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This paper presents a 3D unit-cell approach which enables estimations of all bending, in-plane and cou-
pling properties in the sense of the classical laminated plate theory for heterogeneous plates. For this rea-
son, periodic boundary conditions which simultaneously allow in-plane as well as bending/twisting
deformation modes are introduced. In contrast to existing approaches, the 3D unit-cell is connected with
the macroscopic plate theory by means of prescribed loads and the extraction of strains/curvatures. Novel
bending experiments at large curvatures of E-glass-fibre/epoxy cross-ply laminate with cracking outer
ply at the bending tension side are conducted. Subsequently, numerical results are validated by compar-
ing them to the measured bending stiffness degradation. Further, the effects of the single-sided trans-
verse cracks on relevant stiffness properties are computed.
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1. Introduction

There is a wide interest in analysing and understanding the
mechanical behaviour of complex thin engineering structures.
Hence, this paper focuses on the mechanical characterisation of
heterogeneous plates. Regarding the field of fibre-reinforced com-
posites, it can be stated that the presented approach still performs
beyond the possibilities of methods based on ply-level homogeni-
sation. Generally, heterogeneities are not restricted to a single ply.
Hence, a finite element unit-cell method is introduced which ex-
tracts in-plane as well as in-plane/bending coupling and bending
properties in the sense of the classical laminated plate theory [1].
Useful applications are analyses of the impact on overall properties
of damages like delaminations and cracks or morphing skins
(mostly being highly heterogeneous).

However, up to a certain degree of heterogeneity, sophisticated
structural theories exist (e.g. for layered composite laminates [2],
sandwich structures [3], honeycomb structures [4,5] or corrugated
panels [6,7]). In case of more complex structural configurations,
computational homogenisation techniques promise satisfying
results.

Computational homogenisation is characterised by analysing a
representative part of a structure, the representative volume ele-
ment, mostly modelled within the finite element method. Then, a
load is imposed together with specific boundary conditions [8].
Terada et al. [9] shows that periodic boundary conditions superi-
orly describe the mechanical behaviour of the unit-cell compared
to pure displacement or traction boundaries. Finally, homogenised
mechanical quantities are extracted. Currently, two different
frameworks can be distinguished.

Firstly, there is the multi-scale finite element method [10]
which solves a second boundary value problem (a representative
unit-cell) instead of a constitutive relation. Herein, the averaged
mechanical response (averaged stress and tangent tensors) is
transferred from the unit-cell back to the macro-scale boundary
value problem. Although this is of high computational costs, it is
a proven method for analysing multiphase materials. As the unit-
cell represents the material behaviour at a certain material point,
this concept is only valid as long as the deformation gradient is
approximately constant over the whole unit-cell. Thus, bending
and twisting deformation modes of the unit-cell itself cannot be
analysed. In order to face this deficiency, Kouznetsova et al. [11]
present a second-order computational homogenisation framework.
Further increase of the gradient of the deformation gradient at the
scale of the modelled heterogeneity within the unit-cell is treated
by Coenen et al. [12] using a shell formulation at the macro-scale
and 3D continuum mechanics for the unit-cell. All these multi-
scale approaches prescribe macroscopic deformations, because
the unit-cell replaces the constitutive relation and the displace-
ments are the primary variables within the finite element method.

Secondly, in case of linear elastic unit-cell constituent materials
and small strains and displacements, computational homogenisa-
tion can also be performed with omitted macro-scale boundary
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value problem. Herein, representative stiffness properties are inde-
pendent of the actual deformation state and can thus be derived
prior analysing the macro-level boundary value problem. The
extraction is conducted using multiple particular loadcases to-
gether with the principle of superposition. Those approaches are
often settled in the field of fibre-reinforced composites. In contrast
to the multi-scale finite element framework, prescribed macro-
scopic stress states are mostly preferred [13–16]. Generally, unit-
cells capturing macroscopic bending modes are rare. For example
Jiang [17] presents a representative section of wire strand and Ju
et al. [18] analyse coronary stents under pure bending. Both extract
a single homogenised bending stiffness. However, note that all
bending formulations use prescribed macroscopic displacements.

The goal of this paper is the formulation of a 3D unit-cell from
which, for the first time, all (in-plane, bending and in-plane/bend-
ing coupling) stiffness entries of the classical laminated plate the-
ory are extracted. Thus, a 3D representative structure is
homogenised as anisotropic Kirchhoff–Love plate. The classical
laminated plate theory is chosen as representative theory as this
is a common approach when dealing with orthotropic composite
plates and at least some stiffness entries can be measured directly.
In the presented approach the whole geometric extension of the
plate in thickness-direction is modelled, hence, the unit-cell be-
haves only in-plane periodically. As the unit-cell spans over all
laminate layers, homogenisation is typically done at the scale of
the laminate. Hence, this type of unit-cell is further named repre-
sentative structure element (RSE).

With respect to linear elasticity, identical results are obtained if
macroscopic forces/moments are prescribed and macroscopic
strains/curvatures extracted or vice versa. However, in contrast
to unit-cells restricted to in-plane loads the unknown lateral pois-
son contraction displacements would have to be taken into ac-
count if curvatures are to be prescribed to a 3D unit-cell.
Additionally, all initially unknown and generally independent elas-
tic neutral planes, namely for bending the x-axis, y-axis and for
twisting would also be needed for imposing the boundary condi-
tions. Hence, in order to achieve optimal mechanical unit-cell
behaviour, the presented approach uses prescribed macroscopic
forces/moments. As benefit, less assumptions regarding the kine-
matic of the bending cross-section must be made. Namely, there
is no need to add any assumptions regarding the angles between
cross-sections and bending neutral planes.

The first part of this paper focusses on the formulation of the
RSE. The second part (as one possible application) applies the
RSE approach to an E-glass-fibre/epoxy cross-ply laminate with
outer, single-sided transverse cracks (due to bending). As the
Fig. 1. RSE notations and dimensions. Naming conventions for specific nodes are
exemplarily given for face y0. Jagged lines indicate the linear springs.
mechanical response of the RSE is represented by the classical lam-
inated plate theory discrete singularities are smeared at the scale
of the laminate. This is known as continuum damage mechanics
approach, which has first been applied to cracked composite plies
by Talreja [19]. Transverse ply-cracking is widely investigated for
in-plane loads, see the review by Berthelot [20], but rarely due to
bending. The few publications deal with 2D approaches to calcu-
late single bending properties [21–23]. Additionally, bending
experiments are conducted in order to validate the RSE capabilities
in terms of the novel estimation of bending/twisting and coupling
properties. In order to present new experimental data, the bending
stiffness degradation due to transverse cracking caused by pure
bending is recorded. A specially designed bending fixture creating
large and almost pure bending deformations is used. Hence, high
crack-densities due to bending along with a large cross-section
fraction being damaged are generated.
2. Formulation of the unit-cell

This section presents the theoretical background of the unit-cell
formulation. For the first time, all stiffness properties of the classi-
cal laminated plate theory are directly extracted for an arbitrary
heterogeneous sheet. All analyses are conducted with the finite
element code ABAQUS�.
2.1. Periodic boundary conditions

When periodicity is assumed, opposite faces and edges are in-
tended to deform identically. Hence, from the mechanical point
of view the cut boundaries of the unit-cell are connected to an infi-
nite expanse of identical repeated unit-cells under identical load-
ing as the modelled unit-cell. A sketch of the rectangular RSE
unit-cell with used notations is given in Fig. 1. The implementation
of periodic boundary conditions requires equally located nodes on
opposite faces and edges. With this requirement, one constraint
equation is formulated for each opposite node pair and incorpo-
rated into the finite element framework via multiple point con-
straints. In detail, the displacements of both nodes of each node
pair are constrained relatively to each other and to the displace-
ments of the loaded nodes. This coupling of opposite node pairs al-
lows a certain superimposed fluctuation field resulting from a
heterogeneous structure. There are eight nodes located at the cen-
tre of each top and bottom edge (e.g. node ny0;b and ny0;t in Fig. 1)
which are loaded with discrete forces.

The central idea of this unit-cell is to apply multiple loadcases
with only one non-zero flux and to extract the corresponding
deformations in the sense of a 2D Kirchhoff–Love plate. Consider-
ing anisotropic behaviour, all six strains and curvatures may be-
come non-zero for each loadcase. Consequently, the boundary
conditions must ensure free deformability. The presented bound-
ary conditions fulfil this requirement by exclusively implementing
translational symmetry. Namely, as stated by Li and Zou [24], other
symmetries like reflection and rotation typically fail to maintain
the sense of non-direct shear stresses and strains. However, one
assumption must be made. Only the degrees of freedom in x- and
y-direction (displacements ua with a ¼ 1;2) are incorporated into
the periodicity constraints Eqs. (1)–(4) because the unit-cell repre-
sents the whole plate in z-direction and thus it can be assumed
that the x- and y-displacements are dominantly responsible for
the in-plane mechanical behaviour. Although strict periodicity
would also require to incorporate the degree of freedom in thick-
ness direction u3, it must be excluded in order to permit the twist-
ing deformation mode (as u3 behaves antisymmetrically in this
case).
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The periodicity constraints in x-direction are given for every
associated node pair i located at the faces x0 and x1 with the nor-
malised thickness-coordinate fi ¼ zi=h by

ux1;i
a ¼ ux0;i

a þ 1
2

1� fi
� �

ux1;b
a � ux0;b

a

� �
þ 1

2
fi þ 1
� �

ux1;t
a � ux0;t

a

� �
ð1Þ

and similarly in y-direction by

uy1;i
a ¼ uy0;i

a þ 1
2

1� fi
� �

uy1;b
a � uy0;b

a

� �
þ 1

2
fi þ 1
� �

uy1;t
a � uy0;t

a

� �
: ð2Þ

In order to avoid over-determined nodes, all loaded nodes are ex-
cluded from these constraints. The same holds for all nodes located
at the vertical edges which are shared by two faces. However, these
edge-nodes are connected as well to maintain diagonal periodicity,
too. Precisely, the edges x0y0 and x1y1 are constrained via

ux1y1;i
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ð3Þ

and the edges x0y1 and x1y0 via

ux1y0;i
a ¼ ux0y1;i
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: ð4Þ

At the upper and lower face zero-traction boundary conditions
are imposed. Note, that the in-plane dimensions of the RSE are gen-
erally arbitrary and thus only depend on the dimensions of the rep-
resentative structure.

2.2. Rigid body constraints

The RSE approach prescribes forces and requires free deforma-
bility. Hence, the suppression of rigid body motion must be paid
Fig. 2. Schematic view of the six loadcases.
particular attention. Without bending and twisting deformation
modes rigid body translation and rotation can be suppressed via
rigid single point constraints [14]. However, having simulta-
neously to account for all deformation modes together with the
chosen loadcases (Fig. 2) this practice becomes impossible as
there are no exploitable symmetries of the displacement field in
case of a fully coupled plate. Thus, only the middle node nm is
fixed in all spatial directions which completely avoids rigid body
translation. In order to allow the RSE to deform freely under load
and simultaneously suppress rigid body rotation, weak linear
springs are connected to the eight loaded nodes, cp. Fig. 1. The
compliance of these springs is chosen at least 105 magnitudes
higher than the most compliant RSE constituent. Thus, the
numerical stability is achieved without affecting the mechanical
response.

2.3. Representative stiffness properties

The arbitrary flat sheet is represented by the classical laminated
plate theory considering all stiffness entries. Hence, the macro-
scopic constitutive relation reads [1]

nxx

nyy

nxy

mxx

myy

mxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼ ABD

�xx

�yy

�xy

jxx

jyy

jxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
: ð5Þ

Herein, f�xx; �yy; �xy;jxx;jyy;jxygT denote the strains and curvatures
and the force and moment fluxes are given by fnxx;nyy;nxy;

mxx;myy;mxygT . All components refer to the plate’s reference plane
commonly located at the geometric centre in thickness-direction.
The relation between fluxes and strains/curvatures is given by

ABD ¼

A11 A12 A13 B11 B12 B13

A21 A22 A23 B21 B22 B23

A31 A32 A33 B31 B32 B33

B11 B12 B13 D11 D12 D13

B21 B22 B23 D21 D22 D23

B31 B32 B33 D31 D32 D33

2
666666664

3
777777775

ð6Þ

where Aij describes the in-plane behaviour, Dij the out-of-plane
behaviour and Bij the coupling characteristics. If the RSE is loaded
with a single macroscopic flux and the six attendant strains/
curvatures are known, all compliance entries in the corresponding
column of the ABD�1 matrix, defined by

�xx

�yy

�xy

jxx

jyy

jxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
¼ ABD�1

nxx

nyy

nxy

mxx

myy

mxy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð7Þ

are determined. Note that this procedure derives every matrix entry
separately and therefore is able to account for potential unsymmet-
rical mechanical response.

Six loadcases are needed to evaluate all ABD entries. Every load-
case stresses the unit-cell with a single and distinct macroscopic
flux (only one flux in Eq. (7) is non-zero). A sketch of each loading
configuration is given in Fig. 2. Thereby, the force magnitudes are
always equal within each loadcase. Afterwards, all strains and cur-
vatures are extracted. The intended prescribed fluxes together with
the geometric dimensions of the unit-cell determine the
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magnitude of the corresponding discrete forces, see Table 1. Here-
in, the first index denotes the direction of the force and the second
the direction of the surface normal the force is acting on.

2.4. Representative strain state

The RSE concept leaves the strain state unknown in advance
and determines it after deformation. In order to maintain consis-
tency, strains/curvatures are determined at the geometric refer-
ence plane of the unit-cell. Precisely, the curvatures jxx and jyy

are determined along the deformed x- and y-axis, respectively.
The calculation of the twist jxy is performed along the two diago-
nals (diagonal s1 from vertical edge x0y0 to x1y1 and s2 from x0y1 to
x1y0, cp. Fig. 1) of the rectangular reference plane.

The average global curvature of a deformed line segment is cal-
culated via its mean radius r as

j ¼ 1=r: ð8Þ

This approach shows robust behaviour because the topology of the
approximated interpolation function (circle) is exploited. Local cur-
vature courses can also be estimated by calculating local circle radii
rlocal for chosen (local) line segments.

The determination of the circle radii is conducted using a least-
square approach which, however, would yield results with empha-
ses on areas with accumulated finite element nodes. In order to
overcome this deficiency, equidistant artificial points are gener-
ated first. This is conducted by radial basis function interpolation
along the crucial lines. This preparation ensures an even least
square weighting throughout the unit-cell.

Radial basis functions are well-established for approximating
multi-dimensional data, see e.g. the books [25,26], with the benefit
that no shape-type or approximation degree must be defined. The
approximation of a scalar u over a n-dimensional data field x with
x 2 Rn denotes

u xð Þ ¼
Xp

j¼1

aj / x� xj

�� ���� ��� �
: ð9Þ

Herein, the weights aj are calculated for every sample point j using
a linear least square procedure. The radial basis function / is de-
fined at every sample point and only depends on the geometric dis-
tance (euclidean norm) R ¼ x� xj

�� ���� �� from each sample point. In the
presented approach a multi-quadratic basis-function

/ Rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R=sð Þ2

q
ð10Þ

is chosen due to its more global response. The parameter s is set to
the average distance of the finite element nodes which serve as the
sample points. Generally, there are no restrictions of the finite ele-
ment mesh regarding the strain/curvature estimation as artificial
points can be created in the 3D space along the crucial lines via
interpolation. Nevertheless, due to improved accuracy and calcula-
tion time, finite element nodes are already set along the x- and
Table 1
Discrete macroscopic forces for the six loadcases.

Loadcase Force

nxx Fxx ¼ nxx b=2
nyy Fyy ¼ nyy l=2
nxy Fxy ¼ nxy l=2

Fyx ¼ nxy b=2

mxx Fb
xx ¼ mxx b= 2hð Þ

myy Fb
yy ¼ myy l= 2hð Þ

mxy Fb
xy ¼ mxy l= 2hð Þ

Fb
yx ¼ mxy b= 2hð Þ
y-axis and within the reference plane in all following models. This
reduces the approximation to the 1D and 2D space, respectively.

Fitting circles to scattered data in the plane is needed in many
applications, e.g. computer graphics and visualisation, meteorol-
ogy, statistics, physics [27–31]. Many algorithms have been devel-
oped from which the class of geometric fit approaches promises
most accurate results. These algorithms minimise the geometric
distance between the circle and the given points in a least square
sense which results in the solution of a non-linear problem. Herein,
the mathematical task is the determination of the constants A and
B (denoting the coordinates of the circle’s centre) and the radius r
of the circle-equation

si � Að Þ2 þ zi � Bð Þ2 ¼ r2 ð11Þ

that for all given points si; zið Þ with i ¼ 1;n and n P 3 the distances
di to the resultant circle are minimised. The corresponding func-
tional then reads

F A;B; rð Þ ¼
Xn

i¼1

d2
i ¼ min: ð12Þ

with

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
si � Að Þ2 þ zi � Bð Þ2

q
� r: ð13Þ

In order to solve this non-linear least square problem for the opti-
mal circle parameters A;B and r an initial guess is estimated by solv-
ing a linear least square problem first. With the introduction of
a ¼ 2A; b ¼ 2B and c ¼ r2 � A2 � B2 the circle equation becomes lin-
ear in the introduced parameters, namely

asi þ bzi þ c ¼ s2
i þ z2

i : ð14Þ

After solving the over-determined system of equations the circle
constants are recalculated from the introduced parameters.

Finally, the bending and twisting curvatures are calculated fol-
lowing Eq. (8) as

jxx ¼ 1=rx; ð15Þ
jyy ¼ 1=ry; ð16Þ
jxy ¼ 1=rs1 � 1=rs2 : ð17Þ

The radii rx; ry are the radii of the deformed x- and y-axis and rs1 ; rs2

denote the radii of the two reference plane diagonals s1 and s2. The
normal strains cannot be extracted by only using the face-nodes at
the ends of the x- and y-axis as these change their locations in nor-
mal direction also due to a pure bending deformation. Thus, the
lengths of these lines after deformation (lx and ly) are determined
using the calculated global circle radii and the corresponding sec-
tion-angles (ux and uy) of the deformed segments via lx ¼ rx ux

and ly ¼ ry uy. The segment-angles are calculated from the face-
node displacements and location of the circle centre. With the
undeformed unit-cell lengths (l and b, cp. Fig. 1) the normal strains
then become

�xx ¼ ðlx � lÞ=l; ð18Þ
�yy ¼ ðly � bÞ=b: ð19Þ

The engineering shear strain is estimated with the displacements u1

of the y-axis face-nodes (ny0;m and ny1;m) and u2 of the x-axes face-
nodes (nx0;m and nx1;m) as

�xy ¼ tan�1 ux1;m
2 � ux0;m

2

l

 !
þ tan�1 uy1;m

1 � uy0;m
1

b

 !
: ð20Þ

Section 4 shows demonstrative calculations regarding the radial ba-
sis function interpolation of finite element nodes, the subsequent
generation of equidistant, artificial points and the final estimation
of global circle radii.
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2.5. Unit-cell consistency

At this point the consistency between the unit-cell approach
and the classical laminated plate theory is presented. For this rea-
son, a configuration is chosen which can be analysed by both ap-
proaches, namely a fully coupled 0;30;60½ � laminate. The
corresponding ABD matrices are calculated with the RSE and also
directly with the classical laminated plate theory. The used mate-
rial data is given in Table 2. The 3D constitutive relation for each
unidirectional composite layer is constructed from these data
using the German guideline VDI 2014 [32]. The in-plane
dimensions of the RSE are arbitrarily chosen to l ¼ b ¼ 2:0 mm.
With a ply thickness of tply ¼ 0:42 mm the height becomes
2h ¼ 1:26 mm. The magnitude of the prescribed fluxes is chosen
to generate a strain/curvature state of approximately �ij � 0:1%

and jij � 1:5 m�1 in order to keep the deformations linear. The
RSE is meshed with quadratic, 3D continuum elements with two
elements per layer in thickness-direction. The in-plane resolution
is adopted to receive approximately equal element edge-lengths.
With those settings the RSE solution yields

ABDRSE ¼

36313:1 9949:5 5828:9 �5406:9 1157:4 561:7
9915:8 22858:9 5820:2 1157:7 3081:2 1875:9
5827:5 5833:7 9827:9 560:0 1889:1 1146:0
�5380:4 1157:8 563:2 4781:5 1156:2 318:8
1152:5 3085:8 1888:1 1156:3 3387:3 874:3
556:9 1887:8 1151:0 321:4 879:1 1133:3

2
666666664

3
777777775
ð21Þ

with units ½A� ¼ N=mm; ½D� ¼ Nmm and ½B� ¼ N. Although the lam-
inate behaviour is symmetric (symmetric ABD matrix), the RSE
solution does not show exactly equal values as every entry is esti-
mated separately. However, if a symmetric stiffness matrix can be
ensured the upper and lower triangle matrix might be averaged.
In order to quantify the performance of the presented approach,
the deviations from the classical laminated plate theory (CLT) are
computed as

DABDij ¼ ABDRSE
ij � ABDCLT

ij

� �
=ABDCLT

ij ð22Þ

giving

DABD ¼

�0:05 0:17 �0:02 0:24 0:40 0:53
�0:17 �0:03 �0:17 0:42 �0:23 �0:73
�0:04 0:06 �0:04 0:22 �0:04 �0:59
�0:25 0:43 0:80 0:24 0:30 �0:48
�0:02 �0:08 �0:09 0:31 0:08 �0:59
�0:33 �0:11 �0:16 0:31 �0:04 �0:53

2
666666664

3
777777775

%:

ð23Þ

Negative deviations denote smaller values obtained from the RSE
solution compared to the analytical one and vice versa. Obviously,
the RSE solution mostly underestimates the analytical result
although never exceeding a deviation of �1%. Thus, good RSE per-
formance and as well consistency between RSE approach and
macro-theory is demonstrated.
Table 2
Material data.

Em 3400 MPa Ef 80700 MPa
mm 0:38 – mf 0:22 –
tply 0:42 mm V f 51 %
3. Material and methods

The presented RSE approach is advantageous if large heteroge-
neities like cracks must be considered. Therefore, appropriate val-
idation bending experiments of a cross-ply laminate under static
degradation due to transverse cracks are conducted. Separate
emphasis is given to the evaluation of the transverse crack-density.

3.1. Material

For optimal damage detection E-glass-fibre rovings Owens
Corning OC-111A (1200 tex) with subsequent resin transfer
moulding of epoxy resin/hardener Momentive RIM135/RIMH137
are used. Due to the absence of any stitching yarn completely
transparent samples are obtained, see Fig. 3(c) and Fig. 5. The sam-
ples are cut using a diamond saw. The material data of the manu-
factured laminate are given in Table 2 and the laminate stacking is
90;0½ �s with constant ply-thickness.

3.2. Bending experiments

The goal of the bending experiments is to receive a relation be-
tween the crack-density in the outer, tensioned 90�-ply and the
corresponding bending stiffness. Standard bending tests (three-
and four-point bending) accurately estimate the initial bending
stiffness for small deflections. In order to extend this bending
Fig. 3. Large bending device. (a) A bent sample, (b) a detailed view of the clamping
condition and (c) a transmitted light scan of a damaged sample (area between the
clamps). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 4. Large bending strain distributions. An unidirectional sample is equipped
with four strain gauges (a) and tested with completely clamped ends (b) and with
centred compliant foundations (c). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Exemplary section showing complete (dashed lines) and partial (solid lines)
transverse cracks. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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range, a test setup has been constructed, see Fig. 3(a), which can
create almost pure bending up to curvatures of 35 m�1. The setup
constrains the horizontal distance between the clamped ends of a
sample and simultaneously the corresponding angle. The damage-
zone between the clamps is L ¼ 60 mm and the nominal sample
width is w ¼ 28 mm, see Fig. 3(c). A detailed description is given
in Schmitz and Horst [33].

However, it can be stated that the kinematics in terms of clamp
position and corresponding bending angle deviates from a pure
bending state by less than 0.2% within the whole curvature range.
In contrast, the clamping conditions disturb a constant curvature
course and thus must be paid attention. If the sample is completely
clamped over its whole width, the bending stiffness will rise to-
wards the clamps because lateral contractions are constrained.
Hence, the local curvature will increase around the unconstrained
sample centre compared to the constrained sides. Thus, equal
strain states along the sample (including the clamped areas) are
desirable. In case of large sample width a plain strain state prevails
at the bended middle section as well as within the clamps. This
configuration is chosen by Boers et al. [34] and Yoshida et al.
[35] for large bending experiments. In order to circumvent large
sample width and thus maintain convenient dimensions, a plain
stress state in width direction is aspired. For this reason, samples
are only clamped at their centre in width-direction using compli-
ant foundations (6 mm wide and 0.1 mm thick), cp. Fig. 3(b). This
allows anticlastic bending inside the clamps, too. The impact of
the boundary condition is measured and presented in Fig. 4. Here-
in, an unidirectional (25.11 mm wide and 1.26 mm thick) speci-
men equipped with four strain gauges (Fig. 4(a)) is bent with
clamped ends (Fig. 4(b)) and with compliant foundations
(Fig. 4(c)). In both cases the strain distribution is symmetric and
the strain/curvature behaviour is almost linear. Obviously, the
compliant foundation considerably reduces the clamping con-
straint. However, the tested samples still show slightly decreasing
crack-densities towards the clamps. At this point it can be stated
that the clamping conditions primarily effect the quality of the
bending state. Note, that lateral contraction problems significantly
decrease for materials with approximately similar plain stress and
strain effective bending moduli, hence for extremely orthotropic
samples.

The experiment is structured as follows. The initial bending
stiffness is determined in a standard three-point bending test.
Thereby, the distance between the outer supports equals the dam-
age-zone L of the large bending fixture and the loading directions
are identical (cracks at tension side). Transverse cracks are de-
tected by transmitted light scanning. After recording the unloaded
condition, multiple sequences with increasing curvature of a dam-
age cycle (large bending), estimation of the initial bending stiffness
(three-point bending) and detection of the corresponding damage
state (transmitted light scanning) are conducted.

3.3. Damage evaluation

When loading fibre-reinforced plastics, the first damage which
makes sense to describe by a macroscopic fracture model is trans-
verse micro-cracking. Earlier diffuse damages as fibre/matrix deb-
onding and micro-voids are preferably modelled within a
continuum mechanics framework. Also in static loading conditions
transverse cracks cause delaminations at their crack tips at high
loads [20,36]. The intention during the damage cycles is neither
to obtain transverse cracks at the pressure side, nor crack-tip
delamination.

Although the initiation of transverse micro-cracks is a stochas-
tic phenomenon, cross-ply laminates show an uniform cracking
scenario. Herein, the crack-density converges towards an upper
limit at high load levels, see e.g. [37,38] for cross-ply laminates
under tension. For specimens with relatively thick plies it is ob-
served that transverse cracks mostly initiate at the edges (espe-
cially during fatigue loading), immediately extend over the ply-
thickness and rapidly grow in the transverse direction [39]. Those
phenomena can be observed for the conducted bending experi-
ments, too. Most cracks extend straight over the whole specimen
width. However, simultaneously initiated cracks at longitudinally
equal and opposite locations restrain each other’s expansion after
their crack-tips have been overlapped. The same holds for two clo-
sely initiated cracks at the same edge. Both scenarios (Fig. 5) create
relatively stable partial cracks. Thus, the recorded crack-density q
is subdivided into complete, straight cracks �q (dashed lines in
Fig. 5) and partial cracks qpartial (solid lines in Fig. 5) giving

q ¼ �qþ qpartial: ð24Þ



l
b

Fig. 6. Typical RSE mesh. The bold lines indicate the borders between the outer 90�
and centred 0�-layers.

Fig. 7. Contour plot of the six loadcases for �q ¼ 800 m�1 (exaggerated deforma-
tion). The legend shows the load with the associated dominant direct stress
components separately for each loadcase. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Herein, the crack-density of complete cracks is defined as �q ¼ �n=L
with �n being the number of complete cracks within the observed
damaged sample length L. Similarly, the partial crack-density is de-
fined as qpartial ¼ npartial=L with the number of partial cracks

npartial ¼
1
w

XNpartial

i¼1

li ð25Þ

normalised with the sample width w. Note, that this (pseudo) num-
ber of partial cracks generally is an odd number. The length of the
ith partial crack is denoted by li and the absolute (even) number
of available partial cracks by Npartial.

3.4. Bending stiffness

A 1D effective bending stiffness is determined by means of
standard three-point bending. In order to compare numerical cal-
culations to the experiment, an effective stiffness is extracted from
the stiffness entries of the classical laminated plate theory
(obtained with the RSE). In the following considerations bending
of the x-axis is assumed. For the used sample width w ¼ 28 mm
and distance of outer supports L ¼ 60 mm it is convenient to as-
sume that the three-point bending boundary conditions generate
a plain strain state in width-direction. Thus, the equivalent bend-
ing stiffness becomes [1]

D�11 ¼ D11 � B2
11=A11 ð26Þ

where the latter part accounts for the discrepancy Dzea ¼ �B11=A11

between the reference plane and the actual location of the elastic
neutral plane for bending of the x-axis. The effective bending mod-
ulus is then calculated as

E� ¼ D�11
12

ð2hÞ3
: ð27Þ

Note, that there are two additional (but generally different) elastic
neutral planes for which the curvatures jyy and jxy maintain zero
for pure in-plane loads nyy and nxy, respectively.

4. Calculations

This section regards the tested laminate configuration (E-glass-
fibre/epoxy 90;0½ �s) already characterised in Section 3.1. In the fol-
lowing, results are presented which illustrate some theoretical for-
mulations given in Section 2. The following assumptions regarding
the RSE finite element model hold:

� There only exist transverse cracks at the bending tension side.
� Cracks extend over the whole thickness of the 90�-ply.
� The crack spacing is uniform.
� The crack-density is only modelled by means of complete and

straight cracks, hence q ¼ �qRSE, cp. Eq. (24).

A typical mesh of the RSE is shown in Fig. 6 representing a
crack-density of �qRSE ¼ 800 m�1. Mesh convergence has been pro-
ven in terms of macroscopic stiffness output. The unit-cell always
includes two cracks while the length l is adjusted to achieve the de-
sired crack-density. The width b is chosen always equal to l and the
laminate thickness 2h ¼ 1:68 mm results from the ply-thickness
tply ¼ 0:42 mm.

Fig. 7 shows contour plots of the six loadcases. As expected, the
stress field shows in-plane periodic behaviour. Especially the two
loadcases in x-direction (pure nxx and mxx load) are interesting
when comparing RSE results to the bending experiment (Section 5).
In all cases the crack surfaces are stress-free and the stresses con-
tinuously rise with increasing distances from a crack. In case that
cracks are not closed (no contact of crack-surfaces), the classical
laminated plate stiffness matrix of this scenario ( 90;0½ �s with sin-
gle-sided cracked 90�-ply) denotes

ABDRSE ¼

A11 A12 0 B11 B12 0
A22 0 B21 B22 0

A33 0 0 B33

D11 D12 0
sym: D22 0

D33

2
666666664

3
777777775
: ð28Þ



Fig. 9. Extraction of the twist jxy at the RSE neutral plane. The deformed neutral
plane xRSE and the equidistant diagonal points are visualised for a pure in-plane
shear load nxy . (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Obviously, there are non-zero B matrix entries. Among these, B11 is
dominant as a significant curvature jxx occurs due to a pure in-
plane load nxx (Fig. 7 (nxx load) and Fig. 8(a)) because normal tension
stresses are not transferred via the crack surfaces. The same expla-
nation holds for B33 and the in-plane shear stress, see Fig. 7 (nxy

load) and Fig. 9. Other non-zero coupling entries result from un-
equally constrained lateral poisson contractions in the cracked
and intact outer plies. Precisely, the ply-stiffness in y-direction (par-
allel to the cracks) is slightly smaller in the cracked ply as the cracks
locally allow lateral contractions.

Figs. 8–10 illustrate the strain/curvature extraction process for a
crack-density of �qRSE ¼ 800 m�1. The two modelled cracks are lo-
cated in the unit-cell at x ¼ �0:625 mm. Fig. 8 shows the unde-
formed XRSE and deformed xRSE finite element nodes of the x-axis.
Additionally, the equidistantly distributed points xequidistant along
the deformed x-axis are plotted. These points are finally used to
approximate the global circle and as result obtain the global curva-
ture of the unit-cell. Due to the reduced bending stiffness in
x-direction around the cracks, the curvature is elevated at these
locations, cp. Fig. 8(a). In contrast, the impact of transverse cracks
is low regarding loads in y-direction, cp. Fig. 8(b) showing anticlas-
tic bending of the x-axis due to a pure moment myy. The calculation
of the twisting curvature requests a two-dimensional interpolation
of the deformed reference plane. Fig. 9 illustrates the deformed
finite element nodes xRSE and the two diagonals of equidistant
points (x1;equidistant and x2;equidistant) used to approximate the two
circles for the subsequent estimation of jxy via Eq. (17).

A slight perspective of the RSE possibilities is given in Fig. 10.
Herein, the local curvature jlocal

xx is shown together with the mean
curvature jmean

xx ¼ jxx for a cracked configuration under pure mo-
ment load mxx. For this configuration 114 equidistant points are
created along the deformed x-axis and the local curvature is deter-
mined via Eqs. (12) and (15) for a chosen evaluation window size
a

b

Fig. 8. Extraction of the bending curvature jxx . The deformed (xRSE) and unde-
formed (XRSE) x-axis finite element nodes, the equidistant points and the approx-
imated circle are illustrated for a pure in-plane load nxx (a) and moment myy (b). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 10. Local and global x-axis curvature due to a pure mxx moment. Cracks are
located at x ¼ �0:625 mm.
of 20 connected points. As the evaluation window is always shifted
by one point, jlocal

xx is averaged around 94 locations (each indicated
by a dot in Fig. 10) along the x-axis. Note that the finest local res-
olution corresponds to a minimum of 3 connected points whereas
the mean global curvature radius is approximated to all 114 points.
In fact, a small evaluation window increases the local resolution
but increasing number of points and also evaluation window over-
lapping enhance the smoothness of the local course. Having this at
hand, it can be observed that the local curvature jlocal

xx reaches max-
ima at the compliant crack locations and drops below the global
curvature jmean

xx in the stiffer intermediate sections.
Next, the dependences of relevant stiffness entries on the crack-

density are investigated for the tested laminate configuration. The
coupling terms B11 and B33 are given in Fig. 11(a) using a norma-
lised presentation. As both entries are initially zero and rise with
increasing crack-density, the state of maximum investigated dam-
age �qRSE ¼ 900 m�1 is chosen as normalisation reference (ABD0

ij).
Fig. 11(b) shows the entries A11;D11;D12 and D33. These entries de-
crease with increasing crack-density. Hence, the initial value is
used for normalisation. As an outer layer is subjected to damage,
the impact on bending and coupling is stronger than on in-plane
entries. It can be noticed, that all entries tend towards a limit value.
Finally, the movement of the elastic neutral plane (axis for which
jxx remains zero for a pure nxx load) Dzea as a result of transverse
cracking is presented in Fig. 12. It is expressed in fractions of the
half-thickness Dzea=h meaning that the elastic plane coincides with
the reference plane for a value of 0% and with the sample top/bot-
tom for a value of ±100%, respectively.
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Fig. 11. Relevant normalised classical laminated plate theory stiffness entries
against crack-density.

a

b

Fig. 13. Measured total (a) and partial (b) crack-density against curvature.
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5. Results

This section compares numerical RSE solutions with the con-
ducted bending experiments in terms of static stiffness degrada-
tion due to transverse cracks.

Cracks at the pressure side and delamination could never be ob-
served which fully conforms the modelling assumption of one-
sided transverse cracks as single damage. For the evaluation of
the crack-density all cracks within the damage-zone L are consid-
ered. The recorded crack-density is plotted against the curvature,
see Fig. 13(a), and the corresponding partial crack fraction
qpartial=q is plotted in Fig. 13(b). Reduced crack development at
high loads, which is well-known for in-plane tension, can be ob-
served for these bending experiments, too. A noticeable discrep-
ancy between model and experiment is present in terms of the
existence of partial cracks. The partial crack fraction increases until
a plateau and finally decreases at high curvatures. This course and
the high standard deviation at low curvatures can be explained
with the discussed crack initiation pattern (Section 3.3). Most
cracks are initiated at the free edges and grow inside the sample.
When crack saturation is reached at the sample edges, the crack-
Fig. 12. Movement of the elastic x-axis against crack-density.
density only rises due to expanding, already available partial
cracks. Hence, the partial crack-density fraction decreases again
at high load levels when most partial cracks have grown across
the whole sample width, thus becoming complete cracks. Having
in mind that qpartial is about 20% of the whole crack-density at it’s
plateau, discrepancies with the model might be expected. On the
other hand, remind the two meeting partial cracks in Fig. 5. After
the crack-tips have been passed each other, a noticeable slower
crack growth is observed. These cracks are still counted as partial
cracks but mechanically should almost respond like one straight
crack. This is confirmed by the comparison of the numerical and
experimental bending stiffness, see Fig. 14. Herein, the three-point
normalised bending stiffness is plotted against the recorded crack-
density q together with the numerical bending stiffness (eq. (27))
against the equivalent model crack-density �qRSE. Obviously, the
RSE models the stiffness degradation very well for the entire
crack-density range (continuous line). This result confirms the
RSE formulation and, additionally, in this case shows the minor im-
pact of the crack topology regarding the global mechanical re-
sponse. The influence on bending stiffness due to the movement
of the elastic axis is also illustrated in Fig. 14. The dotted line
Fig. 14. Measured and calculated normalised bending modulus against crack-
density.
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represents the bending stiffness which is directly calculated from
the D11 entry via Eq. (27). This implies that especially at high
crack-densities the movement of the elastic neutral planes should
be taken into account.

6. Conclusions

This paper presents an unit-cell based homogenisation ap-
proach which is settled within the finite element framework and,
for the first time, is able to extract all stiffness entries of the clas-
sical laminated plate theory. Large heterogeneities or damages like
cracks and delaminations can directly be incorporated and repre-
sentative stiffness properties extracted. Additionally, in contrast
to other formulations, it is also possible to generate a pure bending
moment loading condition as the locations of the elastic neutral
planes are not needed in advance.

In order to validate first numerical results, new bending exper-
iments with E-glass-fibre/epoxy cross-ply laminate are conducted.
Herein, transverse cracks were generated by subjecting samples to
an almost pure bending state up to curvatures of 20 m�1. The mea-
sured bending stiffness degradation due to transverse cracks at the
bending tension side agrees well with the numerical predictions
for all crack-densities.
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