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Numerical Simulations of Turbulent Flow over Porous
Media

M. Mößner ∗ and R. Radespiel †

Technische Universität Braunschweig, Braunschweig, 38108, Germany

A strategy to extending RANS solvers for simulating compressible and turbulent flow
into and through porous media is presented. Therefor Darcy and Forchheimer term are
appended to the Navier-Stokes equations. Beside of that the effect of porous terms onto the
turbulence equations are considered. The interface region between porous and nonporous
flow is modelled by an isentropic flow change and corrected by a stress jump condition.
The implementation into the flow solver is demonstrated and verified with reference cases.
Finally, solutions for a turbulent channel partially filled with cubes are compared with DNS
computations.

Nomenclature

Afs Surface area of porous structure
cε Modelling constant for correlations in dissipation equation
cF Forchheimer coefficient
ct Modelling constant for velocity fluctuation triple correlations
d Distance inside porous structure
Dij Diffusion term in Reynolds stress transport equations
Dε Diffusion term in turbulent dissipation equation
e Internal energy
h Enthalpy
H Channel height
kd Thermal diffusion
~n Normal vector
ni i-component of normal vector
p Pressure
Pij Production term in Reynolds stress transport equations
Pε Production terms in turbulent dissipation equation
P Porous source terms for Reynolds stress transport equations
Re Reynolds number
t Time
T Integration time interval
Tε Turbulent transport term in turbulent dissipation equation
uτ Shear stress velocity
Ub Bulk velocity → mean velocity inside channel section
vi Velocity in direction i
V Volume
xi Coordinate in direction i
Y Dissipation term in turbulent dissipation equation
z Coordinate normal to wall or nonporous–porous interface area
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Greek letters
β Stress jump coefficient
ε Dissipation of turbulence
ε Perputation variable
γ Isentropic exponent
κ Permeability
µ Dynamic viscocity
ν Kinematic viscosity
φ Porosity
Φ Redistribution term in Reynolds stress transport equations
Φε Pressure transport term in turbulent dissipation equation
ρ Density
τij Element i, j of tensor of viscous stresses
Subscript
f Fluid phase
p Porous phase
b Bulk → average value over channel section
Averaging
ϕ Time average of arbitrary variable ϕ
ϕ Density weighted time average of arbitrary variable ϕ
〈ϕ〉 Volume average of arbitrary variable ϕ
〈ϕ〉F Density weighted volume average of arbitrary variable ϕ
ϕ� ϕ-fluctuation value of density weighted volume averaging
ϕ′ ϕ-fluctuation value of density weighted time averaging

I. Introduction

The need for drastic noise reductions in commercial aircraft leads to new approaches to minimize the
airframe noise sources. One of these concepts is the usage of porous material.1 Depending on the permeability
of the porous material the flow will be influenced which leads to modified aerodynamic properties as well.
This is why flow solvers have to be provided with new capabilities to simulate flow over and through porous
material.

Figure 1. Airfoil with porous trailing edge. The streamlines are significantly influenced and aerodynamic
properties are altered.

Several factors are important during the derivation of the numerical approach:

• Turbulence has to be modelled as the Reynolds number of airplanes is high,

• The flow is compressible – a consequence of high Mach numbers

• The porous structure is very fine – the flow inside the porous structure cannot be resolved.

The following sections will show how to comply with these requirements and integrate the resulting equations
and models into a flow solver.
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II. Theoretical Background

As starting point for the theoretical derivations serve the Navier-Stokes equations:

∂ρ

∂t
+
∂ρvk
∂xk

= 0 (1a)

∂ρvi
∂t

+
∂ρvivk
∂xk

+
∂p

∂xi
− ∂τik
∂xk

= 0 (1b)

∂ρe

∂t
+
∂ 1

2ρvjvj

∂t
+
∂ρhvk
∂xk

+
∂ 1

2ρvjvjvk

∂xk
− ∂vjτjk

∂xk
− ∂kd,k

∂xk
= 0 (1c)

where t is the time, xi are the coordinates, ρ is the density, vi are the velocity components, p is the pressure,
τ is the tensor of viscous stresses, e is the internal energy, h is the enthalpy and kd the thermal diffusion. It
is assumed that these equations fully describe the fluid flow inside and outside of a porous medium. Due to
the very small pores in many fluid dynamic applications (like the flow past an airplane with porous trailing
edges) the flow inside the porous structure cannot be resolved. Also it is not possible to resolve the turbulent
structure at high Reynolds numbers. This lack of computational ressources often goes along with the mere
interest in the averaged flow properties only.

A. Volume Averaging of the Navier-Stokes Equations

One way to only consider the mean flow and not to resolve the flow inside the porous structure is volume
averaging over the fluid state inside the porous material and taking into account the porosity effects by
applying additional drag (see figure 2). Spatial averaging can be written as

〈ϕ〉 =
1

Vf

∫
Vf

ϕdV (2)

with Vf being the fluid volume inside the porous structure and ϕ as arbitrary variable to be averaged. For
compressible fluids density weighted averaging keeps the equations simple. It is defined as

〈ϕ〉F =
1

Vf 〈ρ〉

∫
Vf

ρϕdV =
〈ρϕ〉
〈ρ〉

. (3)

When the Navier-Stokes equations are volume averaged additional relations are needed for the derivatives.
This is because not the average of the derivative is needed but rather the derivative of an averaged state
variable. Bear2 shows these relations to be〈

∂ϕ

∂t

〉
=
∂〈ϕ〉
∂t
− 1

Vf

∫
Afs

ϕ · ~vT · ~ndA , 〈∇ϕ〉 = ∇〈ϕ〉+
1

Vf

∫
Afs

ϕ · ~ndA (4)

where ~n is the normal vector with its direction perpendicular to the pore surfaces Afs.
Additionally, when the Navier-Stokes equations are averaged, the deviations from the mean values will

appear. Inhere, for volume averaging the deviation from the density weighed volume average is marked with
a diamond:

ϕ =〈ϕ〉F + ϕ� (5)

Note that the averaging volume should be large enough that the expressions

〈〈ϕ〉F 〉F =〈ϕ〉F and 〈ϕ�〉F = 0

are valid.
Using the presented relations the Navier-Stokes equations (1) are averaged in space. After applying some
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resolved flow through pores

porous drag

flow through pores after averaging

Figure 2. Principle of volume averaging of flow inside a porous structure

common simplifications they result in

∂〈ρ〉
∂t

+
∂〈ρ〉〈vk〉F
∂xk

= 0 (6a)

∂〈ρ〉〈vi〉F
∂t

+
∂〈ρ〉〈vi〉F 〈vk〉F

∂xk
+
∂〈p〉
∂xi

− ∂〈τik〉
∂xk

+
1

Vf

∫
Afs

p · ni − τiknk dA = 0 (6b)

∂〈ρ〉〈e〉F
∂t

+
∂ 1

2 〈ρ〉〈vj〉F 〈vj〉F
∂t

+
∂〈ρ〉〈h〉F 〈vk〉F

∂xk
+
∂ 1

2 〈ρ〉〈vj〉F 〈vj〉F 〈vk〉F
∂xk

−
∂〈vj〉F 〈τjk〉

∂xk
− ∂〈kd,k〉

∂xk
= 0 . (6c)

The basic simplification in these equations is that correlations between deviations are neglected. For corre-
lations between two velocity fluctuations this is discussed and examined by Breugem.3 This assumption is
also applied on other correlations in this derivation. Further assumptions are that the velocity is zero at the
pore surfaces and that there is no heat transfer between fluid and the porous structure. All these assump-
tions help to keep equations (6) similar to the original Navier-Stokes equations (1), the surface integral in
the momentum equation (6b) being the only difference. This surface integral describes the additional drag
inside the porous medium. Typically, it is modelled with Darcy’s law which can be extended by a quadratic
term called Forchheimer term (see4 or5):

1

Vf

∫
Afs

p · ni − τiknk dA = φ
µ

κ
〈vi〉F︸ ︷︷ ︸

Darcy

+〈ρ〉 cF√
κ

√
〈vk〉F 〈vk〉F 〈vi〉F︸ ︷︷ ︸

Forchheimer

(7)

with the dynamic viscosity µ, the porosity φ, the permeability κ and the Forchheimer coefficient cF . The
porosity φ is defined as the ratio between fluid volume Vf and entire volume V containing also the solid
structure of the material. The permeability κ and the Forchheimer coefficient cF are material specific
parameters of the porous medium.

B. Time Averaging of the Volume Averaged Navier-Stokes Equations

Before starting with the discussion of averaging in time note that all variables in equations (6) and (7) are
written in their volume averaged form. From now on the volume averaging signs are omitted while keeping
in mind that all variables always are volume averaged. This makes the equations more easy to read.

Time averaging of the compressible Navier-Stokes equations is a well known procedure to avoid resolving
the turbulent structure and this is described in detail in numerous literature e.g. by Wilcox.6 The procedure
will be addressed only briefly. Only the effects of the porous terms are described in more detail.

The time average and the density weighted time average used are defined as

ϕ =
1

T

∫
T

ϕdt ; ϕ =
1

ρT

∫
T

ρϕdt (8)

with the time interval T . The density weighted average will also be used together with its fluctuation value
which is defined in terms of

ϕ = ϕ+ ϕ′

where
ϕ = ϕ and ϕ′ = 0 .
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Inserting equation (7) into (6) and averaging in time results in

∂ρ

∂t
+
∂ρvk
∂xk

= 0 (9a)

∂ρvi
∂t

+
∂ρvivk
∂xk

+
∂ρv′iv

′
k

∂xk
+

∂p

∂xi
− ∂τik
∂xk

+ φ
µ

κ
vi︸ ︷︷ ︸

Darcy

+ ρ
cF√
κ

√
vkvkvi︸ ︷︷ ︸

Forchheimer

= 0 (9b)

∂ρe

∂t
+
∂ 1

2ρvjvj

∂t
+
∂ 1

2ρv
′
jv
′
j

∂t
+
∂ρhvk
∂xk

+
∂ρh′v′k
∂xk

+
∂ 1

2ρvjvjvk

∂xk
(9c)

+
∂ 1

2ρvkv
′
jv
′
j

∂xk
+
∂ρvjv

′
jv
′
k

∂xk
+
∂ 1

2ρv
′
jv
′
jv
′
k

∂xk
− ∂vjτjk

∂xk
−
∂v′jτjk

∂xk
− ∂kd,k

∂xk
= 0 .

The form of these equations differ from the equations (1) by the Darcy and Forchheimer term and the
correlations of fluctuation values. The Darcy and Forchheimer term describe the effect of porosity and the
correlations of fluctuation values appear as a consequence of turbulence. The average of the velocities in
the Forchheimer term is inconvenient and has to be reformulated in a way that only the average of single
velocities remain. This can be achieved by using a Taylor expansion:

f(ε = 1) = f(ε = 0) +
∂f(ε)

∂ε

∣∣∣∣
ε=0

+
1

2

∂2f(ε)

∂ε2

∣∣∣∣
ε=0

+ . . .

where
f(ε) =

√
vkvkvi with vi/k = vi/k + ε · v′i/k

with ε = 0 being the reference state and ε = 1 being the state where the Taylor expansion is evaluated.
Using these definitions finally results in a second order approximation of the Forchheimer term:

ρ
cF√
κ

√
vkvkvi = ρ

cF√
κ

√vlvl · vi +
1

2

vi√
vlvl

v′jv
′
j +

vj√
vlvl

v′iv
′
j −

1

2

vivjvk√
(vlvl)

3
v′jv
′
k

 . (10)

C. Modelling of Turbulence

The presence of turbulence leads to correlations between fluctuations. All these correlations which appear
in equations (9b) and (9c) have to be specified. For modelling these effects of turbulence a Reynolds stress
model is applied for reasons of complex flow behaviours such as streamline curvature and flow rotation. The
basic derivations of Reynolds stress and dissipation transport equations are extensively discussed by Wilcox.6
Written in a simple form the Reynolds stress equation are

∂ρv′iv
′
j

∂t
+
∂ρvkv

′
iv
′
j

∂xk
= Pij + Φij +Dij + εij − v′j

∂p

∂xi
− v′i

∂p

∂xj
(11)

without considering porosity effects. The terms are named according to literature: P is the production term,
Φ is the redistribution term, D is the diffusion term and ε is the dissipation term. The dissipation equation
can be written as

∂ρε

∂t
+
∂ρvkε

∂xk
= P 1

ε + P 2
ε + P 3

ε + P 4
ε + Tε + Φε +Dε − Y (12)

where the terms Pε are production terms, Tε is the turbulent transport term, Φε is the pressure transport
term, Dε is the diffusion term and Y is the dissipation term according to Mansour et al.7

In the present paper the terms are modelled according to the JHh-v2 turbulence model.8 The remaining
unknown correlation terms in the energy equation (9c) are modelled with the gradient diffusion hypothesis
and a turbulent Prandtl number.

Now the question arises how the turbulence is influenced inside porous media. This problem can be
dealt with by deriving the exact Reynolds stress transport equations starting from the volume averaged
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momentum equations (6b). This leads to the additional terms

PRS,Darcy =− φµ
κ

[
v′ivj + v′jvi + 2v′iv

′
j

]
(13a)

PRS,Forch =− cF√
κ
ρ

[
2v′iv

′
j

√
vlvl +

vjvk√
vlvl

v′iv
′
k +

vivk√
vlvl

v′jv
′
k + 2

vk√
vlvl

v′iv
′
jv
′
k +

1

2

vj√
vlvl

v′iv
′
kv
′
k (13b)

+
1

2

vi√
vlvl

v′jv
′
kv
′
k −

1

2

vjvmvk√
(vlvl)

3
v′iv
′
mv
′
k −

1

2

vivmvk√
(vlvl)

3
v′jv
′
mv
′
k

]

inside the Reynolds stress equations (11). Doing a similar procedure for the dissipation equation results in

Pε,Darcy = −2φ
µ

κ
ε (14a)

Pε,Forch = −ρ cF√
κ

[
2
√
vlvl · ε+ ν

∂
√
vlvl

∂xj

∂v′iv
′
i

∂xj
+ 2ν

vk√
vlvl

[
v′k

∂v′i
∂xj

∂v′i
∂xj

+ 2v′i
∂v′i
∂xj

∂v′k
∂xj

+ vi
∂v′i
∂xj

∂v′k
∂xj

]
(14b)

+ ν
∂

∂xj

(
vk√
vlvl

)[
2v′iv

′
k
∂v′i
∂xj

+ v′iv
′
i
∂v′k
∂xj

]
+ ν

∂

∂xj

(
vivk√
vlvl

)
∂v′iv

′
k

∂xj

− 2ν
vivmvk(√
vlvl

)3 v′k ∂v′i∂xj

∂v′m
∂xj
− 1

3
ν
∂

∂xj

 vivmvk(√
vlvl

)3
 ∂v′iv

′
mv
′
k

∂xj

]

as additional terms inside equation (12) where ν = µ
ρ is the kinematic viscosity. Corresponding to the

porosity terms in the momentum equation the Forchheimer terms are second order Taylor expansions to
avoid averaging over the entire square roots.

The triple correlations in equation (13b) are modelled by the model of Hanjalic and Launder9

v′iv
′
jv
′
k = ct

k

ε

[
v′iv
′
l

∂v′jv
′
k

∂xl
+ v′jv

′
l

∂v′iv
′
k

∂xl
+ v′kv

′
l

∂v′iv
′
j

∂xl

]
(15)

with a modelling constant ct and the turbulent energy k = u′iu
′
i. The unknown correlations in equation (14b)

are modelled according to Getachew, Minkowycz and Lage.5 Using the gradient diffusion hypothesis and
the assumption of local isotropy inside the porous regions leads to following models:

v′k
∂v′i
∂xj

∂v′i
∂xj

+ 2v′i
∂v′i
∂xj

∂v′k
∂xj

= −cε
ν

k

ε
v′kv
′
i

∂ε

∂xi
; vi

∂v′i
∂xj

∂v′k
∂xj

=
1

3ν
vkε (16)

with the modelling constant cε. The higher order terms are neglected.

D. Modelling of the interface area between the porous and the free flow region

The derivation of the porous Navier-Stokes equations is based on the assumption of constant porosity. This
is not valid close to the interface area as is explained in figure 3.

The modelling procedure of the interface region is split into flow normal and the flow tangential to the
porous surface. The case of normal flow is modelled by the assumption of an isentropic flow change. This
can be expressed by

Mass conservation: ρf · vn,f = φ · ρp · vn,p (17a)

Energy conservation:
γ

γ − 1

pf
ρf

+
v2f
2

=
γ

γ − 1

pp
ρp

+
v2p
2

(17b)

Isentropic condition:
pf
ργf

=
pp
ργp

(17c)

Turbulence quantities:
[
v′iv
′
j

]
f

=
[
v′iv
′
j

]
p

; εf = εp (17d)
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averaging volume

interface area

φf = 1

φp

φf > φ > φp

Figure 3. The porosity of an averaging volume close to the interface regions between porous and nonporous
flow is not constant.

with γ as isentropic exponent and the velocities vn normal to the interface area. The subscripts f and p
refer to the interface side of nonporous flow and the side of porous flow. Equations (17a)-(17c) are solved
using the Newton method.

When the flow velocity is tangential to the nonporous–porous interface the flow over the interface area is
defined by diffusion. In principle the interface is set up in a way that diffusion flow always tends to reduce
the state variable differences. However, an exception is made for the tangential velocities. Diffusion will urge
them to fulfill the relation

vt,f = vt,p · φ (18)

where vt,f and vt,p are the velocities tangential to the surface. This relation is borrowed from literature3
which provides us with DNS data for our validation process. For high porosities it reveals to be a valid
assumption. Applying this relation to lower porosities still has to be validated.

There will be shortcomings of these interface modelling approaches especially for flow tangential to the
surface of the porous medium. These shortcomings can be accredited to the porous forces which are not
accurate close to the interface and have to be corrected. In consequence an additional force is applied
tangential to the interface. One way to determine the magnitude of this correction force is the relation

µ · ∂vt,f
∂n

− µ · ∂vt,p
∂n

= β
µ√
κ
vt,f (19)

which is discussed in literature3,10 and promises good results. In words, the indicator which controls the
force is the jump of shear stresses over the nonporous–porous interface area. This jump has to reach the
value of µ√

κ
vt,f multiplied with a jump coefficient β which has a magnitude of order 1 and depends on the

porous structure. The effect of the jump coefficient β on the velocity profile is sketched in figure 4.

n

vφ0
F

β = 0

n

vφ0
F

β positive

nonporous
region

porous
region

n

vφ0
F

β negative

Figure 4. Boundary layer profile for different jump coefficients β.

III. Integration of Porous Wall Capabilities into the Flow Solver TAU

In this section a numerical approach is presented to integrate the introduced equations into a flow solver.
This is shown for the flow solver TAU which is developed at the DLR (Deutsches Zentrum für Luft- und
Raumfahrt).11 TAU is an unstructured solver based on the finite volume method.

The integration of porous capabilities can be separated into two tasks as shown in figure 5. First, all
porous parts get additional attributes like porosity φ, permeability κ and Forchheimer coefficient cF . These
are needed to compute additional source terms according to equation (9b).
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nonporous–porous flow regime

porous drag force
φµ
κ
v + . . .

treatment in porous region

nonporous flow

porous flow

flux computed with central dif-
ferences and conditions (17)

treatment of interface region

Figure 5. Details of integration of flow through porous media into a finite volume flow solver

The second part of the porous TAU extension are the interface areas between nonporous and porous
regions. The flux over these interfaces shall be computed by a central scheme. The central scheme cannot be
applied directly because there is a jump in momentum caused by a sudden change of pressure described by
the isentropic conditions (17). This problem can be overcome if the cells in the porous region are converted to
fictive nonporous region cell using conditions (17). Now the fluxes into the nonporous cell can be computed by
a central scheme using the newly created fictive flow inside the porous cell and the real conditions inside the
nonporous cell. The described method is also applied inversely by converting the nonporous flow conditions
into a fictive porous cell and then computing the flux into the porous cell. Figure 6 visualizes the procedure.
The fictive cells are also used to compute the gradients over the porous interface which become important
especially for velocity vectors tangential to the interface area.

Finally, the residuals at the interface cells are modified to fulfill the jump condition (19). The additional
tangential force needed is determined by an integral type controller. The basic setup is illustrated in figure 7.
After each iteration step of the solver the right hand side of equation (19) is compared with its left hand
side. The difference is added to the tangential force until equation (19) is fulfilled.

interface cellcell setup for porous flux cell setup for nonporous flux

nonporous

porous

fictive porous cell

porous

nonporous

fictive nonporous cell

Transformation to

nonporous conditions

Transformation to

porous conditions

porous
flux

non-
porous
flux

vf , pf ,
. . .

vp, pp,
. . .

vp, pp,
. . .

vp,i, pp,i, . . .

vf , pf ,
. . .

vf,i, pf,i,
. . .

Figure 6. Usage of fictive volume cells to compute fluxes over nonporous–porous interface areas.

Integral Controller µ
∂vt,f
∂n − µ

∂vt,p
∂n

β µ√
κ
vt,f

+

-

Figure 7. Controlling strategy to adjust the correction force at the porous surface to fulfill the stress jump
condition.

IV. Verification Cases

This section will demonstrate verification and validation experiments of the theoretical part of this paper
using three generic cases. The valid implementation of Darcy and the isentropic flow change at the porous
boundary will be shown with help of a laminar channel flow. The case of laminar flow along a porous boundary
is verified with an analytic boundary layer solution over porous media. Finally, a turbulent channel filled
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with cubes is compared with DNS computations.

A. Verification of the Darcy term and the Isentropic Flow Change at Porous Surfaces

The verification of the Darcy term is done with help of a channel flow. The first half of the channel is
nonporous and the second part is fully porous. The porous interface where the air flows into the porous
region is located half of the channel length downstream. Here, the velocity has to increase due to the
isentropic flow change described in equations (17). Inside the porous region the pressure will drop steadily
in consequence of the drag described by the Darcy term.

The channel geometry is prescribed by using slip-flow boundary conditions. This implies that no boundary
layer will develop. The porous region has a permeability of κ = 1 · 10−8 m2 and the porosity is φ = 0.5. The
inflow velocity is 2.8 m

s and the viscosity is 1.74 · 10−5 kg
m s .

in
flo

w
outflow

free flow porous flow

0

3

6

v
/
m s

80

84

88

p
/
kN m

2

Figure 8. Verification of porous flow in a partly porous channel.

The results computed by the flow solver TAU are shown in figure 8. The correct implementation of the
theoretical equations becomes apparent: The flow velocity doubles at the interface due to the porosity of
φ = 0.5. This is the result of isentropic flow change applied for incompressible flow. Also, the pressure inside
the porous region drops in accordance with the theory of Darcy. This theory defines the pressure gradient ∂p

∂x
by

∂p

∂x
= φ

µ

κ
v = 0.5 ·

1.74 · 10−5 kg
m s

1 · 10−8 m2 · 5.6 m
s

= 4.9
kN
m3 (20)

where the numerical solution also gives

∂p

∂x
=

∆p

∆x
=

86.2 kN
m2 − 81.3 kN

m2

1m
= 4.9

kN
m3 .

B. Laminar Boundary Layer over a Porous Surface

The second verification case is a laminar boundary layer over a porous surface. Breugem3 derived an
analytic set of equations for porous boundary layers. The equations are based on the Blasius solutions. A
superposition of the additional terms takes account for the influence of the porous region.

In the setup the farfield velocity is v = 66.3 m
s , the density is ρ = 0.52 kg

m3 and the viscosity is µ =

1.74 · 10−5 kg
m s . The porous medium has a permeability of κ = 1 · 10−8 m2 and a porosity of φ = 0.5. The

boundary layer is evaluated x = 0.5m after the start of the porous region.
Figure 9 compares the analytic boundary layer with the solution of the flow solver TAU. The two results

are very close to each other and verify the porous implementation for boundary layer flow.

C. Turbulent Channel with Cubes as Porosity

Finally, turbulent flow will be validated inside a partly porous channel. Breugem4 presented the results of
a DNS computation in a channel where the lower half is filled with cubes. See figure 10 for a sketch of the
setup. The cubes inside the lower half have a side length of dp = 0.05H and a spacing between each other
of df = 0.05H where the H is the nonporous channel height. For the DNS computations the cubes are
similarly arranged into the third dimension. The side walls of the channel are set as symmetry planes.
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Figure 9. Boundary layer flow over a porous surface. The solution of the modified flow solver TAU is compared
with the analytic boundary layer based on the theory of Breugem.3

The porosity properties of the grid of cubes are as follows. The porosity is φ = 0.875, the permeability is
κ = 3.4 · 10−4H2 and the Forchheimer coefficient is cF = 0.02 as referred by Breugem.4 The jump coefficient
is held constant at a value of β = −0.5. The Reynolds number based on the channel height H and the
averaged velocity Ub on the upper half of the channel is Reb = 5500. The Reynolds stress turbulence model
JHh-v2 8 is used for the volume and time averaged Navier-Stokes equations.

lower viscous channel wall
z = −H

upper viscous channel wall
z = H

interface region

in
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w

ou
tfl
ow

H z

x

Figure 10. Setup of turbulent channel with cubes in the lower half as porosity as used from Breugem4 for
DNS computations.

In the following the influence of the different turbulence terms inside the porous regions will be shown.
Firstly, equations (9) are used together with the standard turbulence equations (11) and (12). The results
of the velocity and Reynolds stresses are given in figure 11. These results show that the velocity profile is
already rather close to the DNS computations. Also, the Reynolds stresses show only small deviations from
the DNS values. The Reynolds stresses v′xv′x inside the porous region obtain a somewhat smaller value due
to the lack of turbulence production. As the velocity is very small inside the lower porous region the velocity
profile is not affected by this behaviour.

As a second step we investigate how the Darcy term inside the Reynolds stress equations influcences
the Reynolds stresses. The Darcy term is given in equations (13a) and (14a) and will damp the Reynolds
stresses inside the porous region. In figure 12 one can see the strong effect of the Darcy term onto the
Reynolds stresses if compared with the solutions in figure 11. This strong effect is rather unexpected
since Breugem4 compared a pores-resolving DNS with a volume averaging DNS and obtained much better
agreement. Further simulations with a systematic variation of porosity and permeability are needed to fully
understand the behaviour of our current RANS simulations. Therefor, data reported from Breugem3 will
serve as reference basis.
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Figure 11. Comparison of VRANS solution with the DNS of Breugem4 without using the porous terms inside
the turbulence equations.

In figure 12 a simulation with only the Forchheimer term switched on is shown. It can be recognized
that its effect is similar to the effect of the Darcy term as it damps the the Reynolds stresses significantly
inside the porous region. The velocity and Reynolds stress profiles with the total effect of both, Darcy and
Forchheimer term is shown in figure 13.
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Figure 12. Comparison of VRANS solution with the DNS of Breugem4 when taken into account the Darcy
term or the Forchheimer term respectively inside the turbulence equations.

V. Summary and Conclusion

The arising need for numerical flow simulations in aircraft aerodynamics that include the effects of porous
surfaces is the motivation to integrate porous surface media capabilities into the flow solver TAU. To prepare
the TAU-code for aeronautical applications several requirements have to be fullfilled: The equations have to
model compressible flow at high Mach numbers, advanced turbulence modelling is needed (Reynolds stress
models) and the porous models have to be formulated in a way that they can be integrated into a proven
flow solver.

The basic procedure to integrate porous capabilities into a flow solver is as follows. The Navier-Stokes
equations are extended with porous terms by averaging over a sample of pores. This avoids the need for
resolving the porous structure. In our present work, the volume averaging is based on the assumption of
constant porosity. In consequence, further modelling has to be accomplished at the interface between porous
and nonporous flow. The main modelling principles introduced for that purpose are isentropic flow change
for flow perpendicular to the porous surface and a stress jump condition to correct the tangential boundary
layer profile. The modelling of turbulence is based on the Reynolds stress model JHhv2. The underlying
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Figure 13. Comparison of VRANS solution with the DNS of Breugem4 when all porous terms are switched
on inside the turbulence equations.

equations are the Reynolds stress transport equations and the dissipation equation. They are extended in
our work to be also valid inside porous regions.

The resulting porous modelling equations are integrated into a flow solver. Drag caused by the porous
medium is added in form of source terms to the residual of each volume cell. Fictive porous cells and a
controlling strategy are introduced to fulfill the interface conditions between porous and nonporous regions.
The correct implementation of flow through and over porous media into the flow solver is verified for laminar
flow with a porous channel and a boundary layer over a porous surface. The results are in accordance with
analytic reference cases.

Validation for turbulent shear flows asks for pores resolving DNS. They are available from the work
of Breugem3 and describe turbulent channel flow with a one-sided porous wall composed of geometrically
simple cubes. The setup of Breugem is recalculated with the flow solver. Especially, inside the nonporous
regions the results are very similar to the DNS data as shown with the velocity and Reynolds stress profiles.
Inside the porous material the the porous terms inside the Reynolds stress equation lead to sharp falloff of
the Reynolds stresses which is not obtained in the reference DNS data. More comparisons of RANS and
DNS data are needed to investigate this behaviour.
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