first shed some light on the expected flow phenomena.
Later on, this will help to understand the capabilities of the applied models and
where they are expected to fail. Afterwards, the derivation of the turbulent Navier-
Stokes equations is performed by time-averaging the volume-averaged equations.
This procedure leads to new unknown terms directly resulting in the derivation
and modelling of the Reynolds-stress equations. Thereafter, the interface conditions
from the previous chapter are extended to be also valid for the turbulent flows.

3.1. Classification of turbulent flow in porous
media

For the description of turbulent flow in a porous media the two most obvious types
of turbulence are considered. As depicted in figure 3.1, the first type of turbulence
is represented by very small eddies which reside inside the porous structure. This
kind of turbulence is expected for large pore Reynolds numbers Redp =

dpv
ν of about

300 as pointed out by Pedras and Lemos [56]. In terms of the permeability Reynolds
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small-scale eddies large-scale eddies

Figure 3.1.: Comparison of small- and large-scale turbulence in a porous structure.
The eddies of the small-scale turbulence are smaller than the pore sizes while the
eddies of the large-scale turbulence can extend over several pores diameters.

number Reκ =
√
κv
ν the critical value would be Reκ,crit = 10 or higher (see ap-

pendix C.1). The second type of turbulence is defined by the large-scale fluctuations
that extend over several pore diameters. These fluctuations are mainly expected
when they are transported into the porous media from the outside flow. The life of
such large-scale turbulence is limited as it is damped on its way through the porous
medium.

The modelling of the first type of turbulence (small-scale eddies) will be quickly
discussed at this point. Then, the rest of the chapter will be devoted to the second
type of turbulence (large-scale eddies). When modelling the small-scale turbulence
onemust go back to the previous chapter where the Navier-Stokes equations are av-
eraged in space. Strictly speaking, the space-averaging operator does not only cap-
ture the fluctuations which occur from the temporal constant movement of the fluid
through the porous structure but also the unsteady small-scale eddies are filtered
out. Since the small-scale turbulence stems from the large pore Reynolds number
or, rather, from the small viscous stresses, it must also exist in a flow where there
are no large-scale velocity gradients. Thus, the volume-averaged momentum equa-
tion (2.20) can be used in a strongly simplified version as a starting point for the
modelling process:

∂ 〈p〉
∂xi

= − 1

Vf

∫
Afs

pni − τijnj dA (3.1)

In the case of fully laminar flow the integral was modelled with the Darcy and
Forchheimer terms (2.23). When it comes to small-scale turbulent flows, the model
should be adapted. Two modelling options can be foreseen:

1. By replacing the dynamic viscosity µ in the Darcy term with an effective
viscosity µeff which takes account of the turbulent stresses. This kind of mod-
elling is used by Nakayama and Kuwahara [51]for modelling the large-scale
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turbulence.

2. By exploring the dependency of the permeability κ and the Forchheimer co-
efficient cF on the local Reynolds number Reκ.

After this point the discussion about modelling small-scale turbulence is not pur-
sued any further. The present work will not focus on these small-scale models since
the pore Reynolds number for the given applications is small. However, as discussed
before the large-scale turbulence is expected to be of high importance and will be
discussed in detail in the following sections.

3.2. Reynolds-averaging
Reynolds averaging is commonly known as averaging in time. It is widely applied
to avoid the need of simulating the details of the turbulent fluctuations where only
the averaged value is of interest. The definition can be found in various works like
[6, 81] and can be noted as

ϕ =
1

T

∫
T

ϕ dt. (3.2)

where ϕ is any arbitrary variable to be averaged over the time t, T is a thoroughly
defined time interval which cancels out the time-dependent turbulent fluctuations
but not the temporal change of mean variables. Similar to the volume-averaging
rules given in section 2.3 a density-weighted average can be defined as

ϕ =
ρϕ

ρ
=

1

ρT

∫
T

ρϕ dt . (3.3)

The fluctuation values are denoted by one or two primes depending on whether it
is standard time averaging or density-weighted time averaging, i. e.

ϕ′ = ϕ− ϕ , ϕ′′ = ϕ− ϕ . (3.4)

Furthermore, the following relations are considered to be true:

ϕ = ϕ , ϕ = ϕ , ϕ′ = 0 , ϕ′′ = 0 (3.5)

The Reynolds average of a time derivative and the time derivative of the Reynolds
average can be directly exchanged and the same is valid for gradients:

∂ϕ

∂t
=

∂ϕ

∂t
,

∂ϕ

∂xi
=

∂ϕ

∂xi
(3.6)
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3.3. Turbulent Navier-Stokes equations
After applying the Reynolds-averaging rule (3.2) onto equations (2.29) and consid-
ering the other averaging constraints of section 3.2 the volume-averaged Navier-
Stokes equations can be rewritten as

∂ρ

∂t
+

∂ρ vi
∂xi

= 0 (3.7a)

∂ρ vi
∂t

+
∂ρ vi vj
∂xj

= −
∂ρ v′′i v

′′
j

∂xj
− ∂p

∂xi
+
∂τij
∂xj

−φ
µ

κ

(
vi + v′′i

)
−φ2 cF√

κ
ρ vi |~v| (3.7b)

∂ρE

∂t
+

∂ρ viH

∂xi
= −∂ρ v′′i H

′′

∂xi
+

∂vi τij
∂xj

+
∂v′′i τij
∂xj

+
∂v′′i τ

′
ij

∂xj
− ∂kd,i

∂xi
. (3.7c)

Note, that the volume-averaging signs 〈〉 and 〈〉F are omitted for the purpose of
better readability. Thus, every variable must be taken in its volume-averaged form
according as used in section 2.6. Strictly speaking, there would appear additional
correlations between velocity fluctuations v′′i and viscosity fluctuations µ′. Since
these correlations are expected to be very small they are neglected in these equa-
tions.

The density-weighted average of the total EnergyE and the total enthalpyH can
be written as

E = e+
vi vi
2

+
v′′i v

′′
i

2
= e+

vi vi
2

+ k

H = E +

(
p

ρ

)
= E +

p

ρ
= e+

vi vi
2

+ k +
p

ρ

with the turbulent kinetic energy defined as

k =
1

2
v′′i v

′′
i . (3.8)

The correlation between the velocity fluctuation v′′i and the total enthalpy fluctua-
tion H ′′ can be split into the single terms

v′′i H
′′ = vjv

′′
i v

′′
j +

1

2
v′′i v

′′
j v

′′
j + v′′i h

′′ . (3.9)

Thus, the unknowns which occur as a result of Reynolds averaging are

v′′i v
′′
j , v′′i , vi|~v| , v′′i v

′′
j v

′′
j , v′′i h

′′ and v′′i τ
′
ij .
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3.4. Closed form of turbulent momentum equations

The modelling procedure for most of these terms is well-known and summarized
by Wilcox in [81]. However, due to the presence of porous media several models
have to be modified. The following sections will derive a complete closure by giving
models for each of those terms on the basis of Reynolds-stress turbulence models.

3.4. Derivation of closed form of turbulent
momentum equations

The unknowns of the momentum equation (3.7b) can be reduced to the average
expression of the Forchheimer term vi |~v| and to the average of the velocity fluc-
tuations v′′i . The Reynolds stresses v′′i v′′j are assumed to be known by solving the
Reynolds-stress equations later on. In the following the velocity fluctuation v′′i will
be neglected which goes along with the publication of Cécora et. al. [12] who ne-
glect the compressibility terms in the Reynolds-stress equations. This leaves the
modelling of the Forchheimer term which reads

φ2 cF√
κ
ρvi|~v| (3.10)

in which the part vi|~v| = vi
√
vjvj has to be modelled. Suggestions for modelling

these terms are given in [2, 28] where a power series-expansion is exploited. This
approach will also be followed here slightly different. The derivation of the model
is borrowed from [49].

The Taylor expansion for a function fi(ε) is given as

fi(ε) = fi(ε0) +
∂fi(ε)

∂ε

∣∣∣∣
ε0

(ε− ε0) +
1

2

∂2fi(ε)

∂ε2

∣∣∣∣
ε0

(ε− ε0)
2 + . . .

where
fi(ε) =

√
vkvkvi and vj = vj + ε · v′′j

with ε0 = 0 being the reference state and ε = 1 being the state in which the Taylor
expansion is to be evaluated. Therefore, the function fi(ε) can be written as

fi(ε) =
√
(vj + εv′′j )(vj + εv′′j )(vi + εv′′i ) . (3.11)

The first derivative ∂fi(ε)
∂ε of the function fi(ε) is

∂fi(ε)

∂ε
= v′′i

√
(vj + εv′′j )(vj + εv′′j ) +

v′′k(vk + εv′′k)(vi + εv′′i )√
(vj + εv′′j )(vj + εv′′j )

(3.12)
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and the second derivative ∂2fi(ε)
∂ε2 is

∂2fi(ε)

∂ε2
=

v′′kv
′′
k(vi + εv′′i )√

(vj + εv′′j )(vj + εv′′j )
+ 2

v′′i v
′′
k(vk + εv′′k)√

(vj + εv′′j )(vj + εv′′j )

− v′′l v
′′
kvi vl vk√(

(vj + εv′′j )(vj + εv′′j )
)3 .

(3.13)

Performing the second order Taylor expansion for reference point ε0 = 0 at point
ε = 1 gives

fi(1) ≈ (vi + v′′i )
√
vj vj+

v′′kvi vk√
vj vj

+
v′′i v

′′
kvk√
vj vj

+
v′′kv

′′
kvi

2
√
vj vj

− v′′l v
′′
kvi vl vk

2

√
(vj vj)

3
. (3.14)

In equation (3.10) the term in question is averaged,

fi(1) ≈ vi|~v|+
v′′i v

′′
k vk

|~v|
+

v′′kv
′′
k vi

2|~v|
− v′′kv

′′
l vi vk vl

2|~v|3
,

and hence the Forchheimer term in its second order approximation is

φ2 cF√
κ
ρ vi|~v| ≈ φ2 cF√

κ
ρ

[
vi|~v|+

1

2

vi

|~v|
v′′kv

′′
k +

vk

|~v|
v′′i v

′′
k − 1

2

vi vk vl

|~v|3
v′′kv

′′
l

]
.

(3.15)

Note that if the approximation was reduced to first order, all terms which contain
Reynolds stresses would disappear so that the Forchheimer term would have the
same form as it does in the laminar equations (2.29b).

The momentum equation in its closed form after including the modelled Forch-
heimer term reads

∂ρ vi
∂t

+
∂ρ vi vj
∂xj

= −
∂ρ v′′i v

′′
j

∂xj
− ∂p

∂xi
+

∂τij
∂xj

− φ
µ

κ
vi

− φ2 cF√
κ
ρ

[
vi|~v|+

1

2

vi

|~v|
v′′kv

′′
k +

vk

|~v|
v′′i v

′′
k − 1

2

vi vk vl

|~v|3
v′′kv

′′
l

]
.

(3.16)

3.5. Derivation of closed form of turbulent energy
equation

The unknowns in the energy equation (3.7c) are the triple correlations v′′i v′′j v′′j , the
velocity-enthalpy correlation v′′i h

′′ (see also equation (3.9)) and the velocity-shear-
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3.5. Closed form of turbulent energy equation

stress correlation v′′i τ
′
ij . The triple correlation and the velocity-shear-stress corre-

lations will be discussed as part of the modelling of the Reynolds stresses and are
described later by equations (3.58), (3.59) and (3.60).

The turbulence model which is used throughout this work borrows the model for
the remaining correlation v′′i h

′′ from eddy-viscosity models. Strictly speaking, this
breaks with the second-moment closure concept used for modelling the Reynolds
stresses. Since it is not the intention of this work to create new turbulence models
apart from porous media, this inconsistency accepted. With the help of a turbulent
eddy viscosity µt and a turbulent Prandtl number σt the velocity-enthalpy correla-
tion can be modelled as (see [67])

ρ v′′i h
′′ = −cp

µt

σt

∂T

∂xi
or ρ v′′i h

′′ = −µt

σt

∂h

∂xi
, (3.17)

where cp is the heat capacity at a constant pressure. The turbulent Prandtl num-
ber σt is used here as a constant with a typical value of 0.9 ([76]). The eddy viscosity
is defined as

µt = cµρ
k2

ε
(3.18)

for the turbulent kinetic energy k and the turbulent dissipation-rate ε. The value
of the modelling coefficient cµ usually is set to 0.09. Both, the turbulent kinetic en-
ergy k and the turbulent dissipation-rate ε come from the turbulence model. Note,
that if the JHh-v2-model is used which is described in section 3.8, the dissipation-
rate ε in equation (3.18) is replaced by its homogeneous part εh.

The closed form of the turbulent energy equation now reads

∂ρE

∂t
+

∂ρ viH

∂xi
= −

∂ρ vjv
′′
i v

′′
j

∂xi
+
1

2

(
ρTjj + ρD

(ν)
jj

)
+

∂vi τij
∂xj

− ∂

∂xi

(
kd,i + k

(t)
d,i

) (3.19)

where k(t)d,i is the turbulent heat transport

k
(t)
d,i = ρv′′i h

′′

as defined in equation (3.17), ρTjj is the turbulent diffusion term as defined in equa-
tion (3.59) and ρD

(ν)
jj is the viscous diffusion term as defined in equation (3.60).
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3. Turbulent Flow in Porous Media

3.6. Derivation of Reynolds-stress equations for
flow in porous media

The present section covers the modelling of the Reynolds stresses. Three different
categories of models could be employed which are referred to as one-equation mod-
els, two-equation models and Reynolds-stress models. Even though the one- and
two-equation models are the most tested and commonly used choices, the present
work will concentrate on modelling the turbulent terms with Reynolds-stress mod-
els. This model has two main advantages:

• In contrast to one- and two-equation models which rely on the Boussinesq-
hypothesis, the direction of Reynolds stresses does not have to be parallel to
the viscous stresses [11, 25]. This promises better results especially for com-
plex flow conditions.

• For flow in porous media, there will appear additional terms in the Reynolds-
stress and turbulent dissipation-rate equations. If these terms are defined for
the Reynolds-stress models it will be easy to transfer them to one- and two-
equation models in a straightforward way while the other way round would
be more complex.

The theoretical aspects of the derivation of the Reynolds-stress equations are dis-
cussed in several books (e.g. by Wilcox [81] or Gersten and Herwig [27]). Thus,
the derivation aspects in the present work are only covered in terms of explaining
the additional efforts needed for modelling turbulence inside porous media. The
derivation is based on the following relation

viNj + vjNi −
(
viNj + vjNi

)
= 0 (3.20)

where the expression Ni represents the momentum equation (2.29b) as

Ni =
∂ρvi
∂t

+
∂ρvivj
∂xj

+
∂p

∂xi
− ∂τij

∂xj
+ φ

µ

κ
vi + φ2 cF√

κ
ρvi · |~v| = 0 . (3.21)
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3.6. Derivation of Reynolds-stress equations

Several rearrangements lead to the Reynolds-stress equation:

∂ρv′′i v
′′
j

∂t
+

∂ρvkv
′′
i v

′′
j

∂xk
=

−ρv′′i v
′′
k

∂vj
∂xk

− ρv′′j v
′′
k

∂vi
∂xk

+ p′
(
∂v′′i
∂xj

+
∂v′′j
∂xi

)
− τ ′ik

∂v′′j
∂xk

− τ ′jk
∂v′′i
∂xk

−
∂ρv′′i v

′′
j v

′′
k

∂xk
+

∂τ ′ikv
′′
j

∂xk
+

∂τ ′jkv
′′
i

∂xk
− ∂p′v′′i

∂xj
−

∂p′v′′j
∂xi

+v′′i

(
− ∂p

∂xj
+

∂τjk
∂xk

)
+ v′′j

(
− ∂p

∂xi
+

∂τik
∂xk

)
−φ

µ

κ

(
v′′i vj + v′′j vi + 2v′′i v

′′
j

)
− ρφ2 cF√

κ

(
v′′i vj |~v|+ v′′j vi|~v|

)
(3.22)

Strictly speaking, additional correlation terms would appear as a result of fluctua-
tions of the viscosity µ. They are neglected in agreement with the discussion of the
derivation of the time-averaged Navier-Stokes equations (3.7). The different terms
are usually named as:

production term: ρPij = −ρv′′i v
′′
k

∂vj
∂xk

− ρv′′j v
′′
k

∂vi
∂xk

(3.23a)

pressure-strain correlation: ρΠij = p′
(
∂v′′i
∂xj

+
∂v′′j
∂xi

)
(3.23b)

dissipation term: ρεij = τ ′ik
∂v′′j
∂xk

+ τ ′jk
∂v′′i
∂xk

(3.23c)

diffusion term: ρDij = −
∂ρv′′i v

′′
j v

′′
k

∂xk
+

∂τ ′ikv
′′
j

∂xk
+

∂τ ′jkv
′′
i

∂xk
− ∂p′v′′i

∂xj
−

∂p′v′′j
∂xi

(3.23d)

compressibility effects: ρMij = v′′i

(
− ∂p

∂xj
+

∂τjk
∂xk

)
+ v′′j

(
− ∂p

∂xi
+

∂τik
∂xk

)
(3.23e)

Furthermore, the terms which appear particularly due to porous media are assigned
to the Darcy and to the Forchheimer term:

Darcy term: P (Darcy)
ij = φ

µ

κ

(
v′′i vj + v′′j vi + 2v′′i v

′′
j

)
(3.24a)

Forchheimer term: P (Forch)
ij = ρφ2 cF√

κ

(
v′′i vj |~v|+ v′′j vi|~v|

)
(3.24b)
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3. Turbulent Flow in Porous Media

Apart from the production term ρPij , all of the remaining terms need modelling.
The process for most of these terms can be taken from existing Reynolds-stress mod-
els. Special attention must be paid to the Darcy and Forchheimer terms P (Darcy)

ij and
P (Forch)
ij . Besides that, most Reynolds-stress models rely on an additional transport

equation to determine a length scale of the turbulent structures. Amongst others,
this length scale is used to model the dissipation term ρεij . Themost frequent trans-
port variable which is used to define the length scale, is the turbulent dissipation-
rate ε [44, 18] or subsidiaries directly based on ε like the homogeneous turbulent
dissipation-rate εh [36]. The turbulent dissipation-rate equation will be derived in
section 3.7. Before that, the Darcy and Forchheimer terms of the Reynolds-stress
equations will be discussed. Another section will focus on the modelling of an extra
diffusion term inside porous media.

3.6.1. Modelling of the Darcy term in the Reynolds-stress
equations

The Darcy term in the Reynolds-stress equations (3.22) only needs modelling as
long as the flow is compressible. In case of incompressible flow the average of the
velocity fluctuations v′′i will vanish. In the presentwork it is assumed that this is also
valid for the compressible flow and, hence, the Darcy term in the Reynolds-stress
equations reads

P (Darcy)
ij = 2φ

µ

κ
v′′i v

′′
j . (3.25)

This assumption can be based on Morkovin’s hypothesis (as e.g. discussed in [72])
which states that the effect of density fluctuations is negligible for high Mach num-
bers of up to Ma = 5 or even more. These assumptions are also basis of the
Reynolds-stress model which will be used later in this work.

3.6.2. Modelling of the Forchheimer term in the
Reynolds-stress equations

The Forchheimer term which appears in the Reynolds-stress equations presents a
similar complexity as the Forchheimer term in the momentum equations that were
discussed in section 3.4. Accordingly, it will be approximated by a Taylor expansion
in the same way as it was done in section 3.4. The following derivations follow the
guidelines given in [49] which again similar to the one stated in [28] but preserves
more terms.

The Forchheimer term in the Reynolds-stress equations (3.22) reads

ρφ2 cF√
κ

(
v′′i vj |~v|+ v′′j vi|~v|

)
.
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3.6. Derivation of Reynolds-stress equations

Here the term to be modelled can be isolated to

v′′i vj |~v| . (3.26)

In order to model this term, a Taylor expansion is applied to the function

fRSij(ε) = v′′i vj
√
vlvl = v′′i fj(ε) where vk = vk + ε · v′′k .

The function fj(ε) comes from equation (3.11) which was used for the approxima-
tion procedure of the Forchheimer term in the momentum equation. The velocity
fluctuation v′′i is also scaled with the factor ε which leads to

fRSij(ε) = εv′′i fj(ε) .

A third order Taylor expansion for fRSij(ε) can be written as

fRSij(ε) ≈ fRSij(ε0) +
∂fRSij(ε)

∂ε

∣∣∣∣
ε0

(ε− ε0) +
1

2

∂2fRSij(ε)

∂ε2

∣∣∣∣
ε0

(ε− ε0)
2

+
1

6

∂3fRSij(ε)

∂ε3

∣∣∣∣
ε0

(ε− ε0)
3 .

(3.27)

The first three derivatives of fRSij(ε) are

∂fRSij(ε)

∂ε
= εv′′i

∂fj(ε)

∂ε
+ v′′i fj(ε)

∂2fRSij(ε)

∂ε2
= εv′′i

∂2fj(ε)

∂ε2
+ 2v′′i

∂fj(ε)

∂ε

∂3fRSij(ε)

∂ε3
= εv′′i

∂3fj(ε)

∂ε3
+ 3v′′i

∂2fj(ε)

∂ε2
.

The third order Taylor expansion at the reference point ε0 = 0 and evaluated at
ε = 1 is then

fRSij(1) ≈ v′′i fj(0) + v′′i
∂fj(ε)

∂ε

∣∣∣∣
ε=0

+
1

2
v′′i

∂2fj(0)

∂ε2

∣∣∣∣
ε=0

.

After inserting the derivatives of fj(ε) from equations (3.12) and (3.13) and applying
the density-weighted average, the function fRSij becomes

fRSij(1) ≈ v′′i v
′′
j |~v|+ v′′i v

′′
k

vjvk

|~v|
+ v′′i v

′′
j v

′′
k

vk

|~v|
+ v′′i v

′′
kv

′′
k

vj

2|~v|
− v′′i v

′′
kv

′′
m

vjvkvm

2|~v|3
.
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3. Turbulent Flow in Porous Media

With this relation, the complete approximated Forchheimer term now reads

P (Forch)
ij = ρφ2 cF√

κ

[
2v′′i v

′′
j |~v|+

vj vk

|~v|
v′′i v

′′
k +

vivk

|~v|
v′′j v

′′
k

+ 2
vk

|~v|
v′′i v

′′
j v

′′
k +

1

2

vj

|~v|
v′′i v

′′
kv

′′
k +

1

2

vi

|~v|
v′′j v

′′
kv

′′
k

− 1

2

vjvkvm

|~v|3
v′′i v

′′
kv

′′
m − 1

2

vivkvm

|~v|3
v′′j v

′′
kv

′′
m

]
.

(3.28)

This rather complex term contains mean velocities and Reynolds stresses which can
be considered to be known. It also consists of triple correlations which have to be
modelled. There exist several models for triple correlations since they are needed
for modelling the diffusion term Dij in the Reynolds-stress equations. The most
commonly used model originates from Daly and Harlow [19] and is defined as

v′iv
′
jv

′
k = −cs

k

ε
v′kv

′
l

∂v′iv
′
j

∂xl
(3.29)

for the turbulent kinetic energy k and the turbulent dissipation-rate ε. Both vari-
ables are considered to be known. The parameter cs is a modelling constant and its
value is normally taken as 0.22. Alternatively, there is another model from Hanjalić
and Launder [31] which provides the advantage that it is independent of the index
order:

v′iv
′
jv

′
k = −ct

k

ε

(
v′iv

′
l

∂v′jv
′
k

∂xl
+ v′jv

′
l

∂v′iv
′
k

∂xl
+ v′kv

′
l

∂v′iv
′
j

∂xl

)
(3.30)

The constant ct is taken as 0.11.
Both models are described here for the time averages and their related fluctu-

ations. However, in the present work it is assumed that they are also valid for
the density-weighted averages and their related fluctuations. Furthermore, it is not
clear if the modelling constants cs or ct are generally valid for the Forchheimer
term. Hence, recalibration of the parameters for the Forchheimer term will have to
be investigated.

3.6.3. Modelling of extra diffusion inside porous media
During the procedure of validating the Reynolds-stress models for porous media,
it was realized that the Reynolds stresses faded far too fast inside porous media.
Breugem already discussed in [10] that the turbulent kinetic energy deep inside
porous media are mandatorily driven by the pressure fluctuations close to the in-
terface. The effect, that especially low-frequency pressure fluctuations can travel
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3.7. Derivation of turbulent dissipation-rate equation

through porous media was not reproduced during the validation computations.
This deficiency of the model is counteracted by an additional diffusion term in the
Reynolds-stress equations. Thereby, it is expected that the pressure fluctuations can
only cause an enforcement of the normal stresses but will not directly influence the
Reynolds shear stresses. As a result, the following diffusion term is proposed:

ρDp,ij =

 ∂
∂xk

(
cd,pρ

k2

ε

∂v′′
i v

′′
j

∂xk

)
if i = j

0 else
(3.31)

with a new modelling coefficient cd,p. The effect of this coefficient on a channel
flow similar to the setup of figure 2.18 is shown in figure 3.2. It becomes apparent
that the decay of the Reynolds stresses inside the porous medium is much smaller
for the case with the new diffusion term. Still, it must be ensured that the additional
diffusion is only active inside porous media. Furthermore, in terms of consistency
inside extremely permeable porous media where the physics of flow in nonporous
regions is dominant, the additional diffusion must vanish. This can be achieved
by a switch which compares the turbulent length scale lturbulence to the square root
of the permeability

√
κ which is used as characteristic value of the pore size (see

appendix C.1):

switch indicator =
lturbulence√

κ
with lturbulence = 0.09 · k

3
2

ε
(3.32)

where k is the local turbulent kinetic energy and ε is the local turbulent dissipation-
rate. The indicator can be used to replace the modelling coefficient cd,p with an
effective value cd,p,eff which is zero if the turbulent length scale is much smaller
than the characteristic pore size. Otherwise cd,p,eff is equal to cd,p. Smooth blend-
ing is achieved with the help of a tanh-function as shown in figure 3.3:

cd,p,eff = cd,p · 0.5 · (tanh(100 · switch indicator− 5) + 1) (3.33)

3.7. Derivation of turbulent dissipation-rate
equation inside porous media

As already mentioned in section 3.6, the definition of the length scale is based on
an additional transport equation. Inside this work the length scale is based on the
turbulent dissipation-rate ε which is defined as

ε = ν
∂v′′i
∂xj

∂v′′i
∂xj

(3.34)
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φv′′xv
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cd,p = 0
cd,p = 0.2

Figure 3.2.: Effect of the additional diffusion inside porous media, where cd,p is the
diffusion coefficient.
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Figure 3.3.: Switch demonstration for the pressure diffusion in porous media.
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in which ν = µ
ρ is the kinematic viscosity. In order to derive a transport equation for

the turbulent dissipation-rate, a rule similar to the one given for the Reynolds-stress
transport equations (equation (3.20)) is used. It reads

2 · ν

(
∂vi
∂xj

∂

∂xj

[
1

ρ
Ni

]
− ∂vi

∂xj

∂

∂xj

[
1

ρ
Ni

])
= 0 (3.35)

where Ni is the momentum equation according to equation (3.21). The application
of this rule would lead to a complex equation consisting of many unknown cor-
relations based on density fluctuations. It is observed from the literature that the
process of deriving the exact equation for compressible flow is avoided by only pre-
senting the already modelled version of the turbulent dissipation-rate equation (see
e.g. [66, 73, 11]) which is based on the incompressible derivation. A justification for
this simplification would be that even the incompressible turbulent dissipation-rate
equation is strongly modelled since hardly any terms are known. Hence, even for
incompressible flow the derivation of the exact dissipation-rate equation can only
serve as a guide for modelling a reliable transport equation. Consequently, it also
seems sufficient to derive the additional terms inside of porous media on the basis
of incompressible equations and then apply them also to compressible flow.

Under incompressible conditions the derivation of the turbulent dissipation-rate
can be written in a simplified form:

2 · ν ∂v′i
∂xj

∂

∂xj
[Ni] = 0 (3.36)

Using the momentum equation Ni (equation (3.21)) in its incompressible form this
leads to a transport equation as follows (see e.g. Wilcox [81] for a detailed deriva-
tion):

∂ρε

∂t
+

∂ρvkε

∂xk
= Pε + Tε +Φε − Y − 2φ

µ

κ
ε− 2ν · φ2 cF√

κ

∂v′i
∂xj

∂vi|~v|
∂xj

(3.37)

The designation for the different terms are taken from Mansour et al. [47] and are
as follows: Pε combines several production terms, Tε is the turbulent transport
term, Φε is the pressure transport term, Dε is the sum of viscous, turbulent and
pressure diffusion and Y is the dissipation term. The names of these different terms
support basic information about the different mechanisms which take place in the
dissipation-rate transport equation. The exact formulation of the terms is of no
importance for the present work and is not considered any further. However, a
closed form of the homogeneous turbulent dissipation-rate εh is presented later on
in section 3.8.2. Additional terms appear inside porous media which can be assigned
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to theDarcy and Forchheimer terms as it has been performed for the Reynolds-stress
equations:

Darcy term: P(Darcy)
ε = 2φ

µ

κ
ε (3.38a)

Forchheimer term: P(Forch)
ε = 2ν · φ2 cF√

κ

∂v′i
∂xj

∂vi|~v|
∂xj

(3.38b)

The Forchheimer term is unknown and requires modelling. This is conducted corre-
sponding to themodelling of the Forchheimer term in themomentum and Reynolds-
stress equation. It is based on [28] or, more precisely, on [49] which keeps more
terms from the Taylor expansion. The function which is expanded reads

fε(ε) =
∂εv′i
∂xj

∂vi|~v|
∂xj

= ε
∂v′i
∂xj

∂fi(ε)

∂xj

where fi(ε) comes from equation (3.11) which was used for modelling the momen-
tum equation. For a third-order Taylor expansion, as it was used for the Reynolds-
stress equations (3.27), the first three derivatives of fε(ε) are needed:

∂fε(ε)

∂ε
=

∂v′i
∂xj

∂fi(ε)

∂xj
+ ε

∂v′i
∂xj

∂

∂xj

(
∂fi(ε)

∂ε

)
∂2fε(ε)

∂ε2
= 2

∂v′i
∂xj

∂

∂xj

(
∂fi(ε)

∂ε

)
+ ε

∂v′i
∂xj

∂

∂xj

(
∂2fi(ε)

∂ε2

)
∂3fε(ε)

∂ε3
= 3

∂v′i
∂xj

∂

∂xj

(
∂2fi(ε)

∂ε2

)
+ ε

∂v′i
∂xj

∂

∂xj

(
∂3fi(ε)

∂ε3

)
The function fε can be approximated as

fε(1) ≈
∂v′i
∂xj

∂fi(0)

∂xj
+

∂v′i
∂xj

∂

∂xj

(
∂fi(ε)
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)
+

1

2

∂v′i
∂xj

∂

∂xj

(
∂2fi(ε)

∂ε2

∣∣∣∣
ε=0

)
or after inserting the values of fi(0) and its derivatives followed by averaging in
time

fε(1) ≈|~v| ∂v
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.
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3.7. Derivation of turbulent dissipation-rate equation

Using the definition of the turbulent dissipation-rate and after several rearrange-
ments, the Forchheimer term of the turbulent dissipation-rate equation reads

P(Forch)
ε = ρφ2 cF√

κ

[
2ε|~v|+ ν

∂|~v|
∂xj

∂v′iv
′
i

∂xj
+ ν

∂

∂xj

(
vi vk

|~v|

)
v′iv

′
k

xj

+ 2ν
vk

|~v|

[
v′k

∂v′i
∂xj

∂v′i
∂xj

+ 2v′i
∂v′i
∂xj

∂v′k
∂xj

+ vi
∂v′i
∂xj

∂v′k
∂xj

]

+ ν
∂

∂xj

(
vk

|~v|

)[
2v′iv

′
k

∂v′i
∂xj

+ v′iv
′
i

∂v′k
∂xj

]

− 2ν
vi vk vm

|~v|3
v′k

∂v′i
∂xj

∂v′m
∂xj

− 1

3
ν

∂

∂xj

(
vi vk vm

|~v|3

)
∂v′iv

′
kv

′
m

∂xj

]
.

(3.39)

This model of the Forchheimer term in the turbulent dissipation-rate equation con-
tains many unknown correlations. Following [28] some terms can be modelled by
employing the gradient diffusion hypothesis ([19]),

v′iϕ = −cϕ
k

ε
v′iv

′
j

∂ϕ

∂xj
, (3.40)

for an arbitrary variable ϕ, the modelling coefficient cϕ, the turbulent dissipation
rate ε and the turbulent kinetic energy k. Additionally, it is assumed that turbulence
is locally isotropic:

v′i = v′j ;
∂v′i
∂xk

=
∂v′j
∂xk

for i, j ∈ 1, 2, 3 (3.41)

Keeping this in mind, at least three terms from equation (3.39) can be modelled:

v′k
∂v′i
∂xj

∂v′i
∂xj

+ 2v′i
∂v′i
∂xj

∂v′k
∂xj

= −cε,F
ν

k

ε
v′kv

′
i

∂ε

∂xi
(3.42)

with the modelling coefficient cε,F, and

vi
∂v′i
∂xj

∂v′k
∂xj

= vi
1

3ν
ε1i1k (3.43)

where the 1i and 1k imply that the addition over the indices takes place. In other
words

1i = 1 for i ∈ 1, 2, 3 .
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3. Turbulent Flow in Porous Media

Expression (3.43) is strongly dependent on the orientation of the coordinate system.
Excluding the terms which lead to the coordinate system dependency in (3.43) leads
to

vi
∂v′i
∂xj

∂v′k
∂xj

= vk
1

3ν
ε . (3.44)

If the factor 2ν vk
|~v|

of equation (3.39) is applied to the model (3.44) it will result in

2ν
vk

|~v|
vi

∂v′i
∂xj

∂v′k
∂xj

= |~v|2
3
ε . (3.45)

The terms of equation (3.39) which contain v′iv
′
k
∂v′

i

∂xj
or v′iv

′
i
∂v′

k

∂xj
can be recon-

structed as gradients of triple correlations as long as the local isotropy according to
definition (3.41) is valid:

2v′iv
′
k

∂v′i
∂xj

+ v′iv
′
i

∂v′k
∂xj

=
∂v′iv

′
iv

′
k

∂xj
(3.46)

The term vivkvm
|~v|3

v′k
∂v′

i

∂xj

∂v′
m

∂xj
can be rearranged to coincide with the model (3.42). In

this process, the conditions of the gradient diffusion (3.40), local isotropy (3.41) and
the assumption that terms which lead to a dependency of the coordinate system are
zero are used. The rearrangement leads to

vivkvm

|~v|3
v′k

∂v′i
∂xj

∂v′m
∂xj

= − vk

|~v|
cε,F,2
ν

k

ε
v′kv

′
i

∂ε

∂xi
. (3.47)

If this model and the model from equation (3.42) are plugged into the equation (3.39)
they will have the same form and can be summarized to one model with an adapted
coefficient cε,F.

As a result of the models which are discussed in this section, the Forchheimer
term in the turbulent dissipation-rate equation can be written as

P(Forch)
ε = ρφ2 cF√

κ

[
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3
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(3.48)
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3.8. JHh-v2 Reynolds-stress model

There are obvious differences compared to the model of Getachew et al. [28]. The
differences are partly due to the different definitions of the turbulent dissipation
rate ε and slightly different derivation procedures. As a comparison, Antohe and
Lage [2] give a lower order approximation of the Forchheimer term in which at least
the term 8

3ε|~v| coincides with the present model. The rest of the terms are different
since the derivation of Antohe and Lage is based on a k-ε-turbulence model and not
on Reynolds-stress models.

Assuming that the triple correlations are known from the model (3.30), the clo-
sure of the Forchheimer term in the turbulent dissipation-rate equation is complete.
However, the resulting model is rather complex. This might not seem appropriate,
recalling that the turbulent dissipation-rate equation is very strongly modelled and
the original form of Forchheimer term is a model itself. Besides that, validation data
for most of the terms do not exist and cannot be validated. Therefore, the Forch-
heimer term in the dissipation-rate equation should be treated with great care. It
seems reasonable to do computations by solely using the lower order terms, only
adding higher order terms where they are really needed.

3.8. JHh-v2 Reynolds-stress model inside porous
regions

Sections 3.6 and 3.7 presented the procedure for obtaining the contributions of the
Darcy and Forchheimer terms to the Reynolds-stress and the turbulent dissipation-
rate equations. These derivations are general and independent of the turbulence
model. If a specific turbulence model is chosen, several adjustments will be neces-
sary. In the present work, the focus is on the JHh-v2 Reynolds-stress model. This
turbulence model has its origin in the work of Jakirlić and Hanjalić [38, 36, 37].
It has the peculiarity of using the homogeneous turbulent dissipation-rate εh to
define the turbulent length-scale. Jakirlić claims that the standard transport equa-
tion which is generally used for the turbulent dissipation-rate ε can only account
for its homogeneous part εh. In other words, by using the homogeneous turbu-
lent dissipation-rate εh as the additional variable to define the length scale, the cor-
rect dissipation-rate profiles for Reynolds stresses can be obtained in a much sim-
pler way. Further terms were added to the homogeneous turbulent dissipation-rate
equation by Probst and Radespiel [60] and Probst [59] to take strong pressure gra-
dients and non-equilibrium effects into account. Later, Cécora et al. [11, 12] added
quadratic redistribution terms to the Reynolds-stress equations and recalibrated
several modelling parameters for better performance in the transonic flow range.
This last step leads to the turbulence model which will be introduced in the present
section and is called JHh-v2 (abbreviation for Jakirlić, Hanjalić, homogeneous tur-
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3. Turbulent Flow in Porous Media

bulent dissipation-rate, version 2).
The JHh-v2 turbulence model is used as the standard in the present work for

reasons of high expertise in the environment of the author. At the same time the
model has also been proven for complex aeronautical flows with flow separations
due to high pressure gradients. Such flows are the main applications where the
developed models in porous media will be used.

For the sake of completeness, the JHh-v2 turbulence model as given in [12] is
quickly summarized in the following section.

3.8.1. Models for terms in Reynolds-stress equations of
JHh-v2 turbulence model

In the following, the single terms of the Reynolds-stress equations, as given in equa-
tions (3.23), will be discussed. As already mentioned, the production term ρPij

(3.23a) in the Reynolds-stress equations needs no modelling since all terms are pre-
viously known. Proceeding with the pressure-strain correlation ρΠij (3.23b), it is
split into four parts:

ρΠij = ρΠij,1 + ρΠij,2 + ρΠw
ij,1 + ρΠw

ij,2 (3.49)

The first term ρΠij,1 is called the slow term and forces turbulence back to isotropy.
The second term ρΠij,2 is called the rapid term. Its task is the modification of the
production term ρPij to behavemore isotropic. The two terms containing the super-
script “w” modify the behaviour of the redistribution of Reynolds stresses close to
the wall. Basically, they lead to a stronger anisotropy of turbulence. The term ρΠw

ij,1

can be seen as the near-wall correction of ρΠij , and the term ρΠw
ij,2 as the near-wall

correction of ρΠij,2. The model states

ρΠij,1 = −εhρ

[
C1aij + C ′

1

(
aikajk −

1

3
δijA2

)]
(3.50a)

ρΠij,2 = −C2ρ

(
Pij −

1

3
δijPkk

)
(3.50b)

ρΠw
ij,1 = Cw

1 ρfw
εh

k

(
δijv

′′
kv

′′
mnknm − 3

2
v′′i v

′′
knknj −

3

2
v′′j v

′′
knkni

)
(3.50c)

ρΠw
ij,2 = Cw

2 ρfw

(
δijΠkm,2nknm − 3

2
Πik,2nknj −

3

2
Πjk,2nkni

)
(3.50d)

in which k is the turbulent kinetic energy k = 1
2v

′′
i v

′′
i , the variable aij is the

anisotropy tensor

aij =
v′′i v

′′
j

k
− 2

3
δij , (3.51)
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3.8. JHh-v2 Reynolds-stress model

Pij is the production term as in equation (3.23a) and ni are the components along
the i-th coordinate direction of the wall normals. The model coefficients are defined
as

C1 = C +
√
AE2 , C ′

1 = −max(0.7A2; 0.5)C1 , C2 = 0.8
√
A ,

C = 2.5A 4
√
Ff , F = min(0.6;A2) ,

Cw
1 = max (1− 0.7C; 0.3) , Cw

2 = min (A; 0.3) ,

f = min

([
Ret
150

] 3
2

; 1

)
, fw = min

(
0.4

k
3
2

εhd
; 1.4

) (3.52)

with the turbulence Reynolds number

Ret =
k2

νεh
(3.53)

and the local wall distance d. Regarding the wall distance d, it has to be mentioned
that the outer surface of the porous mediumwill act like a “soft” wall. The definition
of this “softness” is part of the discussion in section 3.10.

The variables A, A2 and A3 are known as the flatness factors of the Reynolds
stresses and the second and third invariant of the Reynolds-stress anisotropy ten-
sor aij :

A = 1− 9

8
(A2 −A3) , A2 = aijaji , A3 = aijajkaki (3.54)

The flatness factor is also defined for the dissipation rate E which depends on the
second and third invariants E2 and E3 of the dissipation anisotropy tensor eij :

E = 1− 9

8
(E2 − E3) , E2 = eijeji , E3 = eijejkeki

Therein, the dissipation anisotropy tensor eij is defined in a way similar to the
anisotropy tensor aij of the Reynolds stresses:

eij =
εhij
εh

− 2

3
δij (3.55)

If the homogeneous turbulent dissipation-rate εh is assumed to be known this will
leave εhij as the last unknown to compute the pressure-strain correlation (3.49). εhij
is part of the definition of the turbulent dissipation-rate εij (3.23c). The dissipation
tensor εij consists of a homogeneous part and a non-homogeneous part in which
the non-homogeneous part is defined in terms of the viscous diffusion term D

(ν)
ij :

εij = εhij +
1

2
D

(ν)
ij (3.56)
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3. Turbulent Flow in Porous Media

In here, D(ν)
ij is the viscous diffusion term which is defined in equation (3.60). The

homogeneous turbulent dissipation-rate tensor εhij depends on the homogeneous
turbulent dissipation-rate εh:

εhij = fsv
′′
i v

′′
j

εh

k
+ (1− fs)

2

3
δijε

h with fs = 1−
√
AE2 (3.57)

Note, that this formulation is implicit as the flatness factor E is dependent on the
homogeneous turbulent dissipation-rate tensor εhij .

The next term to be modelled is the diffusion term ρDij (3.23d) of the Reynolds-
stress equation. It can be split into three parts: the turbulent transport ρTij , the
viscous diffusion ρD

(ν)
ij and the pressure diffusion ρD

(p)
ij :

ρDij = −
∂ρv′′i v

′′
j v

′′
k

∂xk︸ ︷︷ ︸
ρTij

+
∂τ ′ikv

′′
j

∂xk
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∂τ ′jkv
′′
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ρD

(ν)
ij

−∂p′v′′i
∂xj

−
∂p′v′′j
∂xi︸ ︷︷ ︸

ρD
(p)
ij

(3.58)

The turbulent diffusion is modelled by the generalized gradient diffusion model

ρTij =
∂

∂xk

(
Dρ

k

εh
v′′kv

′′
l

∂v′′i v
′′
j

∂xl

)
(3.59)

with the diffusion coefficient D = 0.22. The viscous diffusion is described by

ρD
(ν)
ij =

∂

∂xk

(
µ
∂v′′i v

′′
j

∂xk

)
. (3.60)

The pressure diffusion term ρD
(p)
ij is neglected.

The remaining unknown term (3.23e) in the Reynolds-stress equation incorpo-
rates the compressibility effects ρMij . The JHh-v2-model assumes that this term
has minor effects on the numerical solution and, thus, sets it to zero.

Inside porous media, the Darcy and Forchheimer terms have to be added as they
are given in the equations (3.25) and (3.28). Also, the additional diffusion given in
section 3.6.3 must be considered. Note, that the models (3.29) or (3.30) which define
the triple correlations inside the Forchheimer term and contain the dissipation-rate
are modified in terms of replacing εwith εh. The same is valid for the extra diffusion
term of equation (3.31).

Having all the terms of the Reynolds-stress equation defined, the closure of the
Reynolds-stress equation has to be completed by defining a length scale which is
computed by solving the equation of the homogeneous turbulent dissipation-rate εh.
This equation is discussed in detail in the following section.
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3.8. JHh-v2 Reynolds-stress model

3.8.2. Definition and modelling of the homogeneous
turbulent dissipation-rate equation

The length scale in the JHh-v2 turbulencemodel is defined by the transport equation
of the homogeneous dissipation-rate εh as

εh = ε− 1

2
D

(ν)
kk (3.61)

in which D(ν) is the viscous diffusion term defined in equation (3.60). In order to
find a transport equation for the homogeneous turbulent dissipation-rate εh Jakirlić
[37] defines the relation

Dεh

Dt
=

Dε
Dt

∣∣∣∣
(ε=εh)

− 1

2

∂

∂xk

(
ν
∂εh

∂xk

)
where D

Dt = ∂
∂t + vk

∂
∂xk

is the total derivative. The expression Dε
Dt |(ε=εh) signifies

any transport equation for the standard turbulent dissipation-rate ε in which each
occurrence of ε is replaced by the homogeneous turbulent dissipation-rate εh. The
final transport equation of the JHh-v2 model where the terms for porousmedia have
been added then reads

∂ρεh

∂t
+
∂ρ vkε

h

∂xk
= −Cε1ρ

εh

k
v′′i v

′′
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∂vi
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+
∂

∂xk

[(
1

2
µδkl + Cερ

k

εh
v′′kv

′′
l

)
∂εh

∂xl

]
+ Sl + Sε4 + P(Darcy)

εh + P(Forch)
εh .

(3.62)

The last two terms describe the effect of the porous media and are defined by equa-
tions (3.38a) and (3.48) where ε is replaced by εh. The low-Reynolds damping func-
tion fε is defined as

fε = 1− Cε2 − 1.4
Cε2

e

(
−
[

Ret
6

]2)

where the turbulence Reynolds number Ret is defined by equation (3.53). The length
scale limiter Sl is defined as

Sl = max
([

1

C2
l

∂l

∂xk

∂l

∂xk
− 1

]
1

C2
l

∂l

∂xk

∂l

∂xk
; 0

)
εhε̂h

k
A

with

l =
k

3
2

εh
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and the flatness factor A of the Reynolds stresses (equation (3.54)).
The pressure-gradient term is

Sε4 = −C∗
ε4

εh

k

(
v′′s v

′′
s
∂vs
∂xs

+ v′′n1v
′′
n1

∂vn1
∂xn1

+ v′′n2v
′′
n2

∂vn2
∂xn2

)
.

Note, that the term Sε4 is defined in a streamline-oriented coordinate system which
consitutes that the coordinate xs points in the direction of the velocity vector and
xn1 and xn2 are both normal to the velocity vector and normal to each other.

With all the models in the equation of the homogeneous dissipation-rate given,
it remains to provide the values for the modelling coefficients. The JHh-v2 model
sets them to

Cε1 = 1.44 , Cε2 = 1.85 , Cε3 = 0.70 , C∗
ε4 = 0.58 , Cε = 0.18 , Cl = 2.5 .

Finally, the isotropic part ε̂h of the dissipation-rate and its value at viscous walls
are defined ([37]):

ε̂h = εh − ν

(
∂k

1
2

∂xn

)2

εh|xn=0 = ν

(
∂k

1
2

∂xn

∣∣∣∣
xn=0

)2

(3.63)

in which xn is the coordinate direction normal to the wall. These two definitions
show that the homogeneous turbulent dissipation-rate εh is not zero at walls where-
as its isotropic part ε̂h actually is zero.

3.9. Decay of turbulence in a porous channel: an
example

The previous sections define a closed set of equations for turbulent flow inside
porous media. In short, the effect of the porous media on turbulence can be de-
scribed as a sink term. A qualitative example of a channel flow with a porous bump
is shown in figure 3.4. It clearly shows how the turbulent kinetic energy k decays
inside the porous region.

3.10. Wall distance over porous surfaces
Recall, that the JHh-v2 turbulence model (section 3.8) requires the distance d of each
grid point to its closest wall (equation (3.52)). Now consider the sketch 3.5 with a
point in space over a nonporous-porous interface area. For very dense porous me-
dia, the interface will behave like a viscous wall. In such cases, the distance to the
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;
k

viscous wall

viscous wall

;porous bumpin
flo

w

Figure 3.4.: Example for decay of turbulent kinetic energy k inside a porous bump
in a turbulent channel flow.

closest solid wall must be replaced by the distance to the interface. In other cases
in which the permeability is larger, the interface still affects the flow close by but
not as strongly as a viscous wall would do. Consequently, an effective distance deff
over the nonporous-porous interface is computed which is dependent on the prop-
erties of the porous medium. In the process, the distance deff is compared against
the distance to the closest viscous wall where the shortest distance is finally passed
to the turbulence models. Note, that the distance to the porous medium is only con-
sidered if the point in space is positioned inside a nonporous region. Alternatively,
if the interface area connects two different kinds of porous media the distance to
the interface is only considered if the point is positioned inside the more permeable
region.

viscous wall

xn

point in space

actual distance d to the
interface

distance to the
viscous wall

effective distance
deff to the interface

Figure 3.5.: Sketch of wall distance of a point in space over a porous interface.

The computation of the effective wall distance is discussed in [49] and has been
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reproduced in the following sections. In short, the actual distance d over the non-
porous-porous interface is modified by the relation

deff = d+ cwd

√
κ

φ
(3.64)

with the modelling coefficient cwd which has to be calibrated. For very low perme-
abilities κ, this relation recovers to deff = d and the interface will behave like a solid
wall.

The derivation of relation (3.64) is based on the observation that for flows tangen-
tial to the nonporous-porous interface there is a quick decay of the velocity inside
the porous region. It is assumed that the distance along which the velocity drops to
very small values can be used as a characteristic length. This length is then added
to actual distance to the interface. The theoretical derivation of the characteris-
tic length scale is based a one-dimensional laminar shear flow in which only the
Darcy term is active (see figure 3.6). For these kinds of flows the volume-averaged
momentum equation (2.29b) reduces to

− µ
∂2vx
∂x2

n

+ φ
µ

κ
vx = 0 (3.65)

which can be solved analytically. The solution reads

vx = vinterface · e
√

φ
κxn . (3.66)

This implies that the velocity at the interface drops by the factor of e1 within a
distance of

√
κ
φ . This distance scaled with the modelling coefficient cwd leads to

equation (3.64), presented at the beginning of the section.

moving upper wall with vx = vinterface

vinterface

vinterface
e1

-
√

κ
φxn

vx

xn = 0

Figure 3.6.: Sketch of shear flow in a porous medium in order to determine the effec-
tive wall distance deff over a porous interface.

The principal effect of the wall distance modification is shown in figure 3.7. Com-
pared to the very high coefficient cwd which simulates a wall very far away, a small
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value of cwd leads to a strong decrease of the Reynolds stress of the velocity fluc-
tuations normal to the interface v′′yv

′′
y , while the Reynolds stress of the velocity

fluctuations parallel to the interfaces v′′xv′′x increases.

φv′′xv
′′
x φv′′yv

′′
y

x

y

cd,p = 1
cd,p → ∞

Figure 3.7.: Effect of the wall distance modification parameter cwd.

3.11. Interface treatment in case of turbulent flow
In case of laminar flow, section 2.8 demonstrates how to handle the interface be-
tween nonporous and porous regions or, respectively, the interface between two
porous regions with different properties. For turbulent flow, these conditions have
to be extended to include the turbulence quantities. Besides that, an adaption for the
existing conditions of the mean-flow equations must be considered. The strategy is
as follows:

1. Review and transfer the laminar interface conditions for turbulent flow. In the
course of this, the principles of isentropic flow change and flux conservation
will be fulfilled.

2. Define the relations for the turbulent quantities at the interface while making
sure that they stay compatible to the conditions of the mean-flow equations.

3.11.1. Interface conditions of flow variables for turbulent
flow

For laminar flow, the interface treatment of the mean-flow equations is based on
the principles of flux conservation, isentropic flow change and constant velocity
direction. Flux conservation is achieved by collecting all the convective fluxes
of the transport equations (2.29) and setting them equal on both interface sides.
Thereby, the pressure forces which act on the porous structure at the interface are
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included. If the same procedure is performed for the mean-flow equations for tur-
bulent flow (3.7) the interface conditions will stay unchanged except the condition
for energy conservation where the turbulent kinetic energy k = 1

2v
′′
kv

′′
k appears.

The result reads

φ1ρ1 vn,1 = φ2ρ2 vn,2 (3.67a)

φ1

(
ρ1 vn,1

2 + p1
)
−φ2

(
ρ2 vn,2

2 + p2
)
= σn (3.67b)

φ1 (ρ1 vn,1 vt,1)−φ2 (ρ2 vn,2 vt,2) = σt (3.67c)
|v1|2

2
+ k1 + e1 +

p1
ρ1

=
|v2|2

2
+ k2 + e2 +

p2
ρ2

. (3.67d)

In agreement with the laminar conditions, the remaining unknowns are defined by
the isentropic condition

p1
ρ1

γ =
p2
ρ2

γ , (3.68)

by following the assumption that the flow direction is equal on both sides of the
interface

vn,1

|~v1|
=

vn,2

|~v2|
or

vt,1

|~v1|
=

vt,2

|~v2|
, (3.69)

and that the internal energy e is related to the state variables ρ and p of the fluid by

e =
1

γ − 1

p

ρ
(3.70)

which is only valid for a calorically perfect gas. The nowmissing condition is a rela-
tion between the turbulent energies k1 and k2 across the two sides of the interface.
From the Reynolds-stress equations (3.22) which are similar to the equation of the
turbulent kinetic energy k, it becomes apparent that several source and sink terms
exist. Their existence indicates that the conservation of convective fluxes over the
interface is not strictly required. This implies freedom to define the relation

φ1ρ1

(
v′′i v

′′
j

)
1
= φ2ρ2

(
v′′i v

′′
j

)
2

or φ1ρ1k1 = φ2ρ2k2 . (3.71)

Even though there is no direct physical explanation and not enough validation data
to confirm this relation, there are reasons which support this condition. First of
all, literature gives conditions for incompressible flow which match with the condi-
tion (3.71) as can be seen in [70, 71, 45]. Secondly, equation (3.71) is a strict require-
ment if the interface condition of diffusive momentum fluxes (2.59) should be valid
without modification for turbulent flow. Why is that? The interface condition of
diffusive momentum fluxes results from collecting all diffusive fluxes of momentum
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3.11. Interface treatment in case of turbulent flow

on both sides and manually prescribing an offset (also called jump) between these
two fluxes. However, during the derivation of the laminar jump condition (2.59)
the Reynolds stresses have not been considered. Since they also have a diffusive
effect the jump condition can be true only if the momentum flux due to Reynolds
stresses is included in the derivation of the jump condition or, alternatively, if the
momentum flux due to Reynolds stresses is constant over the interface. The second
option leads to relation (3.71).

Equations (3.67)- (3.71) generate a closed set of equations which can be solved by
an iterative procedure. An interface condition for the length scale variable is still
missing which is set similar to the interface relationship of Reynolds stresses (3.71):

φ1ρ1ε1 = φ2ρ2ε2 or φ1ρ1ε
h
1 = φ2ρ2ε

h
2 . (3.72)

The complete system of equations is solved corresponding to the equations for
laminar flow as given in section 2.8.1. However, the function (2.44) is now slightly
different:

a · (p2)b + c · (p2)d + e · (p2)f + g = 0 (3.73)

with

a =
γ

γ − 1

(p1)
1
γ

ρ1
; b = 1− 1

γ
; c =

1

2

(
|~v1|(p1)

1
γ
φ1

φ2

)2

; d = − 2

γ

e = k1(p1)
1
γ
φ1

φ2
; f = − 1

γ
; g = − γ

γ − 1

p1
ρ1

− |~v1|2

2
− k1

An illustration of the jump of turbulent quantities at the nonporous-porous in-
terface of a channel with viscous walls and a porous blockage is shown in figure 3.8.

3.11.2. Interface conditions for the gradients in turbulent
flow

The turbulent Navier-Stokes equations (3.7) and the turbulent transport equations
(3.22) and (3.37) contain several terms with various gradients which must be defined
over the porous interface. For laminar flow, section 2.8.2 discussed that while the
gradients in tangential direction of the interface are already defined by computing
the change of flow variables over the interface, the gradients in normal direction
need to be explicitly defined. For turbulent flow, the gradients in question are

∂vi
∂xn

;
∂T

∂xn
;

∂v′′i v
′′
j

∂xn
;

∂ε

∂xn
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φ = 0.5
viscous wall

viscous wall

k0 max

A A

0

v
′′ x
v
′′ x
,ε

h

A–A

v′′xv
′′
x

εh

Figure 3.8.: Example of jump in turbulent quantities at a nonporous-porous
interface.

where in case of the JHh-v2 turbulence model the turbulent dissipation-rate ε is
replaced by its homogeneous part εh.

Equation (3.71) from section 3.11.1 already necessitates that themomentumfluxes
due to the Reynolds stresses are constant across the interface. Hence, these fluxes do
not need reconsideration for the interface condition of diffusive momentum fluxes
and the jump condition for the velocity gradients can be adopted from the laminar
conditions (2.59):

µ1
∂vi
∂xn

∣∣∣
1
+ µ2

∂vi
∂xn

∣∣∣
2
= −(1− φ2)∆gi,2 − (1− φ1)∆gi,1 (3.74)

with

∆gi,1/2 = β1/2 ·
φ1/2µ1/2
√
κ1/2

vi,1/2 (3.75)

where β is the jump coefficient of the porous material and the numbers 1 and 2 are
the different sides of the nonporous-porous interface.

A relation for the temperature gradients on the two interface sides for laminar
flow is given in (2.61). It assumes that in addition to the convective energy fluxes,
the rest of the fluxes are also constant. In case of turbulent flow this includes several
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more fluxes leading to the relation

−φ1 ·

([
vj,1 τij,1 − vj,1(v

′′
i v

′′
j )1 + (v′′i τ

′
ij)1 −

1

2
(v′′i v

′′
j v

′′
j )1

]
n1,i + λeff

∂T

∂xn

∣∣∣
1

)

= φ2 ·

([
vj,2 τij,2 − vj,2(v

′′
i v

′′
j )2 + (v′′i τ

′
ij)2 −

1

2
(v′′i v

′′
j v

′′
j )2

]
ni,2 + λeff

∂T

∂xn

∣∣∣
2

)
(3.76)

with themodels for the correlations u′′
i τ

′
ij and v′′i v′′j v′′j being discussed in section 3.5.

For the relation of the Reynolds-stress gradients ∂v′′
i v

′′
j

∂xn
, a similar relation as for

the velocity gradients (equation (3.74)) is proposed:

µ1

∂v′′i v
′′
j

∂xn

∣∣∣
1
+ µ2

∂v′′i v
′′
j

∂xn

∣∣∣
2
= −(1− φ2)∆gRSij,2 − (1− φ1)∆gRSij,1 (3.77)

However, some discussion on the definition of the jump function ∆gRS is needed.
Literature provides some conditions regarding the kinetic turbulent energy k. In

the following paragraphs, these conditions are written in terms of the Reynolds
stresses v′′i v′′j . A widely applied condition in literature [70, 13, 71] reads

(
µ1 +

µt,1

σt

)
∂v′′i v

′′
j

∂xn

∣∣∣
1
+

(
µ2 +

µt,1

σt

)
∂v′′i v

′′
j

∂xn

∣∣∣
2
= 0 , (3.78)

with µt being the eddy viscosity according to equation (3.18) and σt being the tur-
bulent Prandtl number. The right hand side is assumed to be zero. A modification
in which the right hand side is nonzero is proposed by Silva and de Lemos [70] and
then applied by de Lemos and Silva in [45]:(

µ1 +
µt,1

σt

)
∂v′′i v

′′
j

∂xn

∣∣∣
1
+

(
µ2 +

µt,1

σt

)
∂v′′i v

′′
j

∂xn

∣∣∣
2

=− (µ+ µt)
βt√
κ
v′′i v

′′
j

(3.79)

for the turbulent jump coefficient βt. The values of the variables on the right hand
side are taken from the nonporous region. Furthermore, Chandesris and Jamet [15]
used these conditions but argue that the right hand side of the equation should be
linked to production and dissipation of turbulence. However, they do not investi-
gate this proposal any further. Rather, in their computations they set the right hand
side to zero resulting in condition (3.78).
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3. Turbulent Flow in Porous Media

At this point a short discussion about the right hand side of the interface jump
condition (3.77) is given. Note, that the right hand side of this jump condition can be
viewed as a source or sink term. This is, because it directly controls the difference
of fluxes which feed into one side of the interface and add up on the other side. The
arising task is to define a model which can sufficiently describe this source term.
Still assuming the right hand side as a source or sink term, the affected volume
can be viewed as a very narrow band around the interface surface. The thickness
of the band is estimated to be

√
κ (see figure 3.9) which is used as a characteristic

length of the pore geometry. Note, that this point of view reveals that the right
hand side of equation (3.79) collapses with the form of the Darcy term 2φµ

κv
′′
i v

′′
j

multiplied with the “interface thickness”
√
κ. Consequently, one would expect that

equation (3.79) has a damping effect on the Reynolds stresses, especially if the dis-
cussion in section 2.8.2 is considered. There, it is argued that the surface of porous
medium leads to a locally increased damping for momentum. However, DNS-data
speak against a damping effect of Reynolds stresses close to the nonporous-porous
interface. Figure 3.10 shows qualitative DNS-results extracted from the work of
Breugem [10] who performed computations with a setup similar to the one given in
figure 2.18. The results of Breugem immediately show that the Reynolds stresses are
heavily amplified over the nonporous-porous interface compared to the values on
the upper wall. This indicates that the dominating effect of the nonporous-porous
interface is not the Darcy term as proposed by equation (3.79) but rather the produc-
tion term (3.23a) of the Reynolds-stress equations. Accordingly, the function∆gRSij
in equation (3.77) is proposed to be

∆gRSij =
√
κβtρPij (3.80)

in which Pij is the turbulent production term according to (3.23a). The effect of
the function ∆gRS on the Reynolds stresses is illustrated in figure 3.11 by showing
results while varying the turbulent jump coefficient βt.

√
κ

interface volume

amplifying interface effectdamping interface effect

Figure 3.9.: Sketch of possible interface effects onto Reynolds-stress profiles.
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vx v′′xv
′′
x v′′xv

′′
y

DNS-data

Figure 3.10.: Qualitative DNS-data of velocity and Reynolds stresses of a partially
turbulent channel [10].

φv′′xv
′′
x φv′′xv

′′
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βt = −0.1
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Figure 3.11.: Effect of the turbulent jump coefficient βt on the Reynolds stresses
v′′xv

′′
x and v′′xv

′′
y .
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3. Turbulent Flow in Porous Media

The relation of the gradient of the dissipation rate ε or, respectively its homoge-
neous part εh is proposed similar to the relation of Reynolds stresses (3.77):

µ1
∂ε

∂xn

∣∣∣
1
+ µ2

∂ε

∂xn

∣∣∣
2
= −(1− φ2)∆gε,2 − (1− φ1)∆gε,1 (3.81)

For the jump function∆gε, there are no such DNS-data available as for the Reynolds
stresses. Due to lacking more information the function is not modelled and, thus,
set to zero:

∆gε = 0 (3.82)

3.12. Computation of integral forces in case of
turbulent flow

Recall Paul of section 2.9 where he calculated the drag of a snowball with a core of
ice. What happened is shown in figure 3.12. The aerodynamic drag was predicted
too high which led to a total overshoot (which was in favour of the target). Paul
identified the problem that he only considered laminar flow. He recalculated the
flow field around the snowball with a state-of-the-art Reynolds-stress model. Now,
he needs slightly adapted equations in order to calculate the drag.

too long distance

Figure 3.12.: Snowball trajectory after throwing with an overestimated drag.

The adapted forces for turbulent flow in a fixed volume V are

FV,por =

∫
Vf

φ
µ

κ
vi + φ2 cF√

κ
ρ

[
vi|~v|+

1

2

vi

|~v|
v′′kv

′′
k

+
vk

|~v|
v′′i v

′′
k − 1

2

vi vk vl

|~v|3
v′′kv

′′
l

]
dV .

(3.83)

One should note, that the integrals are only over the fluid volume Vf and not over
the entire volume V which includes the porous structure.
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3.12. Computation of integral forces in case of turbulent flow

Compared to the laminar relations, the inviscid forces on the nonporous-porous
interface are unchanged:

FA,int,i =

∫
Aint

φ1 (ρ1 vn,1 vi,1 + nip1)− φ2 (ρ2 vn,2 vi,2 + nip2) dA (3.84)

The same is valid for the viscous forces:

FA,int,visc,i =

∫
Aint

nj (φ2τij,2 − φ1τij,1) dA (3.85)

Theoretically, the forces on the interface which occur as a result of Reynolds stresses
would have to be considered:

FA,int,turb,i =

∫
Aint

φ1ρ1njv
′′
i v

′′
j |1 − φ2ρ2v

′′
i v

′′
j |2 dA = 0 (3.86)

However, since the forces are zero per definition (see equation (3.71)) the equation
can be ignored.

Finally the adapted formula for viscous walls in porous regions is needed. It reads

FA,wall,i =

∫
Awall

[
φ (njτij − nip) dA . (3.87)
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4. Implementation of Theoretical
Equations into a Flow Solver

The theoretical models for computing flow around bodies with porous surfaces have
been described in the previous chapters. The present chapter presents the imple-
mentation of these derivations into a finite-volume flow solver. The procedure is
explained for the flow solver DLR-TAU-Code [68] which is a well-established un-
structured finite-volume code developed at the DLR (Deutsches Zentrum für Luft-
und Raumfahrt), Germany.

Figure 4.1.: Model of a skyscraper with closed and open windows under aerody-
namic load.

For a figurative description of the implementation, consider the case of a sky-
scraper with closed windows exposed to aerodynamic loads (see figure 4.1). Now
assume that all windows and doors of the skyscraper are open, so that the air can
pass through the building. How will the aerodynamic loads change compared to
the case of the closed windows? The case of closed windows can be solved with
a standard flow solver, however the case of open windows is suitable for the new
flow solver with porous flow capabilities. Thereby, the rooms of the building rep-
resent the pores which are connected by the open doors and windows. Assuming,
that the porous properties (like permeability κ and Forchheimer coefficient cF) of
the “porous building” are known, the flow can be solved without any knowledge of
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the exact room structure.
In contrast to the mesh for the skyscraper with closed windows (figure 4.2 to the

left), the case of open windows requires additional grid cells in place of the building
(figure 4.2 to the right). Thereby, the outer grid cells of the porous region must
match with the nonporous region.

Figure 4.2.: Mesh for a skyscraper with closed windows (nonporous case) and with
open windows (porous case).

The tasks of the solver can be split into two major parts (see also figure 4.3):

• Add the effect of the porous medium inside a grid cell to the flux balance.

• Compute the flux over the interface between the porous and nonporous re-
gions.

These two issues will be discussed separately in the following sections. Besides,
minor changes have to be carried out: Additional diffusion fluxes have to be added to
the Reynolds-stress balances according to section 3.6.3. Finally, when wall distances
are required by the turbulence model, the distances over the porous interface must
be considered according to section 3.10.

4.1. Implementation of Darcy and Forchheimer
term into the flow solver

Let the residual of each grid cell be defined as the fluxes through the cell faces plus
the source and the sink terms which act inside the given cell volume. Then, in the
porous regions, the contributions from the Darcy and Forchheimer terms have to
be added as additional source/sink terms to the residuals of the momentum and
the turbulence equations as given in sections 3.4, 3.6.1, 3.6.2 and 3.7. In case of the
implicit scheme for time stepping as it is used in TAU [24], the flux Jacobians have to
be modified by a contribution of the additional source/sink terms in porous media.
Also, when switching to an explicit Runge-Kutta time stepping scheme, the time

88



4.1. Implementation of Darcy and Forchheimer term into the flow solver

P (Darcy) + P (Forch)

interface flux

Figure 4.3.: Illustration of the two main tasks of the implementation for the porous-
flow solver. In one task, the effect of the porous medium inside a grid cell is added
to the flux balance. In the other, the fluxes over the interface between the porous
and the nonporous regions are computed.

step is modified on the basis of the Jacobians of the additional terms. The Jacobians
are calculated with the assumption that the flux variables are only dependent on
themselves while all the other variables and coefficient are independent of the flux
variable. In this procedure, the density is also set constant such that the velocity can
be multiplied with the density in order to obtain the momentum as flux variable.
With the given assumptions, the contributions of the additional terms in porous
regions to the important flux Jacobians are as follows: The contribution of the Darcy
term to the Jacobian of the momentum equation is:

∂

∂ρvi

(
φ
µ

κ
vi

)
=

φ

ρ

µ

κ
(4.1)

The contribution of the Forchheimer term (3.15) to the Jacobian is simplified by tem-
porarily replacing each velocity component with the length of the velocity vector.
The result is, that only the first term of the Forchheimer term containing the ve-
locity as a variable contributes to the Jacobian. The Forchheimer Jacobian of the
momentum equation therefore reads

∂

∂ρ|~v|

(
sign (vi)φ2 cF√

κ
ρ|~v|2

)
= 2 · sign (vi)φ2 cF√

κ
|~v| (4.2)

where sign (vi) is -1 if vi is less than zero and 1 if vi is bigger than zero.
The porous-medium contributions to the Jacobian of the Reynolds stresses are

∂

∂ρv′′i v
′′
j

(
2φ

µ

κ
v′′i v

′′
j

)
= 2

φ

ρ

µ

κ
(4.3)
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for the Darcy term (3.25) and
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(4.4)

for the Forchheimer term, where the derivatives ∂v′′
l v

′′
mv′′

n

∂v′′
i v

′′
j

are given by

∂v′′l v
′′
mv′′n

∂v′′i v
′′
j

=
ct
ε
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l=i∧k=j
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)] (4.5)

if the model by Hanjalić and Launder [31] is used for computing the triple correla-
tions (3.30). See appendix A.2 for the details of the derivation.

Finally, a contribution to the Jacobian of the turbulent dissipation-rate ε is needed.
It is

∂P (Darcy)
ε

∂ε
+

∂P (Forch)
ε

∂ε
= 2φ

µ

κ
+ φ2 cF√

κ

[
8

3
|~v|+ vk

|~v|
cε,F

k

ε2
v′′kv

′′
i

∂ε

∂xi

]
(4.6)

in which P (Darcy)
ε and P (Forch)

ε are taken from equations (3.38a) and (3.48).

4.2. Flux computation across nonporous-porous
interface area

The flux computations across the interface are accomplished by a central scheme.
However, a direct application of this scheme to the adjoining cells on the porous
and the nonporous interface sides is not possible because the interface acts as sink
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or source for several fluxes. Thus, the flux computation is split into two parts, com-
puting the flux into the porous region and computing the flux into the nonporous
region separately. For each flux computation a ghost cell is introduced as illustrated
in figure 4.4. The procedure for computing the flux into the porous region is as fol-
lows:

1. Transform the flow state of the nonporous cell into a porous ghost cell by
using the interface conditions described in section 3.11.

2. Compute the flux into the cell of the porous region by applying a central
scheme between the porous ghost cell and the cell of the porous region.

The same procedure is processed for computing the flux into the nonporous cell.
However, the following difficulties are observed:

• The just described scheme does not strictly provide conservation of fluxes
over the interface. However, this would be favourable especially to ensure
mass and energy conservation. Thus, an extension of the given scheme is
presented which restores the flux conservation.

• Computation of artificial dissipation fluxes over the interface is needed to
stabilize the central scheme.

• Meshes with low resolutions would quickly lead to a wrong behaviour of
the turbulent dissipation-rate ε. This is counteracted by a correction of the
interface conditions.

• Transformation rules between xyz-coordinate system and coordinate system
aligned with the interface normals are needed for the computation of the flow
state in the ghost cells.

All of the given points will be discussed in the following sections.

4.2.1. Restoring of the conservation of the fluxes at the
interface

The fact that the fluxes are strictly conserved is one of the strengths of the finite-
volume methods. However, the previously described flux-computation procedure
over the interface breaks the conservation of fluxes. This is restored by applying
the following steps:

The general flux Faverage over the two interface sides 1 and 2 is computed by

F1,average =
1

2

(
F1 − F1,ghost

)
F2,average =

1

2

(
F2 − F2,ghost

) (4.7)
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vi,1, p1,
. . .

vi,2, p2,
. . .

vi,2,ghost,
p2,ghost,
. . .

vi,2, p2,
. . .

vi,1, p1,
. . .

vi,1,ghost,
p1,ghost,
. . .

transformation to ghost 1transformation to ghost 2

flux computation
nonporous region

flux computation
porous region

Figure 4.4.: Illustration of ghost cells in order to compute fluxes over the nonporous-
porous interfaces.

where F1/2 is the flux determined with the flow state at the interface side 1/2 and
where F1/2,ghost are the fluxes calculated with the flow states of the ghost cells.

Next, the fluxes of the ghost cells are split into two parts where the first part F1/2

embodies the flux of a non-ghost cell and the second part ∆Fghost is the deviation
from this non-ghost flux:

F1,ghost = F2 +∆F1,ghost

F2,ghost = F1 +∆F2,ghost
(4.8)

It is expected that for a perfectly converged solution, the deviations ∆Fghost would
be the same on both sides,

∆F1,ghost = ∆F2,ghost , (4.9)

as the fluxes for a converged solution must become

F1 = −F1,ghost

F2 = −F2,ghost .

This allows to determine an average deviation:

∆Faverage, ghost =
1

2

(
∆F1,ghost +∆F2,ghost

)
(4.10)
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Using these definitions as a replacement of the deviations ∆F1/2,ghost the equa-
tions (4.8) become

F1,ghost, conservative = F2 +∆Faverage, ghost

F2,ghost, conservative = F1 +∆Faverage, ghost
(4.11)

and plugging these “conservative” ghost fluxes back into the starting equation (4.7)
gives the conservative fluxes

F1,average, conservative =
1

2

(
F1 − F2 −∆Faverage, ghost

)
F2,average, conservative = −1

2

(
F1 − F2 +∆Faverage, ghost

)
.

(4.12)

The conservative nature of equations (4.12) becomes directly apparent for flow prop-
erties where ∆Faverage,ghost is zero. This is for example always the case for mass
fluxes. For other properties like momentum fluxes, conservation is still valid since
the interface acts as a source or sink term with the magnitude of 2∆Faverage, ghost.

4.2.2. Computation of artificial dissipation fluxes across the
interface

In order to stabilize the numerical solution process with the central scheme, artificial
dissipation fluxes are added. The flow solver TAU uses the form given in [48]. Suited
for the differential notation of the Navier-Stokes equations it reads

Dartifical = α
(
κ2∇2w + κ4∇2(∇2w)

)
. (4.13)

Here, ∇2 is the Laplacian operator, w is an arbitrary conservative variable (ρ, ρvi,
…), α is a scaling factor dependent on the Eigenvalues of the Navier-Stokes equa-
tions, and κ2 and κ4 are functions to blend between the contributions of second and
fourth gradients.

Equation (4.13) implies that inside two neighboring cells, the first gradients as
well as third gradients of the conservative variables can be computed. However, at
the interface cells third gradients can not be computed as this would require inter-
face conditions for second gradients. Hence, at the interface, the blending in equa-
tion (4.13) is adjusted in a way that the second gradient term κ2∇2w is fully active
and the fourth gradient term κ4∇2(∇2w) is disabled. This results in an accuracy
reduction from second to first order close to the interface.
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4. Implementation of Theoretical Equations into a Flow Solver

4.2.3. Correction of turbulent dissipation-rate for
low-resolution meshes

Consider an extremely low permeable mediumwhere the surface is so impenetrable
that it will behave like a viscous wall. For such a medium the Darcy and Forch-
heimer terms in the momentum and in the turbulence equations will lead all the
relating conservative variables to zero. While this is the correct behaviour for the
momentum and Reynolds stresses this is not the case for the turbulent homogeneous
dissipation-rate εh. Its value should tend to the value given in equation (3.63). For
the nonporous interface side, εh would be

εh|xn=0,nonporous = ν

(
∂k

1
2

∂xn

∣∣∣∣
xn=0,nonporous

)2

. (4.14)

This condition is different than the required value on the porous interface side

εh|xn=0,porous = ν

(
∂k

1
2

∂xn

∣∣∣∣
xn=0,porous

)2

= 0 (4.15)

since the turbulent kinetic energy k inside the nearly impenetrable porous medium
will constantly be zero. Note, that equation (4.15) is also consistent with the fact that
the Darcy and Forchheimer terms will drag the homogeneous turbulent dissipation-
rate εh to zero. Typical profiles of the dissipation-rate and the square root of the
turbulent kinetic energy which are expected at the nonporous-porous interface are
sketched in figure 4.5.

The above stated limiting conditions (4.14) and (4.15) for very dense porous media
clearly diverge from the interface condition given by (3.72), that

φ1ρ1ε
h
1 = φ2ρ2ε

h
2 . (4.16)

One option to overcome this contradiction is to make the mesh spacing extremely
small such that the drop of the homogeneous turbulent dissipation-rate εh is re-
solved. However, in this case the mesh resolution for a correct solution is expected
to be magnitudes higher than the required mesh spacing near a viscous wall. There-
fore, as an alternative, inside the solver the interface condition for the homogeneous
turbulent dissipation-rate εh is adapted as:

εh2,ghost =
φ1ρ1

φ2ρ2,ghost

(
εh1 − εhlow-resolution-correction

)
εh1,ghost =

φ2ρ2
φ1ρ1,ghost

εh2 + εhlow-resolution-correction

(4.17)
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4.2. Flux computation across nonporous-porous interface area

where

εhlow-resolution-correction = ν1
∂k

1
2

∂xi

∣∣∣∣
1

∂k
1
2

∂xi

∣∣∣∣
1

− ν1,ghost
∂k

1
2

∂xi

∣∣∣∣
1,ghost

∂k
1
2

∂xi

∣∣∣∣
1,ghost

.

Here, the quantities with index 1 are at the nonporous side. In case both sides of
the interface have a porous medium, the index 1 refers to the side with the higher
permeability. The numerical value of the gradients ∂k

1
2

∂xi
at the ghost cells has to be

obtained from the jump condition (3.77) and reads

2µ1k
1
2
1

∂k

∂xn

∣∣∣
1
− 2µ1,ghostk

1
2

1,ghost
∂k

∂xn

∣∣∣
1,ghost

=(1− φ2)
∆gRSij,1,ghost

2
− (1− φ1)

∆gRSij,1
2

.

The modified relation (4.17) coincides with the original relation (4.16) for con-
verged solution with sufficiently high mesh resolutions as the low-resolution cor-
rection tends to zero.

xn

k
1
20

xn

εh
ν

(
∂k

1
2

∂xi

)2

0

Figure 4.5.: Interface behaviour of the square root of the turbulent kinetic energy k
and the turbulent homogeneous dissipation-rate εh for a very dense porous
medium [49].

An exemplary computation result for two under-resolved meshes and one fully
resolved mesh is shown in figure 4.6. The case with the strongly under-resolved
mesh (y = 5× 10−4H) shows an abrupt change of the gradient of the Reynolds
stress vxvx at the interface. This causes the low-resolution correction to let the ho-
mogeneous dissipation-rate εh jump at the interface. On the contrary, the case with
the fully resolved mesh (y = 2× 10−5H) does not show such a jump of Reynolds-
stress gradients and, hence, the homogeneous dissipation-rate will also not jump
at the interface. Besides that, it becomes visible that the results of the different
meshes do not perfectlymatch. It seems, that the fully resolvedmesh under-predicts
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4. Implementation of Theoretical Equations into a Flow Solver

the homogeneous dissipation-rate. However, this drawback is independent of the
low-resolution correction but must be credited to the theory of the interface condi-
tions (3.81) and (3.82) which could be improved in future.

φvx φvxvx

0.
00

3H

φεh

0.
01
H

y = 5 · 10−4H

y = 1 · 10−4H

y = 2 · 10−5H

Figure 4.6.: Effect of the grid resolution at the nonporous–porous interface on the
simulation result of a channel with a hardly permeable lower porous part. H is
the height of the nonporous channel part. y defines the spacing of the first grid
point over and below the porous interface.

4.2.4. Computation of the numerical gradients at the ghost
cells

The computation of the gradients in the ghost cells is described in section 2.8 (lam-
inar flow) and in section 3.11.2 (turbulent flow). In section 2.8 it is remarked that
only gradients normal to the interface require special interface treatment since the
gradients in tangential direction are already defined by the variable values of the
ghost cells.

Figure 4.7 shows the procedurewhich is performed by the flow solver for a porous
ghost cell:

1. The gradients in the tangential direction are directly copied from the porous
interface side to the porous ghost cell.

2. The gradients in the normal direction are taken from the nonporous interface
cell but before copying them to the ghost cell they are transformed according
to section 3.11.2.

The procedure is applied in the same manner for the nonporous ghost cells. The
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4.2. Flux computation across nonporous-porous interface area

procedure in mathematical language reads

∂ϕ

∂xi

∣∣∣∣
2,ghost

=
∂ϕ

∂xi

∣∣∣∣
2

− ni

(
∂ϕ

∂xn

∣∣∣∣
2

− ∂ϕ

∂xn

∣∣∣∣
2,ghost

)

with
∂ϕ

∂xn
= nj

∂ϕ

∂xj

where ni is the i-th coordinate component of the interface normal vector, ∂
∂xn

is the
gradient in the direction of the normal vector and ϕ is the considered flow variable.

cell 1cell 2

∂vi

∂xt

∣∣
2

∂vi

∂xn

∣∣
2

∂vi

∂xt

∣∣
1

∂vi

∂xn

∣∣
1

ghost 2use without transformation in ghost

transform before using in ghos
t

Figure 4.7.: Computation of the gradients at the porous ghost cells.
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Figure 4.8.: Artistic solution of flow field around skyscraper with closed (left) and
open (right) windows including the 2D-velocity vectors and the pressure field.
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5. Verification of the Theory and
the Solver Implementation

In the course of the theoretical chapters, several examples of computational results
were given which served as qualitative illustrations of the different aspects for the
described theoretical models. The current verification section takes some of these
setups and converts them to cases of which the ideal solution is known – either
by analytical results or by limiting conditions which must coincide with nonporous
cases. All of these cases serve as a verification of the solver implementation and
also, to a very limited amount, verify the theoretical developments. The correct
reproduction of the ideal results is a necessary condition for the validity of more
complex cases.

5.1. Pressure drop and jump of flow quantities in a
channel with porous blockage

The setup of figure 5.1 can serve as a test case to verify the Darcy and Forch-
heimer term in the porous region and also for the isentropic flow change over the
nonporous-porous boundary.

nonporous porous nonporous
φ = 0.5

Da = 1× 10−5
cF = 0 or 0.1

slip wall

slip wall

L

in
flo

w

ou
tfl
ow

v0, ρ0, p0
Re = 200 000

Ma = 0.01 or 0.3

Figure 5.1.: Channel with porous blockage for the verification for the pressure drop
in a porous region and the isentropic flow change over the nonporous-porous
interfaces.
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5. Verification of the Theory and the Solver Implementation

The contributions of Darcy and Forchheimer terms is verified for a very small
Mach number of Ma = 0.01 which imitates incompressible flow. This case allows
to analytically solve the pressure drop inside the porous region. It it presented in a
way similar to Mößner and Radespiel [49]. The governing equation reads

∂p

∂x
= −φ

µ

κ
vx − ρ

φ2cF√
κ
vx

2 , (5.1)

or, in its dimensionless form:

∂p∗

∂x∗ = −φ
2

Da Re
vx
v0

− ρ

ρ0

2φ2cF√
Da

(
vx
v0

)2

(5.2)

with p∗ = p
ρ
2 v

2
0
, x∗ = x

L and Re = ρLv0

µ . The reference velocity v0 is taken at the
inflow of the channel. The density ρ and the viscosity µ are taken to be constant,
therefore any averaging indicators are omitted. The right hand side of equation (5.2)
is constant for incompressible flow and, thus, the dimensionless pressure drop∆p∗

along the distance ∆x∗ inside the porous region has to be

∆p∗ = −φ
2

Da Re
vx
v0

− ρ

ρ0

2φ2cF√
Da

(
vx
v0

)2

∆x∗ . (5.3)

The numerical result on a mesh which has 60 equally distributed cells along the
channel is plotted in figure 5.2. For comparison, equation (5.3) is evaluated inside the
porous region. The solutions from the two methods match. Note, that the velocity
profile of the numerical solution is only shown for cF = 0 as it is equal for both
Forchheimer coefficients. This is expected since the flow is incompressible.

Still considering the incompressible flow, according to equation (3.67) the inter-
face conditions read

ρvnonporous region = ρφvporous region

which implies that for a porosity of φ = 0.5 the velocity must double inside the
porous region.

With the incompressible interface condition of the velocity satisfied, the more
sophisticated case of compressible flow is considered. Therefore, the Mach number
is increased to a value of Ma = 0.3 for the case with cF = 0. Flow is still regarded
as laminar. Now, the results must fulfill the interface conditions of section 3.11.1.
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5.2. Velocity profile in laminar channel with porous bottom

position x∗
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cF = 0.1
analytical

vx
v0

Figure 5.2.: Comparison of the numerical results with the analytical solution of the
pressure progress along a channel with and without Forchheimer term at Ma =
0.01. Additionally, the velocity profile from the numerical solution (cF = 0) is
shown.

The three necessary conditions are written in their dimensionless forms:

Isentropic condition:
p∗(
ρ
ρ0

)γ = constant

Conservation of Mass:
ρ

ρ0

vx
v0

φ = constant

Conservation of Energy:
(
vx
v0

)2

+
γ

γ − 1

p∗

ρ
ρ0

= constant

The numerical results are shown in figure 5.3. With this data, the necessary condi-
tions can be calculated at both interfaces (inflow and outflow of the porous region).
Without being shown, it is emphasized that the results are correct. This verifies the
proper implementation of the interface conditions at least for laminar flow.

5.2. Velocity profile in laminar channel with porous
bottom

Boundary layers over porous media can be verified with a channel flow in which
the lower part of the channel is filled with a porous medium (see figure 5.4). Under
the assumption of incompressible flow and that the Forchheimer term has no con-
tribution (cF = 0), the flow quantities only change along the channel height (except
the pressure). Thus, the only equation to solve is an ordinary differential equation
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Figure 5.3.: Numerical solution for channel with porous blockage for compressible
flow (Ma = 0.3, cF = 0, the dimensionless inflow pressure is p∗0 = p0

ρ0
2 v2

0
=

19.420).
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no-slip wall

interfaceperiodic
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periodic
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φ = 0.5, Da = κ
H2 = 1× 10−3, cF = 0
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y

Figure 5.4.: Channel flow in which the lower part is filled with a porous medium.
The setup is used for the verification of boundary layers over porous media.
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5.2. Velocity profile in laminar channel with porous bottom

of second order:

µ
∂2vx
∂y2

− φ
µ

κ
vx =

∂p

∂x
(5.4)

where the pressure gradient ∂p
∂x can be considered as a constant. The boundary

conditions are defined through no-slip conditions on the walls and the interface
conditions (3.67a), (3.69) and (3.74):

vx|y=H = vx|y=−H = 0

vx|y=0,nonporous = φvx|y=0,porous

∂vx
∂y

∣∣∣∣
y=0,nonporous

− ∂vx
∂y

∣∣∣∣
y=0,porous

= (1− φ)β
φ√
κ
vx|y=0,porous

(5.5)

Equation (5.4) is generalized by substituting the velocity vx and the y-coordinate
by

y∗ =
y

H
; v∗x =

vx
H2

µ
∂p
∂x

(5.6)

leading to

∂2v∗x
∂(y∗)2

− φ

Da
v∗x = 1 (5.7)

where the Darcy number is defined by Da = κ
H2 . Accordingly, the new boundary

conditions are

v∗x|y∗=1 = v∗x|y∗=−1 = 0

v∗x|y∗=0,nonporous = φv∗x|y∗=0,porous

∂v∗x
∂y∗

∣∣∣∣
y∗=0,nonporous

− ∂v∗x
∂y∗

∣∣∣∣
y∗=0,porous

= (1− φ)β
φ√
Da

v∗x|y∗=0,porous

(5.8)

The solution in the nonporous region of the channel is achieved by solving equa-
tion (5.7) without the Darcy term. After solving the equations inside and outside
the porous region the velocity profile reads

v∗x =


(y∗)2

2 + c1y
∗ + c2 for y∗ > 0

c3e

√
φ
Da y

∗
+ c4e

−
√

φ
Da y

∗
− Da

φ for y∗ < 0
. (5.9)
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The constants c1 – c4 are determined through the boundary conditions:

c1 + c2 = −1

2

c3e
−
√

φ
Da + c4e

√
φ
Da =

Da
φ

c2 − φc3 − φc4 = −Da

c1 − (1− φ)
β√
Da

c2 −
√

φ

Da
c3 +

√
φ

Da
c4 = 0

(5.10)

This constitutes a linear set of equations, the explicit solution is not being shown
here. Rather, it is solved after inserting the actual values of the flow parameters β,
φ, Da.

The numerical setup uses a mesh with 380 grid points along the channel height.
The outflow of the channel is fed into the inflow as periodic boundaries. The pres-
sure gradient is replaced by a volume force which drives the fluid through the chan-
nel. The Mach number inside the channel is of the order Ma ≈ 0.1 to ensure both
incompressible flow behaviour and a reasonable convergence rate for the compress-
ible solver.

Figure 5.5 compares the numerical solution against the analytical solution for
three different jump coefficients. The velocities are made dimensionless with the
bulk velocity vb in the free flow,

vb =
1

H

H∫
0

v dy

in which v refers to the analytically solved velocity v∗x or the solution of the nu-
merical solution vx, respectively. Analytical and numerical solutions match very
well verifying the correct implementation of the equations into the numerical flow
solver.

5.3. Limiting cases for the turbulent channel with
porous bottom

There are no such analytical solutions for turbulent cases as they exist for laminar
cases. However, the solution for two limiting cases, as described below, can be
obtained from the original flow solver which does not have porous flow capabilities.
The setup and computational results are already presented [49] and will be reviewed
here.
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vx
vb

0 0.25 0.5 0.75 1 1.25 1.5

0.
05
H

β = −1
β = 0
β = 1

analytical

Figure 5.5.: Comparison of the numerical results with the analytical solution for a
laminar channel where the lower part is filled with a porous medium.

The two limiting cases are based on the channel with a porous bottom part in
figure 5.4 which is already used for the verification of the laminar boundary layer
profiles. In this channel, the properties of the porous medium are set, firstly, to
a very high permeability κ and the porosity φ = 1 and, secondly, to a very low
permeability κ. The first case has to match a channel flow where the porous media
is removed. The second case must be equal to a channel flow in which the lower
wall is shifted to the position of the interface. The principle is also displayed in
figure 5.6.

0

y = −H

y = H

x

y

no-slip wall

no-slip wall

φ = 1, cF = 0,
Da = high/low

no-slip wall

no-slip wall

equivalent case to
Da = high

no-slip wall

no-slip wall

equivalent case to
Da = low

Figure 5.6.: Principal sketch for verifying porous media computations with limit-
ing properties. The high-permeability case (Da = high) has to behave like
the channel where the porous medium is removed. The low-permeability case
(Da = small) must behave like the case where the lower channel wall moves up
to the nonporous-porous interface.
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The mesh for the case with porous medium has 180 points along the complete
channel height. The nonporous meshes which serve as reference are obtained by
either using the same mesh but redefining the porous region to nonporous or by
deleting the whole porous region. The Reynolds number in the channel is defined
as

Re =
ρvb2H

µ

for the extremely permeable case and as

Re =
ρvbH

µ

for the case with an extremely low permeable medium. The bulk velocity vb is the
mean velocity in the complete channel for the extremely permeable case and the
mean velocity in the nonporous region for the case with low permeability. The
Reynolds number is set to a value of Re ≈ 6000, which ensures turbulent flow in
channels. The Mach number is of the order Ma = 0.1. The turbulence model which
is used is the JHh-v2 Reynolds-stress model presented in section 3.8.

The computational strategy is similar to the description given for the laminar
case (section 5.2) with periodic inflow/outflow and forcing terms which replace the
pressure gradients. The final result which is demonstrated in figure 5.7 shows that
the computational results match with the reference cases without porous medium.
Note, that the Reynolds stresses v′′xv′′x and v′′xv′′y and also the homogeneous turbulent
dissipation rate εh are made dimensionless with the shear stress velocity uτ at the
top wall

uτ =

√(
ν

∣∣∣∣∂vx∂y

∣∣∣∣)
y=H

.
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Figure 5.7.: Numerical solutions of a channel with porous lower part where the
porous medium is, in one case, extremely permeable and, in the other, very dense.
The solution is compared to the numerical results of channels without porousme-
dia. The channel Reynolds number Re ≈ 6000 is based on the height and bulk
velocities of the nonporous computations. The Mach number in the channel is of
the order Ma ≈ 0.1.
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6. Calibration and Validation of
Models for Flow over Porous
Media

The previous chapters presented the theory and implementation for simulating flow
over and through porous media with a volume- and time-averaging approach. Also,
it was verified that the modified flow solver DLR TAU-Code works correctly. This
chapter shows that given theoretical aspects can reflect flow phenomena in the real
world. Two questions will be answered:

• During the progress of developing the porous simulation model, several pa-
rameters have been introduced. This asks for understanding the effects and
sensitivities of those parameters. Is it possible to find a general set of fixed
values?

• Are the given models able to reflect the physical flow phenomena in sufficient
accuracy?

For answering these questions direct numerical simulations (DNS) of Breugem [10]
are consulted who solved the flow through a simple channel with a porous bottom.
Breugem supplies high precision data of several flow quantities also inside the por-
ous medium which helps to calibrate the modelling parameters. Afterwards, com-
putations of an airfoil with a porous trailing edge are compared with wind-tunnel
experiments.

6.1. Channel with porous bottom
Breugem [8, 7, 10, 9] accomplished DNS-computations for a channel where the
lower part is filled with a porous medium (see figure 6.1). In his publications Breu-
gem used two kinds of porous media. The first one is a rather simple artificial struc-
ture consisting of a 3-dimensional grid of cubes. In contrast, the structure of the sec-
ond kind of porous media is unknown but only the integral properties (porosity φ,
permeability κ, Forchheimer coefficient cF) are defined. While the flow through
the grid of cubes can be computed with resolved DNS-computations the cases with
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Figure 6.1.: General sketch of Breugem’s DNS-computation cases of channel with
porous bottom.

unknown porous structure require a volume-averaging approach. Thanks to the ex-
tensive documentation of Breugem for all his computations, they make them to the
ideal validation candidates which also help to calibrate the unknown parameters of
the models given in the present work. Note, that the solutions which are obtained
with the models of the present work are from now on called “VRANS” which stands
for volume- and time-averaged Navier-Stokes equations.

In principal, the VRANS-model consists of six unknown parameters which appear
during the modelling procedure of the flow through porous media:

• The jump coefficient β which controls the jump of velocity-gradients of the
nonporous-porous interface (see equation (3.75)),

• The turbulent jump coefficient βt which controls the jump of gradients of
Reynolds stresses over the nonporous-porous interface (see equation (3.80)),

• The wall distance offset parameter cwd for increasing the effective distance of
a point in space from the nonporous-porous interface (see equation (3.64)),

• The diffusion parameter cd,p for modelling additional diffusion of Reynolds
normal stresses in porous media (see equation (3.31)),

• The gradient diffusion parameter ct for modelling velocity fluctuation triple
correlations (see equation (3.30)),

• The gradient diffusion parameter cε,F for modelling velocity gradient correla-
tions (see equation (3.42)).

In order to find a suitable parameter set three DNS-cases of Breugem have been
chosen to serve as references. They include a resolved laminar case (CUB-LAM), a
resolved turbulent case (CUB) where the porous medium consists of a grid of cubes
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6.1. Channel with porous bottom

and one volume-averaged turbulent case (E80). The case CUB-LAM can serve to
adjust the jump coefficient β independently from the other parameters which only
affect turbulent flow. These remaining parameters are calibrated with the cases CUB
and E80. While the permeability κ of the porous medium of the CUB-case is rather
high, the E80-case is representative for small permeabilities. The properties of the
porous media for the different channel cases are given in table 6.1.

CUB-LAM CUB E80

Porosity φ 0.875 0.875 0.8
Darcy number Da = κ

H2 5.2× 10−4 3.4× 10−4 7.1× 10−6
Forchheimer coefficient cF 0 0.026 0.19

Table 6.1.: Properties of the porous media for the channel cases with a porous
bottom.

Before the detailed description of the individual cases is given, a suitable param-
eter set is suggested:

β = −5; βt = 0.7; cwd = 5; cd,p = 0.2; ct = 0.11; cε,F = 0 (6.1)

The values of the parameters have been manually adjusted during many computa-
tions. The procedure revealed that varying the parameter ct can help improving
the solution but its not essential to set it to a specific value at least for the compu-
tation cases of this work. Rather, it is sufficient to maintain the standard value of
ct = 0.11 of Hanjalić and Launder [31]. Besides, the DNS-validation data do not
supply sufficient data to get a detailed insight into the dissipation-rate equation. In
consequence, the parameter cε,F is set to zero.

6.1.1. General numerical setup
The DNS-channels are infinitely long and wide. This is emulated by making the
inflow area periodic to the outflow and the right channel side periodic to the left
channel side. In this context, periodic denotes that the flow data of one periodic
plane is fed into its partner. The flow is driven through the channel by an artificial
forcing term, a term which replaces the effect of the pressure gradient in a non-
periodic channel. The driving force is adjusted in a way that the Reynolds number
results in a value of Re = vbH

νb
= 5500. Herein, the bulk velocity vb is the mean

velocity in the nonporous region and the bulk viscosity νb is the mean viscosity.
The setup of the VRANS-computation will be exemplarily shown for the case

CUB.The grid and the boundary conditions are shown in figure 6.2. It is principally
similar to theDNS-setup: Inflow and outflow are periodic to each other and a forcing
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term takes the role of the pressure gradient to drive the fluid through the channel.
The definition of the left and right side of the channel differs in respect that they
are defined as symmetry planes. This given setup leads to a quasi-1-dimensional
problem where the flow quantities only change along the channel height. It is also
visible that the interface between nonporous and porous medium is not exactly
centered in the channel but aligned with the top row of the grid of cubes. Since this
alignment is not possible for the case E80 it is adjusted manually to fit best with the
DNS-results1.
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Figure 6.2.: Computational grid for case CUB including the definition of the bound-
aries and the position of the nonporous-porous interface.

The setup of the numerical solver is as follows: The mean-flow inviscid fluxes are
obtained with a second-order central scheme with scalar dissipation. The convec-
tive turbulent fluxes are computed with a first-order upwind Roe scheme. The inte-
gration between the iteration steps is performed with a Backward-Euler scheme. In
contrast to the DNS-computations the equations are solved for compressible air. The
averaged Mach number in the upper half of the channel is set to about Ma ≈ 0.15
which is a compromise between obtaining a good convergence rate and preserving
an incompressible flow behaviour. The porous region increases the duration per
iteration step by a factor of about 1.6 if compared to a channel with the same grid
but without the porous material. This factor depends on the number of porous cells.
It is expected that if the number of cells in the porous region was smaller the time
overhead would be less.

Figure 6.3 shows a typical residual progress for the case CUB.The results are suffi-
ciently converged such that there are no more visible changes of the flow variables.
All cases are tested for grid convergence for at least one parameter set. An example

1The most obvious choice for the interface position of case E80 would of course be the same position
as used for the DNS-computations. However, VRANS-computations showed that this position is not
appropriate because of the different interface treatments.
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6.1. Channel with porous bottom

is given for case CUB in figure 6.4. The results of the three different grids change
only marginally. Therefore, the coarsest grid with 270 cells along the channel height
is used for further computations.
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Figure 6.3.: Residual progress of chan-
nel case CUB for obtaining the result
in figure 6.9.
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Figure 6.4.: Demonstration of grid convergence for the computation of the channel
with cubes. The given cell number is the number of cells along the channel height.

6.1.2. Setup and results of the laminar channel case
CUB-LAM

The laminar DNS-computations of Breugem can help to estimate the magnitude of
the jump coefficient β. There is also the big advantage that the VRANS-implemen-
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6. Calibration and Validation of Models for Flow over Porous Media

tation was verified in section 5.2 for these kinds of setups.
The channel geometry with the grid of cubes which was used by Breugem is

displayed in figure 6.5. Besides that, it is shown that the interface for the VRANS-
computation is positioned at the upper bound of the cubes. This is not self-evident.
Breugem discussed in [8] that the position of the interface strongly influences the
value of β. However, the present work aims to compute real-life applications where
the user should not be confronted with the problem where exactly the interface has
to be. This is why the position of the interface is fixed at the most natural place
– which is the outer bound of the porous medium. While detailed studies of the
interface position are not needed, the sensitivities of the jump coefficient β must be
studied.
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Figure 6.5.: Channel setup and geometry of the porous medium for the laminar
channel case CUB-LAM.

The results for three different jump coefficients β is shown in figure 6.6. They
are computed with a mesh resolution of 270 points along the channel height. While
Breugem performed the DNS-computations at a bulk Reynolds number of Re =
vbH
νb

= 1 to ensure laminar flow, the present computations were accomplished at the
same Reynolds number as the other channel cases CUB and E80 of Re = 5500. Lam-
inar flow is ensured by switching off the turbulent terms in the VRANS-equations.
The choice not to match the Reynolds number is valid because the laminar flow so-
lution is independent of the Reynolds number (see the analytical solution (5.9) and
(5.10)). However, for the Reynolds-number independency exists the one restric-
tion that the Forchheimer term is negligible. Since this is true for the flow setup
of the DNS-computations, the Forchheimer term is switched off in the VRANS-
computations by setting cF to zero.

Note that due to the weighting with the porosity φ, the velocity profiles are con-
tinuous across the interface. This porosity-weighted velocity is also called superfi-
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6.1. Channel with porous bottom

cial velocity. The results show that the peak value of the velocity profile agrees best
with the DNS-results for a negative jump coefficient of β = −5. On the other hand,
at the position of the interface, the solution of a jump coefficient of zero is closest
to the DNS-data and it appears that slightly positive jump coefficients would bring
the results even closer.

φ
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vb

0 0.25 0.5 0.75 1 1.25

0.
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0.7

0.
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0.3

DNS
β = −5
β = 0
β = 5

Figure 6.6.: Comparison of laminar DNS-results for case CUB-LAM against VRANS-
computations with different jump coefficients β.

At this point the spatial averaging procedure of Breugem must be discussed. The
averaging volume of Breugem ranges over a span of two cubes and two clearances.
This is a total length of 0.25H . Inside the averaging volume Breugem uses a weight-
ing function where the weighting value grows linearly from zero at the volume
bounds to its maximum value at the volume center. The same averaging procedure
is now applied to the VRANS-computations. The averaging filter for an arbitrary
flow quantity ϕ reads

ϕfiltered(y) =

0.125H∫
−0.125H

m(r)ϕ(y + r) dr (6.2)

with the definition of the weight:

m(r) =

{
16
H · (0.125H − |r|) if |r| < 0.125H
0 if |r| > 0.125H

. (6.3)

Figure 6.7 shows the filtered and unfiltered result for a jump coefficient of β = −5
compared to the DNS-data. It becomes clear that after filtering the VRANS-solution
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almost exactly matches the DNS-results. The reason for the growing difference at
the peak value of the velocity in the nonporous region comes from the fact that
Breugem did not use the filter in the upper half of the channel.
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Figure 6.7.: Effect of a spatial filter on the VRANS-data for the laminar channel case
CUB-LAM at a jump coefficient of β = −5. The same filter has been used by
Breugem on his DNS-data in [8].

Finally, a summary for the validation with case CUB-LAM is given. Firstly, it is
shown that the jump coefficient of β = −5 leads to a very good match between
VRANS- and DNS-results. The negative sign of the jump coefficient means that
the porous-medium drag at the nonporous-porous interface is locally increased. In
other words, the velocity at the interface decreases together with the jump coeffi-
cient. This coincideswith the discussion of theoretical section 2.8.1 which states that
the permeability κ should increase locally. There, it is argued that by creating the
interface area through cutting the porous medium, additional porous surface area is
unveiled in a microscopic sense of view. And this additional structure area means
more viscous drag. The second important point of this summary is, that the spatial
filtering of DNS-data strongly influences the velocity profile close to the interface.
As a consequence, the same spatial filter should be applied to the VRANS-data if a
detailed comparison is demanded.

6.1.3. Numerical setup and results of the turbulent channel
with cubes (case CUB)

The exact geometry of the case CUB is slightly different than the case CUB-LAM.
The cubes are smaller which effectively results in a slightly upwards shifted inter-
face area. The setup of Breugem’s DNS-computations is shown in figure 6.8. The
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6.1. Channel with porous bottom

properties of the cubes representing the porous medium are given by Breugem and
listed in table 6.1.
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Figure 6.8.: DNS-computation domain of Breugem for the case CUB with an addi-
tional view on the detailed porous structure. The size and spacing of the cubes is
based on half the channel height H .

The VRANS-mesh resolves the channel height with 270 cells. The cell spacing
at the upper wall and at the interface is ∆y(upper wall/interface) = 3× 10−4 H . At the
lower wall the spacing is ∆y(lower wall) = 6× 10−4 H . In terms of inner coordinates
y+,

y+ = y · uτ

ν
=

y

H
Reτ with Reτ =

uτH

ν
, (6.4)

the wall spacing ∆y+,(upper wall) at the upper wall is

∆y+,(upper wall) =
∆y(upper wall)

H
Re(upper wall)

τ = 0.12
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and the wall spacing ∆y+,(interface) at the interface is

∆y+,(interface) =
∆y(interface)

H
Re(interface)τ = 0.2 .

TheReynolds numbers in these definitions are used according to Breugemwho com-
puted the values to be

Re(upper wall)
τ = 394 and Re(interface)τ = 669 .

The definition of the shear-stress velocity uτ which is used by Breugem is

uτ =

√∣∣∣∣−〈v′xv′y〉+ ν
∂vx
∂y

∣∣∣∣
where the fluctuation values v′x and v′y are computed from the velocity field before
it is averaged in space. The interface between the porous and nonporous region is
placed at the upper surface of the top row of cubes which measures 1.1H below the
upper wall.
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Figure 6.9.: Comparison of DNS- and VRANS-Computations of channel with cubes.
VRANS (Volume- and Reynolds-averaged Navier-Stokes) are the computation
with the newly developed code while the DNS-data are taken from Breugem [10].
(Applied parameter set: β = −5;βt = 0.7; cwd = 5; cd,p = 0.2; ct = 0.11; cε,F = 0)

The result which is obtained with the parameter set 6.1 is shown in figure 6.9.
DNS- and VRANS-results agree well, especially the velocity profile. Also the local
Reynolds numbers of the VRANS-computations, which obtain a value of

Re(upper wall)
τ = 372 and Re(interface)τ = 619
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6.1. Channel with porous bottom

agree well with the DNS results given above. There remain small differences espe-
ciall for the Reynolds stresses close to the interface. This has various reasons:

• The applied parameter set is a compromise between the three cases CUB-
LAM, CUB and E80. However, there is no strict reason why the parameters
should be independent of the porous medium.

• The modelling of turbulence in the porous media is based on many assump-
tions and simplifications. Obviously, the models are not capable to reproduce
the exact results.

• The spatial filtering as given for the case CUB-LAM (equations (6.2) and (6.3))
is not performed for the present case. Such a filtering would slightly decrease
the strong local curvatures of the VRANS-results below the porous interface.
However, since the expected effect is very small, it is not investigated any
further here.

With this in mind, a preliminary conclusion should be given:

• The agreement betweenDNS- and VRANS-results is good enough to give con-
fidence that the VRANS-models have the potential for reliable predictions of
more complex flow cases.

• The final parameter set of the channel cases must be understood as a first
suggestion but must not be generalized. A generalization would need more
detailed studies with different porous media.

Besides this first conclusion, the CUB channel case is ideal to understand the effect
of the single modelling parameters. This will be the content of the following dis-
cussions.

Effect of the jump coefficient β

Variations of the jump coefficient β are already shown for the laminar case CUB-
LAM in section 6.1.2. The effect is further evaluated in figure 6.10. The slight
changes of the velocity at the interface show the primary effect of this parameter: A
more negative jump coefficient pulls the velocity at the interface to smaller values
whereas a less negative jump coefficient releases the velocity to higher values. An-
other interpretation is that the most negative jump coefficient leads to the largest
gradient jump over the interface. However, this effect can hardly be recognized in
the plot.

The secondary effect on the turbulent shear stress is much more visible. The
modification of the velocity gradient significantly influences the turbulent produc-
tion (3.23a) which has a strong effect on the Reynolds-stress profiles and also on the
gradient jump of the Reynolds stresses (equation (3.80)).
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Figure 6.10.: Effect of the jump coefficient β on the velocity vx, the Reynolds shear
stress v′′xv′′y and the viscous stress ∂τxj

∂xj
for the channel case CUB. (Applied pa-

rameter set: βt = 0.7; cwd = 5; cd,p = 0.2; ct = 0.11; cε,F = 0)

The viscous contributions τij to the momentum equations are shown as a final
graph in figure 6.10. The rather small variations of the jump coefficients also lead to
very small effects on these profiles. However, all shear stress profiles show a sudden
jump over the porous interface originating from the suddenly changing curvature
of the velocity profiles. This is the effect of the abruptly starting Darcy and Forch-
heimer contributions in the porous region.

Lastly, it should be mentioned that when the jump coefficient grows to more pos-
itive values the computations start to become instable. This problem is associated
with the Reynolds stresses which start growing very quickly when the jump co-
efficient approaches zero. And as soon a certain margin is exceeded the Reynolds
stresses start an infinite growth blowing up the computation. This behaviour can
be counteracted by reducing the turbulent jump coefficient βt.

Effect of the turbulent jump coefficient βt

The effect of the turbulent jump coefficient βt on the Reynolds stresses is similar
to the effect of the jump coefficient β on the velocity. For a growing value of βt
the Reynolds stresses are pulled to higher values as clearly shown in figure 6.11.
It is interesting to see that for very small βt-values the different graphs begin to
completely change their behaviour. This is especially visible in the profile of the
turbulent productionPxx. Obviously, the different governing equations are strongly
coupled which results in a very sensitive balance between the different models and
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Figure 6.11.: Effect of the turbulent jump coefficient βt on the velocity vx, the
Reynolds normal stress v′′xv′′x (represented by root mean square of the x-velocity),
the turbulent production Pxx and the diffusion Dxx (including viscous diffu-
sion (3.60), turbulent diffusion (3.59) and pressure diffusion (3.31)) for the channel
case CUB. (Applied parameter set: β = −5; cwd = 5; cd,p = 0.2; ct = 0.11; cε,F =
0)

terms.
As a last comment, note that the standard value of βt = 0.7 is rather high. It is

needed for matching the Reynolds-stress profiles with the DNS-data. The downside
is that the margin to an unbounded growth of the Reynolds stresses is very small.
The strong coupling of the different equations and terms also means that all the
other parameters (β, cwd, cd,p, ct, cε,F) have very limited value ranges.

Effect of the wall distance offset parameter cwd

The redistribution term of the applied JHh-v2 turbulence model contains near-wall
terms. These terms make sure that close to walls the wall-normal velocity fluctua-
tions are damped. At the same time this means that the fluctuation values tangential
to the wall cannot transfer as much energy to the wall-normal fluctuations. The de-
scribed effect appears also close to porous surfaces. The parameter cwd influences
the magnitude of the offset distance which is added to the actual distance between
the considered point in space and the next porous surface. The effect is shown in
figure 6.12. Small offset values (e.g. cwd = 4) lead to decreased wall-normal fluctua-

tions which are represented by
√
v′′yv

′′
y . Simultaneously, the tangential fluctuation
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Figure 6.12.: Effect of the wall distance offset parameter cwd on the Reynolds normal
stresses v′′xv′′x , v′′yv′′y and v′′z v′′z (represented by root mean squares of velocity com-
ponents) and pressure-strain correlation Πyy for the channel case CUB. (Applied
parameter set: β = −5;βt = 0.7; cd,p = 0.2; ct = 0.11; cε,F = 0)

components
√

v′′xv
′′
x and

√
v′′z v

′′
z increase. The same behaviour can be identified

in the redistribution term Πyy of the wall-normal Reynolds-stress equation. It de-
creases with a decreasing parameter cwd whichmeans that less energy is transferred
to the other Reynolds stresses. For very high factors of about cwd = 50 to cwd = 100
the offset distance is so large that no wall damping will take place anymore and
the solution stops changing. A value of cwd = 0 would lead to a damping of wall-
normal Reynolds stresses similar to a solid wall. However, the given parameter set
with the high turbulent jump coefficient βt will lead to an unstable solution for such
small values of cwd.

Effect of the pressure diffusion parameter cd,p

Several tests without the parameter cd,p showed that the very high Reynolds stresses
inside the porous region of the channel can not be reached with reasonable pa-
rameter sets. Here, the findings of Breugem [10] are pointed out, who argues that
the high Reynolds stresses are caused by pressure fluctuations at the porous inter-
face. Therefore, the choice was made to include an additional diffusion term for the
Reynolds normal stresses inside the porous region controlled by the parameter cd,p.
The effect is shown in figure 6.13. The Reynolds stresses begin to detach from the
zero line for the parameter values bigger than zero. Note, that the coupling between
the different equations also leads to an increased shear stress v′′xv′′y which does not
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Figure 6.13.: Effect of the extra diffusion parameter cd,p on the Reynolds stresses
v′′xv

′′
x (represented by root mean square of x-velocity component) and v′′xv

′′
y , the

diffusion term Dxx (including viscous diffusion (3.60), turbulent diffusion (3.59)
and pressure diffusion (3.31)) and the isolated pressure diffusion termDp,xx (3.31)
for the channel case CUB. (Applied parameter set: β = −5;βt = 0.7; cwd = 5; ct =
0.11; cε,F = 0)

experience the additional diffusion.
Figure 6.13 also shows the contribution of the complete diffusionDxx (including

the viscous, the turbulent and the new pressure diffusion term) and the isolated
new pressure diffusion term Dp,xx. It can be recognized that the diffusion is now
dominated by the newly introduced diffusion term.

Effect of the gradient diffusion constant ct

The parameter ct controls the gradient diffusion model for the velocity-fluctuation
triple correlations in the Forchheimer term. Its effect is somehow similar to the pre-
viously described parameter cd,p even though the triple correlations do not appear
inside gradients and, hence, the modelled triple correlations are no real diffusion.
It should rather be understood as a term which enhances the convective transport
of Reynolds stresses based on the velocity fluctuations. It was tried to replace the
parameter cd,p by turning up the parameter ct to very high values. However, this
would firstly require values of the order of 1 which is unphysical if compared to the
proposed values in literature (around ct = 0.1) and secondly this further destabilizes
the solution.

Up to now a validation of a suitable value is difficult as no DNS-data are available
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6.1. Channel with porous bottom

for the velocity triple correlations. Hence, the final value is taken from the original
paper [31] which is ct = 0.11.

The effect of the parameter is shown in figure 6.14. According to the previous
paragraphs the effect is similar to cd,p as it increases the Reynolds stresses inside
the porous region while reducing the curvature. This consequently leads to an in-
crease of the Darcy term P (Darcy)

xx which is proportional to the Reynolds stresses.
It can also be seen that the Forchheimer contributions of the triple correlations
PForch,triple
xx is positive. Thus, it counteracts the general damping effect of the Darcy-

and Forchheimer terms. Finally, note that the total Forchheimer term P (Forch)
xx is

mostly unaffected by the parameter ct. However, as there is no known reason why
this should be generally valid, it is regarded as a coincidence.

Effect of the gradient diffusion constant cε,F
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Figure 6.15.: Effect of the gradient diffusion constant cε,F for modelling the triple
correlations of two velocity-fluctuation gradients and one velocity fluctuation
according to equation (3.42). The effect is shown in terms of the Reynolds nor-
mal stress v′′xv′′x (represented by root mean square of the x-velocity component)
and the homogeneous turbulent dissipation-rate εh for the channel case CUB.
(Applied parameter set: β = −5;βt = 0.7; cwd = 5; cd,p = 0.2; ct = 0.11)

The last parameter cε,F is the most uncertain parameter since there is hardly any
validation basis and its effect on the turbulent dissipation-rate equation leads to a
very coupled response of the Reynolds-stress equations. The parameter itself can
be regarded as the dissipation-rate analogon to the parameter ct in the Reynolds-
stress equations. It therefore is assumed to have a similar effect on the turbulent
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dissipation-rate ε than the parameter ct has on the Reynolds stresses. This can actu-
ally be observed in figure 6.15. In contrast, one would expect decreasing Reynolds
stresses for an increasing dissipation rate which is obviously not the case. In fact,
this indicates a very strong coupling between the different governing equations
in a way that the given observations cannot provide any information about cause
and effect. Rather, a much more detailed insight into the different terms of the
dissipation-rate equation is needed. Since this cannot be accomplished with the
available data, the parameter cε,F is set to zero.

6.1.4. Numerical setup and results of volume-averaged DNS
channel case E80

The last channel case which is presented now incorporates a rather small permeabil-
ity κ of two orders of magnitude smaller than the case CUB. This case E80 is shown
in order to emphasize the generality of the theoretical models. The properties of the
applied porous medium are given in table 6.1.

The mesh resolution of the case E80 is 300 cells along the channel height. The
grid spacing at the upper wall is

∆y(upper wall) = 5× 10−4 ,

at the interface it is
∆y(interface) = 1× 10−5

and at the bottom it is
∆y(lower wall) = 1× 10−3 .

In terms of inner coordinates these distances correspond to

∆y+,(upper wall) = 0.20 and ∆y+,(interface) = 0.004 .

In here, the definitions of equation (6.4) are used together with the Reynolds num-
bers

Re(upper wall)
τ = 354 and Re(interface)τ = 398

taken from [10]. Compared to the case CUB the resolution at the interface is signifi-
cantly increased to get a better resolution of the velocity decay inside the porous
medium. Since there is no explicit interface position as it existed for the CUB-case
it is set by trial and error to 0.01H below the channel center.

The results for the same parameter set as it is used for case CUB are shown in
figure 6.16. If the Reynolds shear stress v′′xv′′y is compared to the case CUB (figure 6.9)
it can be recognized that it is now over-predicted instead of under-predicted. This
could be improved if the value of the wall distance offset parameter cwd was chosen
individually for both cases. However, as a general value is preferred a compromise
has been made at that point.
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Figure 6.16.: Comparison of DNS- and VRANS-computations for the channel case
E80. The VRANS are the computation with the newly developed code while the
DNS-data are taken from Breugem [10]. (Applied parameter set: β = −5;βt =
0.7; cwd = 5; cd,p = 0.2; ct = 0.11; cε,F = 0)

6.2. DLR-F16 airfoil with a porous trailing edge
The last and most interesting validation case is a wing with a porous trailing edge
(figure 6.17). In contrast to the previous case it is directly connected to a real-life
application. The motivation of replacing the solid trailing edge with a porous mate-
rial originates from the field of acoustics. In [33], Herr showed for a NACA0012-like
airfoil that noise can be reduced by a significant amount if the trailing edge is made
porous. Amongst others, this research was continued in the framework of the col-
laborative research center SFB880 [61] for a wing with the non-symmetrical airfoil
DLR-F16. Several acoustic results for this wing have been published in [34]. The
identical wind-tunnel model of the DLR-F16 wing has also been investigated in re-
spect of its aerodynamic performance for the present work. The present section
describes the conducted experiments and compares the results against numerical
computations. The section is a revised version of [50].

6.2.1. Experimental setup
The experiments are performed on a 2D-wing with 1.3m wingspan and 0.3m chord
length. The geometry is shown in figure 6.18. The cross section of the model is
defined as the DLR-F16 airfoil. The trailing edge of the model can be replaced with
various porous inlays. The inlays occupy 10 % of the chord length (0.03m) and are
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Figure 6.17.: 3D-Drawing of a wing with porous trailing edge used for comparison
of wind-tunnel experiments against numerical simulations.

0.3m wide. The employed porous media include porous aluminum (PA), sintered
fibre felts (SFF) and sintered bronze powder (SBP). Turbulent flow is ensured by
tripping with a zig-zag-tape. The tape is located at 5 % chord on the upper wing
surface and at 10 % chord on the lower wing surface. The effectiveness of the trip-
ping procedure was checked by using a stethoscope with an attached Prandtl probe.

In order to get a comprehensive insight into the aerodynamics of the wing with
porous trailing edge both pressure and particle image velocimetry (PIV) measure-
ments are performed. The pressure measurements mainly supply the integral lift
coefficient cl while the PIV-measurements give deeper information about the flow
physics which occurs at the trailing edge.

All experiments are conducted in the low-speed wind-tunnel MUB of the Tech-
nische Universität Braunschweig. It is a closed-return wind-tunnel with a closed
test section of 1.3×1.3m cross section.

porous inlay

wing span = 1.3m

ch
or
d
=

0.
3m

0.3 m
0.03m

Figure 6.18.: Geometry of DLR-F16 wind-tunnel model with porous trailing edge.
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Characterization of porous inlays

Since the theoretical closure model of this work is limited to isotropic porous media,
only such materials will be discussed here. Two types of constructions are investi-
gated. The first type uses the porous media only as sheets on a rib structure. The
second type are porous media where the trailing edges are directly cut from a solid
block according to the airfoil shape (see figure 6.19).

Figure 6.19.: Construction details of porous trailing edge. The upper wing shows the
construction where the porous medium was used as a sheet, whereas the lower
wing shows the porous trailing edge cut from a solid porous block.

Figure 6.20.: Computer-tomography-data from left to right for porous aluminum
(PA), sintered bronze powder (SBP) and sintered fibre felts (SFF).

Thematerials under investigation are porous aluminum and sintered bronze pow-
der representing solid trailing edges and sintered fibre felts which are used as sheet
material. The structure of these media is visualized in figure 6.20. The procedure
for obtaining the characteristic data of the different porous media is described by
Uphoff et al. in [78]. In short, the geometry of the porous structure is identified
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material
name

typical pore di-
mension [μm]

sheet thickness
[mm]

porosity φ permeability
κ [m2]

PA 80-110 dp ≈ 700 solid 0.46 1.24× 10−10
SBP 60 ds = 278 solid 0.37 6.52× 10−11
SBP 120 ds = 590 solid 0.36 2.80× 10−10
SFF 50 df = 25 0.6 0.86 2.28× 10−10
SFF 120 df = 26 0.3 0.89 1.91× 10−10

Table 6.2.: Properties of the different porous media used as trailing edges of the
wind-tunnel model. dp is pore size, ds is sphere size and df is fibre diameter. The
material abbreviations are as follows: PA is porous aluminum, SBP is sintered
bronze powder and SFF are sintered fibre felts.

by 3D-computer tomography and 2D-light microscopy. The value of the flow resis-
tivity R is determined at the Physikalisch Technische Bundesanstalt Braunschweig
using the alternating airflow method (Method B DIN EN 29053, ISO 9053). The con-
version of the flow resistivity R to the required permeability κ is accomplished by
the rule

κ =
µ0

R
with µ0 = 1.81× 10−5 kgm−1 s−1 (6.5)

where the value of the dynamic viscosity µ0 corresponds to viscosity of air at a
temperature of 293 K. All important properties of the different porous media are
summarized in table 6.2. The data are equal to the values given in [34].

The Forchheimer coefficient cF has not been measured. Hence, it is set to an
approximate value of cF = 0.1 for all porous media. This approximation is obtained
with the help of the Ergun equation described e.g. in [46]. The jump coefficients β
and βt of equations (3.75) and (3.80) are presently unknown and initially set to zero.
Nevertheless, a discussion about their effect is given in section 6.2.6.

Setup of pressure measurements

The model is instrumented with 45 static pressure measurement taps along a plane
parallel to the mid section of the wing. Close to the leading edge the taps are clus-
tered for capturing the suction peak. The exact distribution is shown in figure 6.21.

The pressure measurements were accomplished at a variety of angles of attack
in increasing and decreasing direction to identify the hysteresis effect when the
flow separates. For each measurement point 50 samples were taken and averaged
in order to get the mean pressure distribution. The measurements were taken at a
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6.2. DLR-F16 airfoil with a porous trailing edge

Figure 6.21.: Position of pressure taps around airfoil.

Reynolds number of
Re =

ρv∞c

µ
= 1 000 000

with the chord length c. The Mach number was set to

Ma =
v∞
a

= 0.15

with the speed of sound a. For the atmospheric conditions at the wind-tunnel the
given Mach number corresponds to an inflow velocity of about v∞ = 55m s−1.

PIV setup

Besides the pressure measurements, PIV-measurements were accomplished to re-
solve the flow field at the trailing edge of the airfoil. These investigations promise
detailed information about the flow close to the porous trailing edge and the be-
haviour of turbulence. The Reynolds number and Mach number for the PIV-expe-
riments were equal to those of the pressure measurements (Re = 1 000 000, Ma =
0.15). Due to the higher experimental efforts of PIV-measurements only a limited
set of porous materials were investigated at two angles of attack each.

The PIV-system employed is a 2D-setup measuring the flow field at the symmetry
plane of the wing. The captured image window is restricted to the area over the
porous trailing edge.

The big challenge of the setup is that the surface of the porous media leads to
diffusive reflections of the laser beam corrupting the image quality. In order to
counteract this effect a tangential laser sheet was used which was directed from
downstream over the airfoil and, thus, hardly touches the porous material. The
principal setup with the lenses and mirrors is shown in figure 6.22.

The PIV-setup includes a ImagerProX11M camera with a CCD image sensor with
a resolution of 4032×2688 pixels. The tracer particles are lightened by a Quantel
Twin Nd:YAG laser with two Brilliant optical heads. This double pulsed laser has
a maximum pulse energy of 200mJ. The output wave length of 1064 nm is halved
inside a frequency-doubling unit in order to get human visible green light with a
wave length of 532 nm. Di-Ethyl-Hexyl-Sebacat (DEHS) droplets with a typical size
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of 1 μmwere used as tracer particles. They were added upstream of the wind-tunnel
settling chamber.

The resulting images were processed with the software LaVision Davis 7.2 utiliz-
ing a multi-pass algorithm. The resulting window size was adjusted depending on
the image quality and comprises a range between 16×16 pixels and 128×128 for
obtaining one vector. The window overlap for obtaining a neighboring vector was
set to 50 %. In order to get information about the mean-flow data and the Reynolds
stresses 1500 double pictures were taken for each flow case.

upper wind tunnel wall

lower wind tunnel wall

laser

lens system

mirror

airfoil with porous
trailing edge

PIV camera window

Figure 6.22.: Sketch of PIV-setup in wind-tunnel experiment of DLR-F16 wing.

6.2.2. Evaluation of experiments
The evaluation of the experiments is basically split into the evaluation of the pres-
sure data and the evaluation of the PIV-data. Firstly, the pressure data supply infor-
mation about the effect of the porous trailing edges on the lift coefficient cl of the
airfoil. Then, the PIV-data are used in order to give a more detailed insight into the
effects of the porous trailing edge on the velocity field and the turbulence quantities.

Details about the computation of the lift coefficient cl

The lift coefficient cl is computed by integration of the pressure coefficients cp
around the airfoil. The two coefficients are defined as follows:

cp =
p− p∞
ρ
2v

2
∞

cl =
1

c

∮
cp dx (6.6)

where p∞ and v∞ are the static pressure and velocity far away from the airfoil and
c is the airfoil chord length.
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6.2. DLR-F16 airfoil with a porous trailing edge

Figure 6.21 indicates that there are no pressure taps positioned along the last 20 %
of the airfoil. This is a consequence of the design. In order to obtain meaningful
lift coefficients the pressure behaviour is linearly approximated at the last 20 % by
setting the pressure coefficient at the trailing edge to the last available value of the
lower airfoil side (see figure 6.23 left). The error made regarding the lift coefficient
cl is estimated by the panel code XFOIL [22] where the lift coefficient was computed
for both the resolved and the not resolved trailing edge (figure 6.23 right). It shows
that independent of the angle of attack the error of the lift coefficient cl is approx-
imately 0.015. These significant values will of course distort the α-cl curves. But
as the error occurs for all different porous trailing edges it can at least be expected
that the differences between the lift curves have the correct magnitude.
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x

cp
α = 6°
α = 4°
α = 2°
α = 0°

1

0

-1

-2

-3

x

cp
full resolution
trailing edge not resolved
windtunnel data

Figure 6.23.: Left: cp-distributions from wind-tunnel measurements of DLR-F16 air-
foil with solid trailing edge at Re = 1 000 000. Right: cp-distribution from XFOIL
for α = 6° with and without resolved trailing edge.

Effect of the porous trailing edges on the pressure distributions

The main effect of the porous trailing edge on the flow can be assigned to a relax-
ation flow between the upper low-pressure side and the lower high-pressure side.
This flow through the trailing edge leads to smaller pressure differences which can
primarily be recognized at the upper side as can be seen in figures 6.24 and 6.25. Re-
garding the trailing edges made of sintered bronze powder (SBP 60 and SBP 120) it
becomes apparent that a higher permeability leads to a stronger effect. The porous
aluminum PA 80-110 does not fit into this scheme as its permeability lies in be-
tween the two sintered bronze powders but the pressure distribution is at a slightly
lower level. However, a later evaluation of the lift coefficients (see figure 6.26) will
show that the porous aluminum PA 80-110 is nevertheless in between the sintered
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bronze powders which indicates the wind-tunnel reference pressure for the porous
aluminum was slightly wrong so that the whole pressure curve is shifted to smaller
cp-values.

The effect of sheeted trailing edges — the sintered fibre felts — on the pressure
distribution is much higher. This is obvious since the thickness of the sheetings is
smaller whereas the permeability of the fibre felts are similar to the permeabilities of
the trailing edges cut from solid blocks. The consequence is a much higher effective
permeability leading to significantly increased relaxation flows through the trailing
edges.
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x

cp
Reference
PA 80-110
SBP 60
SBP 120

angle of attack: α = 0°
1
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SBP 120

angle of attack: α = 6°

Figure 6.24.: Measured pressure distributions of the DLR-F16 airfoil at Re =
1 000 000 for trailing edges cut from solid blocks at α = 0° and 6°.

Comparison of lift for different porous trailing edges

An idea of the behaviour of the lift curves for the different porous trailing edges
is already given in the discussion of the pressure distributions. It turns out that
the permeability has a direct impact on the loss of lift. This can be recognized in
figure 6.26 to the left where the usage of sintered bronze powder SBP 120 with the
highest permeability leads to the highest loss of lift. On the contrary, the sintered
bronze powder SBP 60 with the lowest permeability leads to the smallest loss of lift.

The effect of the different sheet materials appears to be very similar if the total
permeability was considered which is defined as the permeability divided by the
sheet thickness.
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Figure 6.25.: Measured pressure distributions of the DLR-F16 airfoil at Re =
1 000 000 for sheeted porous trailing edges at α = 0° and 6°.

α [°]

cl

0 2 4 6 8 10
0

0.4

0.6

0.8

1.0

1.2

Reference
PA 80-110
SBP 60
SBP 120

α [°]

cl

0 2 4 6 8 10
0

0.4

0.6

0.8

1.0

1.2

Reference
SFF 50
SFF 120

Figure 6.26.: Lift coefficients cl at the mid-section of the wing over the angle of
attack α for different porous trailing edges. The ambiguous lift coefficients at
high angles of attack are a hysteresis effect, originating from measuring rising
and declining angles of attack.
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3D-corrections for angle of attack

The rather small span of the porous trailing edge which is equal to the chord length
(see figure 6.18) indicates the results underlie 3D-effects. These effects are mainly
based on the circulation distribution along the complete wing. The outer wing sec-
tions without porous trailing edges generatemore circulation thanmid-sectionwith
porous trailing edge. However, the exchange of circulation information between the
different wing sections leads to a smooth circulation curve along the complete wing.
Thus, the lift is increased at the wing section with porous trailing edge compared to
a 2D-wing. In order to make the experiments comparable to 2D-cases corrected lift
curves are constructed by computing a modified angle of attack. The magnitude of
the 3D-effect can be approximated by the panel code XFLR5 [83] through imitating
the loss of lift at the porous wing section with a deflected flap. The result of such a
computation with 2° flap upwards deflection is shown in figure 6.27. It immediately
becomes clear that at the mid-section of the wing (x = 0), the loss of lift for the
3D-case is much less compared with the 2D-case.
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Figure 6.27.: 3D-effect on the lift distribution for a porous trailing edge with limited
width.

With the help of several XFLR5 evaluations at different angles of attack it turns
out that a suitable relation for a corrected angle of attack is

αcorrected = α+ C ·
(
cl,ref(α)− cl,por(α)

)
(6.7)

where cl,ref(α) and cl,por(α) are the local lift coefficients for the nonporous and
the porous trailing edge at the uncorrected angle of attack α. The constant C is
set to C = 10.5° . The corrected curves originating from figure 6.26 are shown in
figure 6.28. Since the correction is expected to fail after the wing stalls it is limited
to smaller angles of attack.
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Figure 6.28.: Measured lift coefficients cl at the mid-section of the wing using 3D-
corrected angles of attack according to equation (6.7)

Effect of porous trailing edge on flow field

To gain a more detailed understanding of the flow the PIV-data are evaluated for
two different angles of attack. Figure 6.29 shows the flow at the trailing edge over
different porous regions for an angle of attack α = −0.5°. Figure 6.30 displays
the same picture at a modified angle of attack of α = 6°. The most visible effect
compared to the nonporous reference can be recognized for the sintered fibre felt
SFF 120 which also experiences the highest loss of lift. The turbulence (which is
represented by v′xv

′
x + v′zv

′
z) appears to be strongly effected by the porous trailing

edge. Closely above the trailing edge turbulence is reduced (especially for the case
SFF 120) which indicates that the turbulent kinetic energy is strongly damped while
the air passes through the trailing edge from the lower to the upper side of the airfoil.
But still, the turbulence in the wake is increased in case of the porous trailing edges.
This is mainly caused by the increased velocity gradients in the flow field which
yield a higher production rate of turbulence. The effect can be clearly recognized
in the picture of the sintered fibre felt (SFF 120) where the peak of the turbulence
follows the regions of highest velocity gradients.

The two figures 6.31 and 6.32 show the velocity profiles of the different porous
trailing edges in more detail. Analyzing the velocity profile of the porous aluminum
PA 80-110 shows that the velocity is only influenced above and downstream of the
trailing edge but not upstream. In case of the very permeable trailing edge which is
only covered with a thin layer of sintered fibre felt SFF 120 the boundary layers are
completely different. Here, an effect is also visible upstream. With the help of the
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Figure 6.29.: Flow field at various porous trailing edges of the DLR-F16 airfoil at
an angle of attack α = −0.5°. The vectors are interpolated data inside the PIV-
images. The dashed lines in the background show the direction of the farfield
velocity. The Reynolds number is Re = 1 000 000.
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Figure 6.30.: Flow field at various porous trailing edges of the DLR-F16 airfoil at an
angle of attack α = 6°. The vectors are interpolated data inside the PIV-images.
The dashed lines in the background show the direction of the farfield velocity.
The Reynolds number is Re = 1 000 000.
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point of the smallest velocity in the wake one can learn that the down-deflection of
the fluid is significantly weakened for the porous media. As a result, a decrease of
lift can be expected which is already visualized in figure 6.26.
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Figure 6.31.: Velocity plots along the trailing edge and in the wake of the airfoil
at an angle of attack of α = −0.5° and a Reynolds number of Re = 1 000 000.
The nonporous reference is compared against two different porous trailing edges
(porous aluminum PA 80-110 and sintered fibre felt SFF 120).

6.2.3. Numerical setup
The numerical computations are performed on 2D-grids which are constructed on
basis of the geometry at the mid-section of the wind-tunnel model. Transition is
either set at the location of the transition tape in the experiment or at the posi-
tion of the pressure suction peak for high angles of attack (see figure 6.33). O-type
meshes are used leading to a rather high resolution at the trailing edge. The mesh
of the nonporous reference case is equal to the mesh of the cases with solid porous
trailing edges (porous aluminum and sintered bronze powder) with the exception
that the porous trailing edge is also filled with mesh points. The mesh construction
of the sheeted trailing edges (sintered fibre felt) is more sophisticated leading to a
slightly different mesh. All three meshes have a point number of about 40 000 and
are shown in figure 6.34. The mesh spacing at the viscous walls is about 1× 10−5 of
the airfoil’s chord length c. This corresponds to an average spacing of 0.5 in inner
y+-coordinates. Very close to the nose the spacing increases to a maximum value
of ∆y+ = 1.5 for the α = 8° case.

Mesh convergence has been checked on basis of the mesh for the wing where the
trailing edge is made of porous aluminum PA 80-110. Three different mesh levels
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Figure 6.32.: Velocity plots along the trailing edge and in the wake of the airfoil at
an angle of attack of α = 6° and a Reynolds number of Re = 1 000 000. The non-
porous reference is compared against two different porous trailing edges (porous
aluminum PA 80-110 and sintered fibre felt SFF 120).

0.1 % trip at suction side and α = 10°

0.5 % trip at suction side and α = 6°

5 % trip at suction side α ≤ 4° (position of transition tape)

10 % trip at pressure side (position of transition tape)

Figure 6.33.: Position of tripping to enforce transition for numerical computations.
The positions are either set close to the pressure minimum for high angles of
attack or at the location of the transition tape as it was used in the experiment.
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Figure 6.34.: Meshes for the DLR-F16 airfoil without porous trailing edge (top), for
solid porous trailing edges (middle) and for the SFF 120-sheeted trailing edge
(bottom). The porous regions are emphasized by a different color.
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have been tested with about 20 000, 40 000 and 100 000 points (see figure 6.35). The
comparison of the lift curves in figure 6.36 shows no visible difference between the
two finer meshes. This observation justifies the use of the 40 000 point meshes.

Steady state simulations were accomplished for all cases. Typical residual pro-
gresses for density, momentum, Reynolds stress and homogeneous turbulent dissi-
pation-rate are shown in figure 6.37. Each 1000 iterations an averaged lift coefficient
is computed from the last 1000 values. The solver is stopped as soon as the change
of two averaged lift coefficients cl goes below 1× 10−6. The averaging procedure is
required as the blunt trailing edge tends to make the velocity field unsteady such
that for some cases the lift coefficient would not always converge to a completely
steady value.

Figure 6.35.: Meshes for the DLR-F16 airfoil with porous trailing edge for different
fineness levels used for the mesh convergence study. The porous region (i.e. the
trailing edge) is emphasized by a different color.
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Figure 6.36.: Demonstration of mesh con-
vergence for the DLR-F16 airfoil with
porous trailing edge (PA 80-110) with
the help of the lift curves. The results
are obtained with the meshes shown in
figure 6.35.
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Figure 6.37.: Residual progress of DLR-F16 airfoil simulations with nonporous edge
(left) andwith the porous trailing edge PA80-110 (right). (Angle of attack: α = 4°)
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6.2.4. Numerical results
Before comparing and evaluating the quality of the simulations with the help of the
experiments the simulation data are used to provide a more detailed insight into the
flow physics for wings with porous trailing edges. In contrast to the experiments
the flow field is fully known and can be analyzed much better.

Figure 6.38 identifies the main mechanism of the flow through the porous trail-
ing edge. The air passes through the porous medium from the airfoil pressure to
the airfoil suction side where the driving force is the pressure gradient. The main
effect of this relaxing flow through the trailing edge is a decambering of streamlines
leading to a smaller pressure difference between upper and lower airfoil side which
means reduced lift.

−1.2 cp 1.2 −0.3 cp 0.3

PA 80-110

SFF 120

reference

Figure 6.38.: Pressure distributions around DLR-F16-airfoils with different trailing
edges at an angle of attack of α = 6°.

A contour plot of the turbulence shows figure 6.39. If compared to experimental
result in figure 6.30 it becomes visible that the basic behaviour of turbulence above
the wing is similar but the lower edge of the blunt trailing edge induces much more
turbulence in the experiments. It is also apparent that practically no turbulence
exists inside the porous trailing edge which is an effect of the strong Darcy and
Forchheimer damping terms in the turbulence equations.

Figure 6.40 shows a more detailed view onto the progress of the boundary layers
over the trailing edge. The effect of the air passing the trailing edge is mirrored in
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Figure 6.39.: Turbulence distributions around DLR-F16-airfoils with different trail-
ing edges at an angle of attack of α = 6°.

the boundary layer thicknesses. While the thickness for the porous trailing edges on
the suction side grows it decreases on the pressure side. Especially the turbulence
profiles show that the wake runs at a higher position indicating the decambering of
the streamlines.

6.2.5. Comparison of simulations and experiments
The previous sections discussed experiments and numerical results for the DLR-F16
airfoil with porous trailing edges separately. The simulations show consistent re-
sults reflecting the expected flow phenomena. However, knowledge of the accuracy
of the simulations is needed for using them in other applications. The following sec-
tions compare the experiments with the numerical results in order to obtain insight
into the quality of the VRANS-implementation.

Comparisons of lift curves

Figure 6.41 displays the lift coefficients cl of experimental and numerical results. The
curves are not exactly reproduced even for the reference case. This indicates that
there is a wind-tunnel wall interference in the experiments leading to the deviation
in lift. However, the focus of the validation computations concentrates on the effect
of the porous trailing edges. It can be seen in the figures that the loss of lift is
well-predicted. Still, there is one flaw in the results: The numerical lift curve of the
sintered bronze powder SBP 120 shows less lift losses than the porous aluminum
PA 80-110 even though the permeability is higher. This seems to be a shortcoming
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Figure 6.40.: Comparison of boundary layers close to the trailing edge of the DLR-
F16 airfoil for different porous trailing edges. (Angle of attack: 6°)
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of the theoretical model which occurs for small porosities and high permeabilities.
This case will be investigated in more detail later in section 6.2.6.

α [°]

cl

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1.0

reference
PA 80-110
SBP 60
SBP 120

α [°]

cl

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1.0

reference
SFF 50
SFF 120

Figure 6.41.: Lift curves of different trailing edges where experimental (symbols)
data are compared against numerical (lines) results. The left diagram shows the
solid porous trailing edges and the right plot presents the sheeted trailing edges.

Comparison of boundary layers

Even though the lift curves for the nonporous and porous trailing edge match well
with the experiments it is of importance that the changes are also reflected in the
flow physics. Otherwise, reliable solutions cannot be guaranteed. Deeper insight
into the flow phenomena is obtained with the help of the PIV-measurements. These
are available for the angles of attack of α = −0.5° and α = 6°. They are compared
with VRANS-computations at equal lift coefficients. The corresponding angles of
attack are listed in table 6.3.

reference PA 80-110 SFF 120

cl 0.193 0.953 0.157 0.898 0.070 0.796

experimental α −0.5° 6.0° −0.5° 6.0° −0.5° 6.0°
numerical α −0.5° 7.0° −0.1° 7.3° 0.2° 7.9°

Table 6.3.: Lift coefficients cl and angles of attack α for the comparison of experi-
mental PIV-data with numerical results.
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Starting with the angle of attack α = −0.5° the boundary layers of the veloc-

ity |v| and the turbulence in terms of v′
xv

′
x+v′

zv
′
z

v2
∞

are plotted at different positions
for different trailing edges in figures 6.42 and 6.43. Note, that the turbulence quan-
tity v′xv

′
x + v′zv

′
z in the experiments is computed with the time-averaged Reynolds

stresses whereas the simulation uses the density-weighted time-averaged values.
Since the comparisons in this paper are carried out at small Mach numbers com-
presibility effects are small and therefore the time average is equal to its density-
weighted counterpart.

The computed boundary layer profiles of the velocity |v| over the trailing edge
match very well with the experiments. The velocity profiles are affected by tur-
bulence and therefore, the turbulence profiles should also agree. They do indeed,
even though the differences are larger. It is assumed, that these differences originate
from themuchmore sensitive determination of the turbulent kinetic energy: Firstly,
a typical value of a velocity fluctuation v′ is about 5-10 times smaller than the mean
velocity and hence, is much harder to capture accurately. Secondly, each erroneous
velocity vector which has not been filtered in the PIV-velocity field contributes to
the turbulent kinetic energy. The second issue asks for very strict filters which can
even lead to under-predicted turbulence values. However the rather big deviations
of the turbulence quantity for the sintered fibre felt SFF 120 are not expected to
be due to measurement errors. This assertion is underlined by figure 6.45 which
shows the results at a high angle of attack of α = 6°. In this figure the turbulence
is over-predicted by about 20 % by the numerical code leading to a slightly thicker
boundary layer. Since this is a known phenomenon of the JHh-v2 turbulence model
for cases that are close to separation the deviations are accepted to be small enough.

The differences of the turbulence are much higher in the wake. Only the upper
peak value at the first wake position is rather well reproduced by the numerical
computations. In the downstream wake position this upper peak dissipated much
more than it did in the experiments. It is assumed that this is a consequence of the
quickly decreasing mesh density. No further investigation is spent to this issue as
the far wake is of minor interest for predicting the integral force coefficients of the
wing. The lower turbulence peak is very high for the experimental data while it
is hardly visible for most the numerical data. In figure 6.30 one can see that the
turbulence peak of the experiments starts at the lower corner of the blunt trailing
edge. It can be assumed that due to the bluntness there is a local instationary flow
which induces turbulent fluctuations. Obviously, the numerical computation do not
reproduce this behaviour, either because of a lacking mesh resolution or because of
the nature of the steady state simulations.
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Figure 6.42.: Velocity profiles over different trailing edges of the DLR-F16 airfoil.
The angle of attack for the experiments is α = −0.5°. The computation results are
shown at an angle of attack at equal lift coefficients cl as given in table 6.3.
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Figure 6.43.: Turbulence profiles v′xv
′
x + v′zv

′
z over different trailing edges of the

DLR-F16 airfoil. The angle of attack for the experiments isα = −0.5°. The compu-
tation results are shown at an angle of attack at equal lift coefficients cl as given
in table 6.3.
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Figure 6.44.: Velocity profiles over different trailing edges of the DLR-F16 airfoil.
The angle of attack for the experiments is α = 6°. The computation results are
shown at an angle of attack at equal lift coefficients cl as given in table 6.3.
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Figure 6.45.: Turbulence profiles v′xv
′
x + v′zv

′
z over different trailing edges of the

DLR-F16 airfoil. The angle of attack for the experiments is α = 6°. The com-
putation results are shown at an angle of attack at equal lift coefficients cl as
given in table 6.3.
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6.2. DLR-F16 airfoil with a porous trailing edge

6.2.6. Parameter sensitivities for numerical computations
Finally, some parameter sensitivities on the results of the numerical computations
will be given. These include the jump coefficients β and βt and the porosity φ. In the
previous sections the jump coefficients had been set to zero as they are expected to
bematerial dependent but no explicit value has been computed yet. The sensitivities
can help to classify their importance in the airfoil computations. The investigation
of the porosity φ is presented since it plays a significant role in the interface condi-
tions (3.67) to (3.69) and its behaviour is important to explain the trends of the lift
curves in figure 6.41.

The effect of the porosity
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Figure 6.46.: Lift coefficient cl over angle
of attack α for the case SBP 120 with
the real porosity of φ = 0.36 and a very
high porosity of φ = 1.0. Addition-
ally, the experimental data are shown
as symbols.

Recall figure 6.41 where the numerical computations of the sintered bronze pow-
der SBP 120 shows higher lift coefficients than the porous aluminum PA 80-110 even
though the permeability κ is higher for the sintered bronze powder. Also, the exper-
imental data contradict the numerical behaviour. The reason for this lies in the effect
of the porosity φ. Figure 6.46 shows the sintered bronze powder SBP 120 recom-
puted with a fictive porosity of φ = 1.0. Obviously, the reduction of lift compared to
the nonporous reference is about twice the lift reduction of the computations with
the real porosity of φ = 0.36. If compared to the experiments the case with high
porosity does match better.

The reason for the big differences can be explainedwith the pressure distributions
in figure 6.47. At the lower side of the porous trailing edge the pressure at both
sides of the nonporous-porous interface is equal for the porosity φ = 1.0 whereas
the small porosity case shows a pressure jump. For the high porosity values, this
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leads to much higher pressure gradients inside the porous media which drives the
air through the trailing edge.

One question remains: Wherein lies the origin of the pressure jump for the small
porosity values? Besides others, the nonporous-porous interface condition given
by equation (3.69) is based on the assumption that the velocity multiplied with the
porosity at the porous interface side is equal to the velocity at the nonporous inter-
face side. This is widely accepted in literature of incompressible flow, e.g. [55] or
[10] and has been maintained here with minor modifications to yield in the com-
pressible interface conditions (3.67) to (3.69). However, in order to fulfill energy
conservation across the interface the pressure must jump when the velocity jumps.
This is clearly shown in figure 6.47. Thus, in summary, the pressure jump is the
result of the combination of energy conservation and the definition of the velocity
jump across the interface.

In order to obtain a better match with the experiments the interface conditions
could be modified by holding the velocity component tangential to the nonporous-
porous interface constant. However, this would mean to depart from existing liter-
ature. Alternatively, the pressure jump can be circumvented by setting the porosity
to φ = 1 while keeping the existing interface conditions. Note, that for this pro-
cedure one has to ensure that the magnitude of the Darcy and Forchheimer terms
does not change.

Even though the suggested modifications significantly improve the results it is
not clear whether they really follow physical principles. In order to resolve this
problem, dedicated DNS-computations should be consulted. Since such simulations
are currently not available, the choice of the correct model remains an open ques-
tion.

The effect of jump coefficients

The effect of the jump coefficients is shown for the trailing edge made of porous
aluminum PA 80-110. The lift curves for various parameter variations of the jump
coefficient β and its turbulent counterpart βt are plotted in figure 6.48. The used
parameter ranges are based on the investigations of the channel case CUB in sec-
tion 6.1.3. The figure shows that the turbulent jump coefficient βt has no significant
effect on the lift coefficient cl. This is expected since the turbulent kinetic energy is
very small at the nonporous-porous interfaces and consequently, the left hand side
of equation (3.80) becomes insensitive to βt.

In contrast, the jump coefficient β appears to have a noticeable effect on the lift
coefficient because a negative value of β reduces the velocity at the interface (see
the leftmost magnification area of figure 6.49). The smaller velocity at the interface
decreases the pressure jump which is discussed in the previous section about the
porosity effect leading to a higher mass flow through the porous trailing edge. This
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0 cp 0.28

porosity φ = 0.36

porosity φ = 1.0

Figure 6.47.: Comparison of pressure coefficient cp at the trailing edge for the case
SBP 120 with the real porosity of φ = 0.36 and an increased porosity of φ = 1.0.
The right hand side shows an extremely magnified picture at the location of the
black dot of the left hand side. (Angle of attack: α = 4°)

is also highlighted in the magnification area in the center of figure 6.49 where the
velocity shows higher values for the cases of the more negative jump coefficients.
The rightmost magnification area shows that the wake of the cases with more neg-
ative jump coefficients is located at a higher position which indicates a reduced
circulation and, hence, a reduced lift.
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Figure 6.48.: Comparisons of lift curves for different jump coefficients β (left) and
different turbulent jump coefficients βt (right). In the computations the porous
media properties of the porous aluminum PA 80-110 were used.
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Figure 6.49.: Velocity profiles at the trailing edge of the DLR-F16 airfoil with porous
trailing edge (PA 80-110) at different jump coefficients β. (Angle of attack: α = 6°)
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7. Conclusions and future work
It was mentioned in the introduction that acoustic researchers proved an idea to
significantly reduce the trailing edge noise of aircraft wings. The noise reduction is
achieved by making the trailing edge permeable. While this demonstrates one case
in which porous media are used in context of aerodynamically sensitive surfaces,
many more applications exist. There might be other logical positions for porous
media like the wing tips or the landing gears and porous media could also damp
the noise immission of the engines into the aircraft structure. The latter case could
greatly improve the comfort level in civil aviation. While these kinds of investiga-
tions are in progress, it is of importance to hold pace with developing tools which
can predict the effects of the porous media on the aerodynamic performances. The
present work takes a step towards providing such aerodynamic simulation tools.

The challenge for simulating aerodynamic flow over porous media of civil aircraft
arise from the high Reynolds numbers and thus, turbulent flow, and also from the
extremely fine porous structures compared to the typical length scale like the wing
chord length. Besides that, one has to be prepared for Mach numbers which can
reach the transonic range. These difficulties are solved by using volume- and time-
averaged Navier-Stokes equations which results in a lengthy process of modelling
the newly arising unknown terms.

The modelling of the effect that the porous media generate, is based on the Darcy
and Forchheimer terms. Turbulence is modelled with the JHh-v2 turbulence model
which is established to simulate transonic flow. The combination of porous me-
dia and turbulence leads to, firstly, a much more sophisticated Forchheimer term
compared to the commonly used form and, secondly, to a set of adapted transport
equations for the turbulence quantities (i.e. the Reynolds stresses and the homoge-
neous turbulent dissipation-rate).

In addition to the flow inside porous media, special treatment of the outer porous
surface is provided. Transformation rules are used for the flow coming through the
nonporous region, such that it correctly penetrates into the porous region and vice
versa. Caution is taken that the convective mass and energy fluxes are conserved.
In order to close the transformation rules, an additional transformation condition
is obtained for compressible flows by following entropy conservation. Beside the
convective fluxes, the diffusive fluxes are specially treated. Conservation is main-
tained here at least for the energy fluxes. Since diffusive fluxes are mainly based
on the spatial change of flow variables like velocity or Reynolds stresses, relations
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are defined for these gradients. While the velocity gradient relations of this work
rely mainly on the well-known jump conditions of Ochoa-Tapia and Whitaker, the
relations for the Reynolds-stress gradients differ substantially from the literature as
the turbulent production is now a crucial dependency.

Care is taken to implement the theoretical developments into a finite-volume
flow solver. The fact that the code is thoroughly tested with different validation
cases provides evidence that this work describes the theoretical fundamentals in a
comprehensive manner. This includes details about the Reynolds-stress model, the
implementation strategy of the equations into the solver or the computation of the
integral forces which act on porous surfaces or the equations of state.

In order to apply the new developments for real-life predictions the model must
be validated. This is accounted on two levels. On the one hand, simulations with
the new method are conducted and compared to DNS-results of a 1D-channel flow.
Thereby, good agreement with velocity and Reynolds stresses is demonstrated. On
the other hand, wind-tunnel experiments were performed for a wing with porous
trailing edge as it is used by the acoustic researchers for noise reduction purposes.
Comparisons of the lift coefficients and the flow field over the trailing edge with the
results of the same computation setup also show good agreement to ascertain the
quality of the model.

Even though this work is complete by showing its evolution from the theoretical
ideas to the development of actual models, the implementation into a flow solver to
the validation procedures, many new questions arise which would be interesting to
address in future. These are presented here to give an outlook and recommendation
for future work.

Anisotropic porous media and porosity gradients
The present work only considers porous media with properties which are in-
dependent of the coordinate directions. The porous properties are also main-
tained constant in space. Since such conditions are only valid for a very lim-
ited amount of porous media, the present work should be generalized. Work
on these topics is already in progress in the follow-on project of this work.

Improving nonporous-porous interface conditions
Section 6.2.6 showed some shortcomings of the conditions for flows tangen-
tial to the interface. The present conditions always predict a pressure jump
even if the interface-normal component of the velocity is zero. While this
is a direct consequence of both, the energy conservation and the commonly
stated condition that the velocity jumps by the factor of the porosity it seems
to contradict the experimental experience. At this point it is proposed to de-
part from the existing literature and change the interface relations given in
sections 2.8.1, 2.8.3 and 3.11.1 by replacing the condition of constant velocity
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direction (equations (2.41), (2.56) and (3.69)) by the condition that the tangen-
tial velocity is constant:

〈vt,1〉F = 〈vt,2〉F or vt,1 = vt,2

where vt,1 and vt,2 are the velocity components tangential to the interface at
the two interface sides (see also appendix B). However, this new development
should be supported by new DNS-computations.

Investigate interface conditions of homogeneous dissipation-rate
The end of section 4.2.3 quickly mentions that the current interface conditions
seem to under-predict the homogeneous dissipation-rate for the special com-
bination where the porous medium is hardly permeable and the computation
mesh is fully resolved. Thus, it might be required to modify this condition
by specifying an improved jump condition (equation (3.82)) for the homoge-
neous dissipation-rate gradients.

Simplified turbulence models
The present work uses a complex Reynolds-stress model for the modelling
of turbulence. While this promises high-fidelity results, the simulations are
muchmore expensive if compared to simpler turbulence models (one- or two-
equation models). In order to speed up aerodynamic design processes, it is
desirable to have access to a variety of turbulence models. Therefore, the the-
oretical equations and interface conditions in this work should be rewritten
and tested to work with other turbulence models.

High Mach number flow
Within this work, special care was taken to write down all models in a way
that they are still valid if the flow was compressible. While the given test
and validation cases can all be regarded as incompressible, future applications
on aircraft require validation at transonic speeds. With all the theoretical
groundwork given, compressible validation cases should be set up and tested.
It would also be interesting to see how the models perform when the porous
surfaces move at supersonic speeds.

Reynolds number sensitivities
No sensitivities of the Reynolds number on the effect of porous media was
investigated for this work. Since there exist experimental data on channel
flow with a porous bottom at different Reynolds numbers given by Suga et al.
[75], it is proposed to use such data for further validations.

Review Darcy and Forchheimer terms in turbulent flow
In this work the effect of porous media on the fluid is modelled by the Darcy
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and Forchheimer terms. For the turbulence modelling, the Forchheimer term
becomes rather complex leading to the problem that even terms inside the
Forchheimer term have to be modelled. Such sophisticated modelling pro-
cedures can be risky when accurate solutions are desired. Hence, it is pro-
posed to cross-check the Darcy and Forchheimer terms of the momentum
and Reynolds-stress equations with DNS-data. Ideally, this should be done
by directly computing the surface integral of equation (2.21)

1

Vf

∫
Afs

p/ni − τ/ijnj dA

for several time steps in turbulent flow and comparing the averaged values
against the Darcy and Forchheimer terms as they appear in equation (3.16).
Even more important, the same procedure should be applied for the surface
integrals as they appear in the Reynolds-stress equations.

Investigate the large diffusion inside porous media
Section 3.6.3 describes an additional diffusion term in the Reynolds-stress
equations which is required to reproduce the high Reynolds stresses inside
the porous media. It might be worth investigating, if this diffusion model
could be merged with the turbulent diffusion term of the Reynolds-stress
model given in equation (3.59). Instead of defining the additional diffusion
as done in the present work, only the diffusion coefficient of the turbulent
diffusion model would have to be modified. Furthermore, the triple correla-
tion term of the Forchheimer term (3.28) which is modelled with yet another
gradient-diffusion model, could be redefined to be directly based on the above
mentioned existing turbulent diffusion model of the Reynolds-stress model.
In this process, the diffusion coefficient of the turbulent diffusion model could
be adopted, leading to one less unknown parameter in the porous models.

Investigations on subfilter stresses
Section 2.5.2 proposed a simple model for the subfilter normal stresses but it
did not seem relevant to keep these terms inside this work. However, in fu-
ture applications the modelling of such a term could become important which
would make it interesting to evaluate the term further e.g. for porous ducts.

Heat transfer in porous media
The present work assumed that there is no heat exchange between the fluid
and the porous structure. If accurate temperature distributions inside porous
media are required, themodelswould require an updatewith additional terms.
While a first term for such a consideration is presented in section 2.5.1, there
exists more literature about modelling heat transport in porous media which
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could help to further improve the computation of heat fluxes in the present
models.

Turbulence in between porous structure
The current work assumed that the local Reynolds number based on the pore
size is not very high, so that the local turbulence inside the porous media
will always be damped. For high Reynolds numbers this is not strictly the
case anymore, as discussed in section 3.1. It might be needed to replace the
actual fluid viscosity with an effective viscosity inside the porous media in
order to account for such additional turbulence effects. However, this could
be continued to arbitrarily higher complexity levels such that small-scale and
large-scale turbulence could interact. Such a method is proposed by Kuwata
and Suga in [41] where they introduce an additional transport equationwhich
describes the dynamics of the small-scale turbulence.

Gain understanding on the turbulence mechanisms in porous media
This work assumes that the Reynolds-stress model as it is used in nonporous
regions can be adapted to porous media by simply introducing new terms.
However, it is not clear if the main mechanisms of turbulence are valid any
longer inside porous media. Consider, as an example, the production term
which strongly relies on the velocity gradients. In this work the volume-
averaged velocity gradient field is used in the production term. But note, that
the local microscopic velocity gradients inside the porous structure are much
higher than the averaged gradients. In addition, the mixing inside the porous
medium is strongly enhanced due to the fluctuating movements of the fluid
through the irregular porous structure. This might considerably affect the
diffusion process. With this in mind, it would be of interest to evaluate DNS-
data and examine the main mechanisms how turbulence evolves in different
types of porous media. While Breugem shows some information [10], much
more detailed evaluations for several different setups would be required.

The proposed points show that a lot of improvements can be made for accurate
predictions of turbulent flow over porous media. However, the present state as
obtained in this work, already provides many capabilities to support the design
process of aerodynamic vehicles which contain porous surfaces.
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A. Mathematical Relations

A.1. Averaging a density-weighted average
The intention of this section is to show that

〈〈ϕ〉F〉 = 〈ϕ〉F (A.1)

is approximately valid. Starting with the definition of the averaging operators (2.6)
and (2.9) one can write

〈〈ϕ〉F〉 =
1

Vf

∫
Vf

〈ϕ〉F dV =
1

Vf

∫
Vf

〈ρϕ〉
〈ρ〉

dV . (A.2)

Based on the approximation given by equation (2.15), which is assumed valid through-
out this whole work, the nominator and denominator of the fraction are spatially
constant. Hence, they can be pulled out of the integral,

1

Vf

∫
Vf

〈ρϕ〉
〈ρ〉

dV =
1

Vf

〈ρϕ〉
〈ρ〉

∫
Vf

dV =
1

Vf

〈ρϕ〉
〈ρ〉

Vf = 〈ϕ〉F , (A.3)

which gives support that equation (A.1) is valid.

A.2. Flux derivatives of triple correlations of
velocity fluctuations

The Jacobians of the implicit parts of the TAU flow solver need the derivatives of the
triple correlations of the velocity fluctuations in respect to the Reynolds stresses:

∂v′lv
′
mv′n

∂v′iv
′
j

(A.4)

The basis for these triple correlations is the model of Hanjalić and Launder given
by equation (3.30):

v′lv
′
mv′n = −ct

k

ε
·

(
v′lv

′
k

∂v′mv′n
∂xk

+ v′mv′k
∂v′nv

′
l

∂xk
+ v′nv

′
k

∂v′lv
′
m1

∂xk

)
(A.5)
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A. Mathematical Relations

with the turbulent kinetic energy k =
v′
kv

′
k

2 . The derivative in respect to the Reynolds
stress v′iv′j is reads

∂v′lv
′
mv′n

∂v′iv
′
j

=
ct
ε
·

[
∂k

∂v′iv
′
j

·

(
v′lv

′
k

∂v′mv′n
∂xk

+ v′mv′k
∂v′nv

′
l

∂xk
+ v′nv

′
k

∂v′lv
′
m

∂xk

)

+ k · ∂

∂v′iv
′
j

(
v′lv

′
k

∂v′mv′n
∂xk

+ v′mv′k
∂v′nv

′
l

∂xk
+ v′nv

′
k

∂v′lv
′
m

∂xk

)]
.

(A.6)

Therein, the derivative of the kinetic turbulent energy k in respect to the Reynolds
stresses is needed,

∂k

∂v′iv
′
j

=

{
1
2 , i = j

0, i 6= j
, (A.7)

as well as the derivative of the term v′lv
′
k
∂v′

mv′
n

∂xk

∂

∂v′iv
′
j

(
v′lv

′
k

∂v′mv′n
∂xk

)
=

∂v′lv
′
k

∂v′iv
′
j︸ ︷︷ ︸

(a)

·∂v
′
mv′n
∂xk

+ v′lv
′
k

∂2v′mv′n

∂v′iv
′
j∂xk︸ ︷︷ ︸
(b)

. (A.8)

The part (a) of this expression reads

∂v′lv
′
k

∂v′iv
′
j

=

{
1, (l = i ∧ k = j) ∨ (l = j ∧ k = i)

0, else
(A.9)

and for part (b) it is

∂2v′mv′n

∂v′iv
′
j∂xk

=
∂

∂xk

(
∂v′mv′n

∂v′iv
′
j

)
= 0 , (A.10)

since ∂v′
mv′

n

∂v′
iv

′
j

is constant. Then, plugging equations (A.10) and (A.9) into (A.8) and

(A.7) into (A.6) results in
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if i=j
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)] (A.11)

for the index k ∈ 1, 2, 3.
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B. Isentropic Flow Change only for
Normal Velocity

Section 6.2.6 discusses the fact that the relationships between the flow variables
of the two sides of the nonporous-porous interface can lead to biased results. The
reason for this is unveiled to be the condition of constant velocity direction given
by equation (3.69). This leads to a pressure jump over the interface as soon as the
velocity at this point is greater than zero. The experiments on the DLR-F16 airfoil
contradict this behaviour. It rather seems that there will only be a pressure jump
if the velocity component normal to the interface is not zero. Thus, it is proposed
to replace the condition of constant velocity direction by holding the tangential
velocity constant (see figure B.1). In combination with the remaining conditions,
the pressure jump will not be influenced by the tangential velocity anymore. The
present section will quickly describe the newly proposed interface conditions.

v1,n

v1,t
~v1

v2,n

v2,t
~v2

velocity direction constant

v1,n

v1,t
~v1

v2,n

v2,t = v1,t

~v2

tangential velocity constant

Figure B.1.: Velocity relationships over nonporous–porous interface according to
the condition (3.69) of constant velocity direction (left) and the proposed im-
proved condition in which the tangential velocity component stays constant.

The flux conservation laws for mass and energy stay unchanged according to
equation (3.67):

φ1ρ1 vn,1 = φ2ρ2 vn,2 (B.1a)
|v1|2

2
+ k1 + e1 +

p1
ρ1

=
|v2|2

2
+ k2 + e2 +

p2
ρ2

(B.1b)
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with
e =

1

γ − 1

p

ρ
. (B.2)

Also, the isentropic condition
p1
ρ1

γ =
p2
ρ2

γ , (B.3)

and the relationship of the turbulent kinetic energy

φ1ρ1k1 = φ2ρ2k2 (B.4)

are not touched. What is changed is the condition of the constant velocity direc-
tion (3.69). It is replaced by the assumption that the velocity component parallel to
the boundary is equal on both interface sides. This can be written by

vt,1 = vt,2 or |~v1|2 − vn,1
2 = |~v2|2 − vn,2

2 . (B.5)

The constants of the equation system (3.73),

a · (p2)b + c · (p2)d + e · (p2)f + g = 0

must then be modified in a way that they read

a =
γ

γ − 1

(p1)
1
γ

ρ1
; b = 1− 1

γ
; c =

1

2

(
|~vn,1|(p1)

1
γ
φ1

φ2

)2

; d = − 2

γ

e = k1(p1)
1
γ
φ1

φ2
; f = − 1

γ
; g = − γ

γ − 1

p1
ρ1

− |~vn,1|2

2
− k1 .

After solving the equation system, the velocity vector at the boundary side 2 can be
computed with the relation

~v2 = ~v1 + ~n (vn,2 − vn,1) (B.6)

with ~n as the normal vector of the interface.
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C. Classification of Flow Through
Porous Media

In the following, a short derivation of a typical critical Reynolds number Reκ,crit will
be given, telling when turbulence will be maintained solely from the flow through
the porous structure. However, before this question can be assessed, a relation be-
tween the typical pore diameters dp and the permeability κ will be derived.

C.1. Relation between pore size dp and
permeability κ

A relation between the typical pore diameter dp and the permeability κ will be de-
rived on the basis of a quasi-isotropic, simple porous structure as shown in fig-
ure C.1. The given structure allows a theoretical development of the relation. The
resulting equations are then assumed to be general enough to be applied on more
sophisticated porous structures.

Figure C.1.: Quasi-isotropic porous
structure where the pressure gradi-
ent is aligned with channels in only
one direction.

First, it is assumed that the pressure gradient is aligned with the bunch of holes
which point in one direction. This has the consequence that flowwill only be forced
through this one third of channels while the velocity will stay zero in the rest of
the channels. The principal flow setup of the channels which are aligned with the
pressure gradient is sketched in figure C.2. It shows that the pore diameter dp is
chosen to be the height of a single channel.
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dp
∂p
∂x

y

x

Figure C.2.: Setup of laminar flow through channels.

A relation between the pressure drop and the averaged velocity inside the channel
is given by the law of Hagen-Poiseuille (see e.g. [74]):

〈v〉channel = −
d2p
32µ

∂p

∂x
(C.1)

This law is now combined with the law of Darcy

∂p

∂x
= −φ

µ

κ
〈v〉 (C.2)

where the velocity 〈v〉 depends on the channel velocity 〈v〉channel by the relationship

〈v〉 = 1

3
〈v〉channel .

The reason for this is that the in two thirds of the channels of the quasi-isotropic
porous material, the velocity is zero. The resulting relation between pore diame-
ter dp and permeability κ is therefore

dp =

√
96

κ

φ
. (C.3)

If assumed that a typical value of the porosity φ is between 0.1 and 1, one can esti-
mate the pore diameter dp for a given permeability κ to be

dp ≈ (10…30) ·
√
κ or

√
κ ≈

dp

(10…30)
. (C.4)

Anticipated, that these relations can still be applied for random porous structures,
it can be stated that the square root of the permeability κ lies between the size of
one and one hundredth of the pore diameter dp.

With this estimation of the pore size dp based on the permeability κ, one can also
classify the flow problem. If the dimensionless Darcy number Da is defined,

Da =
κ

L2
, (C.5)

with L as a characteristic length scale of the considered flow problem the flow can
be classified as follows:
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C.2. Estimation of critical Reynolds number for turbulence living inside pores

Da � 1× 10−4 → Pore size is much smaller than the dimension of
the flow problem

Da ≈ 1× 10−4 . . . 1 → transient region
Da � 1 → Pore size is much larger that the dimension of the

flow problem

The present work only deals with the first case in which the dimension of the flow
problem is much larger than the size of the pores.

C.2. Estimation of critical Reynolds number for
turbulence living inside pores

The present work does not really consider small-scale turbulence which develops
inside the porous structure of porous media. Rather, turbulence is considered which
is transported into the porous medium. However, if small-scale turbulence can de-
velop inside the pores due to high local Reynolds numbers

Reκ =

√
κvρ

µ
,

an increased drag would be expected. In this case, at least the law of Darcy would
need adaptions (e.g. by replacing the dynamic viscosity with an effective viscos-
ity). Thus, it is of interest to estimate the critical Reynolds number Reκ,crit which
indicates if one would have to expect small-scale turbulence or not.

Inside a channel, flow will turn turbulent if the Reynolds number based on the
channel height and the mean velocity exceeds the value of about 2300 (see e.g. [67]).
This could be transferred to flow in porous media which have a channel-like porous
structure as it is already shown in figure 2.2:

Redp,crit =
ρ
〈
vp
〉
dp

µ
≈ 2300 (C.6)

Here,
〈
vp
〉
is the average velocity inside a channel within the porous structure.

However, the rough structure of a porous medium will reduce the critical Reynolds
number. Literature (see e.g. [56, 42]) points out that rather small pore Reynolds
numbers of about Redp,crit ≈ 300 are an appropriate value for the critical Reynolds
number where flow turns turbulent.

Based on the relation (C.4) one can estimate a value for the critical Reynolds
number of about

Reκ,crit ≈
300

10 . . . 30
≈ 10 . . . 30 . (C.7)
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