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Implementation of Flow through Porous Media
into a Compressible Flow Solver

Michael Mößner and Rolf Radespiel

Technische Universität Braunschweig
Hermann-Blenk-Straße 37, 38108 Braunschweig
m.moessner@tu-bs.de, r.radespiel@tu-bs.de

Abstract. A method for simulating turbulent compressible flow through
porous material is presented. The demonstration is based on spatial and
time averaging of the Navier-Stokes equations. The averaging procedure
leads to additional terms which have to be modelled. The integration of the
resulting theory into the flow solver DLR TAU is explained. The extended
code is verified by analytical solutions which are used as reference.

1 Introduction

Airplane noise during lift off and approach is is a huge problem for the environment.
This is why noise reduction gains high attention by researchers besides the other
well known area of increasing efficiency. One way to make airplanes quieter is
shown experimentally by Herr in [1]: A significant reduction of noise is achieved
by making the trailing edges of the wing porous. As a side effect, the added
porous regions can alter the flow around the wing (see figure 1). This paper shows
a way to integrate porous media simulation capabilities into compressible flow
solvers used for aeronautical applications to enable them simulating the modified
flow.

Fig. 1. Upper: airfoil with solid trailing edge, lower: airfoil with porous trailing edge
which is permeable.



2 Derivation of the Porous Transport Equations

At present, in most technical relevant simulations flow inside the single pores of
a porous material cannot be resolved. This problem can be overcome by spatial
averaging. Instead of simulating the flow through the pores it models the porous
effect homogeneously. A similar procedure is used for turbulence. The turbulence
is not resolved rather its effect is taken into account by averaging in time and
modelling the Reynolds stresses. The basic strategy for spatial averaging in
incompressible flow can be found in [2]. The procedure for obtaining nonporous
turbulence equations is described in [3] extensively. The two principles are used
in the present paper to obtain the compressible RANS equations which are valid
inside and outside porous media. To keep the equations simple density weighted
averaging is used. The final equations result in
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by using the Einstein notation. All variables are spatially averaged which is
not labelled explicitly. The Favré average in time is marked with a tilde, the
fluctuation with two primes: ϕ = ϕ+ ϕ′′. In the equations, v is the velocity, p is
the pressure, τ is the tensor of viscous stresses, e is the internal energy, h is the
enthalpy, kd is the thermal diffusion and µ is the dynamic viscosity. The porous
variables are the porosity φ, permeability κ and the Forchheimer coefficient cF .

The following simplifications which were used: The correlations between
spatial fluctuations are negligible ([2]) and the additional integrals which appear
after spatial averaging can be modelled by the Darcy- and Forchheimer term. A
further simplification of the energy equation is setting the thermal diffusion at
the pore surfaces to zero.

The correlations in the energy equation (1c) are not investigated any further
here. Basically, they can be modelled with a turbulent Prandtl number Pr t and
the eddy viscosity µt. The main difficulty to be solved is finding an approxima-
tion for the Forchheimer term ρ cF√

κ

√
vkvkvi and the derivation of the Reynolds

stresses v′′i v′′k .
Getachew, Minkovycz and Lage ([4]) use a Taylor expansion to approximate

the Forchheimer term. Inhere, a Taylor expansion is used in a similar way but
resulting from a slightly different approach (vi = xvi where x at the reference
point is 0 and the deviation from the reference point is 1) the final approximation



contains more terms:
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The remaining unknows are the Reynolds stresses which have to be mod-
elled. The modelling is done by introducing Reynolds stress transport equations.
Following the principle of Wilcox in [3] and taking into account the effects of
porosity the resulting Reynolds stress equations are
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where Pij is the production term, Φij is the redistribution term, εij is the
dissipation and Dij stands for diffusion. These equations also show the extension
due to the Darcy term
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and the extension caused by the Forchheimer term

FRS =
cF√
κ
ρ

[
2v′′i v

′′
j

√
vlvl +

vjvk√
vlvl

v′′i v
′′
k +

vivk√
vlvl

v′′j v
′′
k + 2

vk√
vlvl

v′′i v
′′
j v
′′
k

+
1

2

vj√
vlvl

v′′i v
′′
kv
′′
k +

1

2

vi√
vlvl

v′′j v
′′
kv
′′
k

− 1

2

vjvmvk√
(vlvl)

3
v′′i v
′′
mv
′′
k −

1

2

vivmvk√
(vlvl)

3
v′′j v
′′
mv
′′
k

]
.

(5)

The influence of the Forchheimer term shown here is a Taylor expansion with
2nd order accuracy.

3 Modelling of the Interface Region

The derivation of the Navier-Stokes-equations in porous materials underlies the
assumption of constant porosity φ. This condition does not hold at the interface
area between porous and nonporous flow. As a consequence, the interface region
has to be modelled. For flow directions normal to the interface plane an isentropic



flow change is used:

Mass conservation: ρf · vn,f = φ · ρp · vn,p (6a)
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The index f labels the nonporous flow and p marks porous flow. vn is the flow
velocity perpendicular to the interface and γ is the isentropic exponent. The
equations are solved by the Newton method.

According to literature ([2]) the velocities vt tangential to the interface are
related as follows:

vt,f = vt,p · φ (7)

This relation should be proven for compressible flow but is adopted here in order
to compare the solution with analytical results available.

The widely acknowledged strategy to overcome the error of the interface
models is the use of a stress jump at the interface ([2], [5]):
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with ∂
∂n being the derivative in interface normal direction and β as the jump

coefficient of order 1. The jump condition can be seen as an additional source
term at the interface which corrects the Darcy term.

4 Integration into the DLR Flow Solver TAU

The DLR TAU Code ([6]) is an unstructured flow solver based on the finite
volume method. There are three implementation issues to provide the code with
porous computation capabilities. First of all, volume source terms (Darcy- and
Forchheimer) are added to the residuals of porous volume cells. This has the
effect of additional flow drag inside the porous region.

Computing the fluxes at the nonporous–porous interface is implemented
as central scheme. To determine the flux into the porous cell the states of
the contacting nonporous cell (vf , pf , . . . ) are first transformed into dummy
porous cell states (vf,i, pvi ,. . . ) which are compatible with the porous states. The
transformation is accomplished by equations (6) and (7) (see also figure 2). The
central scheme for computing the mass flux ṁ into the porous cell is then

ṁporous =
1

2
(ρp · vn,p + ρf,i · vn,f,i) ·A · φ . (9)

The same scheme is applied to the momentum and energy equations over the
interface. The viscous forces also need a transformation of velocity gradients.



They are scaled by the relation
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The flux into the nonporous interface cell is determined the same way as
described for the flux into the porous cells but with the porous flow conditions
transformed to nonporous conditions (figure 2 to the bottom right).
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Fig. 2. Flux computation at nonporous–porous interface. Transformation to
porous/nonporous conditions is based on equations (6) and (7).

The third step of integrating porous material into TAU is correcting the
residuals of the interface cells to fulfill the jump condition (8). This is accomplished
by adding an additional force as source term to both interface cells. The additional
force leads to a kink in the velocity profile which is equal to a stress jump (see
figure 3).

5 Verification Computations

As first verification experiment which can be compared easily with well known
solutions serves a channel flow where the first part is nonporous and the second
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Fig. 3. Correction of boundary layer shape by additional source term to fulfil the jump
condition.

part is filled completely with porous material. It is clear that as long as the flow
is incompressible the velocity between the pores has to increase by the factor of
1
φ as the effective flow area decreases by the factor of φ. If the channel walls are
defined using slip wall boundary conditions pressure losses will only occur inside
the porous region. The theoretical pressure decrease can be compared with the
theory of Darcy. The results using the modified TAU-Code are demonstrated in
figure 4. As the porosity φ is 0.5, the velocity doubles from 2.6 m

s to 5.6 m
s at the

nonporous–porous interface. There is also a small pressure jump at the interface
which is hard to see due to the low kinetic energy in the flow. However, the effect
of the pressure drop inside the porous region is visible very well. The theory of
Darcy yields

∆p = φ · µ
κ
· vp · lchannel = 0.5 ·

1.74 · 10−5 kg s
m

1 · 10−8 1
m2

· 5.7 m
s
· 1m = 4959

N
m2 . (11)

The pressure drop on the CFD results is 4947 N
m2 which is almost equal. The

small difference occurs as the CFD results are based on compressible equations.
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Fig. 4. Channel flow with the right part being filled with porous material (porosity
φ = 0.5). The diagrams show the pressure p and velocity v along the channel.

An evaluation of a boundary layer flow can serve as a second verification case.
Breugem [2] showed an analytical way for computing a laminar boundary layer



over a porous region. His theory is based on the Blasius boundary layer with a
porous wall correction. The ordinary differential equations which describe the
boundary layer are
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with the boundary conditions
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and are solved by a shooting method. The dimensionless variables f0, f1 and η
define the wall distance y and flow velocity v according to
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A comparison of the analytical results with the TAU solutions is shown in
figure 5. The differences between the two curves are very small demonstrating
the correct TAU implementation.
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6 Conclusion

A theory to compute compressible flow through porous material has been pre-
sented. That includes the Reynolds stress equation in porous material which
are needed for turbulent flows. The basic principles for the derivation of the
equations are spatial and time averaging. This procedure avoids the need for
resolving the porous structure and the turbulent time scales. Instead unknown
terms are emerging which are modelled by the Darcy and Forchheimer term.
These terms can also be found in the Reynolds stress equations which are needed
for turbulence modelling.

Besides the modelling of terms inside the porous material the interface region
between nonporous and porous flow has to be modelled in a suited way. This is
necessary as the porosity is not constant at the interface region. The modelling
strategy is the assumption of isentropic flow change over the interface area. The
error which occurs through the assumptions is compensated by a stress jump
condition which conforms with literature.

The theoretical derivations are followed by a description about the implemen-
tation of the equations into a flow solver. Virtual states have to be computed at
the interface to determine the fluxes. The implementation is verified by channel
and boundary layer flows. Therefore, reference cases can be found in the literature
which show the implementation to be correct.

Further verifications will need DNS computations to prove the models used
are valid. Especially, the interface conditions tangential to the wall have to be
checked. Turbulent cases will also be verified in future.

The resulting extension of the TAU code will provide the ability to predict
the aerodynamic behaviour of shapes like airfoils and wings with porous regions.
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