
Multiscale Simulation of Turbulent Flow interacting with Porous Media based on
a massively parallel implementation of the Cumulant Lattice Boltzmann Method

Konstantin Kutschera,∗, Martin Geiera, Manfred Krafczyka

aTU Braunschweig, Institute for Computational Modeling in Civil Engineering (iRMB), Braunschweig, Germany

Abstract

Flow noise during takeoff and landing of commercial aircrafts can be substantially reduced by the use of porous
surface layers in suitable sections of wing profiles. On the other hand (passive) porosity and roughness of surfaces
tend to have an adverse effect on the boundary layer and thus on the lift of wings. This results in the need to be able
to predict the aerodynamic effects of porous segments of the surface by numerical methods for aerodynamic design of
wings, taking into account porosity and roughness as a function of Reynolds number. The application of the RANS
equations for this task requires additional modeling terms such as the permeability and the Kozeny-Carman parameter
as well as the turbulent fluctuations of the velocity field to be determined by Direct Numerical Simulation (DNS) /

Large Eddy Simulation (LES) simulations based on the lattice Boltzmann method which is the main focus of this
contribution. For the simulation of the flow at the pore scale we use the cumulant lattice Boltzmann method. Due
to the inherent requirements of resolving both the turbulence on the scale of an airfoil and the flow inside the pore
scale resolved porous medium the resulting simulations require more than a billion grid nodes on a refined three-
dimensional mesh leading to massively parallel simulations. We discuss modeling and computational aspects of our
approach and present computational results including experimental validations.
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1. Introduction

Fluid flow through porous media and over porous surfaces occurs in many natural processes such as ground
water flows, atmospheric flows over soil or in chemical engineering processes related to heat exchangers or catalytic
surfaces. Despite the importance of porous media flow and the large amount of available literature, knowledge about
transitional and turbulent flow in porous media and over porous surfaces on the microscopic level is still relatively5

limited. Beyond the pore scale Darcy’s law is extended to the Ergun, Forchheimer or Brinkman’s Equations which
are assumed to be appropriate if the Reynolds number Re is larger than O(10) where the actual value depends both
on the internal structure of the porous medium and how Re is defined. The first scientific investigations of non-linear
relations between driving pressure gradients and fluxes in porous media can be found e.g. in [1, 2, 3, 4, 5, 6, 7] which
served as a basis for later investigations [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. An overview of the topic is given10

by [19]. More recent work is discussed in [20, 21, 22, 23]. A focus on Reynolds Averaged Navier Stokes (RANS)
closures for porous media is described in [24, 25, 26, 27]. While the latter work focuses on modeling the Darcy
scale, i.e. it relies on homogenization approaches which do not take into account the detailed structure of the pore
space, several works addressed the direct solution of the Stokes (for Re ≤ 1) or Navier-Stokes equation for higher
Reynolds number by either considering flow in periodic domains of basic geometric units such as bcc-type sphere15

packings [28] or reconstructions of the pore space based on tomographic data [29, 30]. Especially for the latter class
of problems, the lattice Boltzmann approach has been accepted as a very reliable approach [31, 28, 32, 33, 34, 35, 36].
In terms of computational efficiency the cumulant LBM has been evaluated as one of the most promising schemes for
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porous media transport simulations in the saturated and laminar regime [37]. In this work we will demonstrate the
suitability of this scheme also for the turbulent regime. The motivation for this study is the development of taylored20

porous media for noise reduction of wing profiles. Herr showed in [38] that the use of a porous trailing edge leads
to a significant reduction of noise. The details of this mechanism seem to depend on various parameters such as
the porosity and flow resistivity of the porous material and are not yet understood in detail. On the other hand, the
application of a porous trailing edge can lead to a decrease of the lift performance. The aerodynamic effects on the
scale of an aircraft can be investigated by means of volume and Reynolds-averaged Navier-Stokes (VRANS) modeling25

[39]. The application of this approach for wings with porous trailing edges requires additional terms that are based on
Darcy and Forchheimer parameters [40]. These quantities as well as the turbulence statistics of the resulting boundary
layers are being investigated with pore-scale simulations based on the cumulant lattice Boltzmann method which is
implemented as part of the massively parallel VirtualFluids-LBM framework. The suitability of the cumulant LBM
for the computation of acoustic absorption properties of porous media has already been demonstrated in [41].30

The first part of the paper describes the numerical method which is used in the subsequent simulations. In the
second part we present validation and simulation results of laminar and turbulent flows in boundary layer flows over
porous surfaces.

2. The cumulant LBM kernel

The simulations in this paper are conducted with the cumulant lattice Boltzmann model [42, 43, 44, 45, 46,35

47, 48, 49]. The cumulant lattice Boltzmann model belongs to the class of lattice Boltzmann models with multiple
independent relaxation times for different observable quantities. In this context the term Multi Relaxation Time model
is usually reserved for models based on a raw moment transformation [50, 51, 52, 53]. The raw moment representation
in these models caused some violations of Galilean invariance, which was overcome by replacing the raw moments
by central moments (centered around the velocity of the fluid at the local grid node) in the so-called cascaded lattice40

Boltzmann methods [54, 55, 56, 57, 58, 59] which has subsequently been improved to the Factorized Central Moment
method to remove part of the hyperviscosity [60, 61, 62, 63] and saw various extensions, for example for the simulation
of multi-phase flow [64, 65, 66] and thermal flows [67] and for the efficient simulation of steady state flows [68].
The central moment methods improve Galilean invariance as compared to the raw moment approach. However, a
spurious coupling between the equivalent partial differential equations for the moments remain [42]. This implies45

that the leading error strongly depends on the choice of the relaxation rates. This problem has now been solved by
replacing the central moments in the collision operator by cumulants [69, 42]. Cumulants are statistically independent
observable quantities. The cumulants of a physical system can be understood as the intensive physical quantities such
as velocity and temperature. In comparison, the corresponding moments are understood as momentum and internal
energy. It is interesting to note that the cumulants, which are mathematically more complicated than moments, appear50

to be simpler from an intuitive point of view. Cumulants and moments contain the same physical information, but
it is the cumulants that initiate fluxes between bodies, for example momentum flux between two bodies of different
velocity and energy flux between bodies of different temperature. Cumulants determine whether or not two bodies are
in equilibrium and are therefore a natural basis for describing the equilibration process in a particle collision which is
at the heart of the lattice Boltzmann method.55

In the past, the cumulant lattice Boltzmann equation has been used mainly in the so-called compressible form with
variable density [42]. For the simulation of incompressible flow through a porous material of high hydrodynamical
resistance it is advisable to use the fixed density formulation of the lattice Boltzmann equation which is also (inaccu-
rately) called the incompressible lattice Boltzmann equation [70]. To impose a fixed density let us first introduce the
density variation δρ:60

δρ =

1∑
i, j,k=−1

fi jk. (1)

Here i, j, k are the quantum numbers for the discrete velocities and fi jk is the corresponding velocity distribution
function. The cumulant generating function of a distribution is defined as the logarithm of its Laplace transform.
Cumulants are the coefficients of the series expansion of the cumulant generating function. They are obtained by
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evaluating successive derivatives at the origin. For a fixed density we define cumulants with a distribution modified to
yield unit density [37]:65

Cαβγ = c−αβγ
∂α∂β∂γ

∂Ξα∂Υβ∂Zγ
ln(L{ fi jk + wi jk(1 − δρ)})

∣∣∣∣∣∣
Ξ=Υ=Z=0

. (2)

Here L represents the three-dimensional Laplace transform in velocity space. The variables Ξ, Υ and Z denote
the velocity space wave numbers. The distribution function fi jk is already discretized in velocity space. To take the
Laplace transform the discretized distribution is written with the Dirac-delta function as [42]:

f (ξ, υ, ζ) =
∑
i, j,k

fi jkδ(ic − ξ)δ( jc − υ)δ(kc − ζ), (3)

where ξ, υ and ζ are the components of microscopic velocity corresponding to Ξ, Υ and Z respectively. The
transformed distribution is a spectral representation of the original distribution. The lattice velocity is c = ∆x/∆t, the70

ratio of grid spacing and time step. The weights wi jk for the D3Q27 model under consideration here are explicitly
given as w000 = 8/27, w100 = 2/27, w110 = 1/54, w111 = 1/216 and so on by permutation of indices. Equation (2)
normalizes the distribution function at any node to unit density and the cumulant transform can be applied the usual
way. Computing cumulants directly from (2) is not straightforward. Instead, it is instructive to compare eq. (2) to the
formal definition of raw moments:75

Mαβγ = c−αβγ
∂α∂β∂γ

∂Ξα∂Υβ∂Zγ
L{ fi jk + wi jk(1 − δρ)}

∣∣∣∣∣∣
Ξ=Υ=Z=0

=
∑
i, j,k

iα jβkγ( fi jk + wi jk(1 − δρ)). (4)

Equation (2) and (4) are distinguished only by the presence of the logarithm in (2). By applying the chain rule to (2)
it is possible to express all cumulants in terms of raw moments. In this way it is possible to compute cumulants directly
from evaluating the simplified expression on the right of equation (4). For obtaining explicit equations expressing
cumulants in terms of moments it is recommended to evaluate the following expressions in a computer algebra system:

Cαβγ =
∂α∂β∂γ

∂Ξα∂Υβ∂Zγ
ln(Θ(Ξ,Υ,Z)). (5)

This will produce an equation in derivatives of an arbitrary function Θ(Ξ,Υ,Z), each of which can be identified80

with a raw moment, i.e.:

Mαβγ =
∂α∂β∂γ

∂Ξα∂Υβ∂Zγ
Θ(Ξ,Υ,Z). (6)

The relationship between Cαβγ and Mαβγ is the same as between Cαβγ and Mαβγ such that cumulants can be
computed from raw moments. For example considering the case C200:

C200 =
∂2

∂Ξ2 ln(Θ(Ξ,Υ,Z)) (7)

=

∂2

∂Ξ2 Θ(Ξ,Υ,Z)

Θ(Ξ,Υ,Z)
−

(
∂
∂Ξ

Θ(Ξ,Υ,Z)
)2

Θ(Ξ,Υ,Z)
(8)

=
M200

M000
−
M2

100

M000
. (9)

Hence by analogy C200 is computed as:

C200 =
M200

M000
−

M2
100

M000
. (10)

In the following we will make use of the order of cumulants by which we mean the sum of the indices α + β + γ.85

Asymptotic analysis as shown in Appendix G of [42] and in [48] reveals the relationship between the cumulants and
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the Navier-Stokes equation. Only cumulants up to third order are required for consistency with the Navier-Stokes
equation. However, cumulants of higher order have a strong influence on the numerical accuracy. This is in particular
true for cumulants of order four which appear at the same order as the leading error of the scheme. Through setting
appropriate relaxation rates for fourth order cumulants the leading error can be substantially reduced as recently shown90

in [48]. However, those recent results were not yet considered in the current study.
For implementation purposes it is not optimal to compute the moments by the definitions (4) directly since this

would add a constant offset to all distributions which would have an adverse effect on the numerical conditioning of the
cumulant transformation. In order to improve the conditioning of the cumulant transform we eliminated the constant
offset step by step from all forthcoming operations. Although the resulting expressions are somewhat complicated,95

we list them below in order to enable the reader to implement our method and reproduce our results.
The first order cumulants are the velocity components, which in the case of the constant density lattice Boltzmann

equation are computed without considering the mass:

u = Fx/2 +

1∑
i, j,k=−1

i fi jk, v = Fy/2 +

1∑
i, j,k=−1

j fi jk, w = Fz/2 +

1∑
i, j,k=−1

k fi jk. (11)

Here Fx, Fy, and Fz denote the components of a forcing term if applicable.

2.1. Forward central moment transformation100

Cumulants are efficiently computed from central moments. Central moments can be computed directly through:

καβγ =

1∑
i, j,k=−1

(i − u)α( j − v)β(k − w)γ fi jk. (12)

Instead of using the direct way we use the fast central moment transform:

κi j|0 = ( fi j1 + fi j1̄) + fi j0, (13)
κi j|1 = ( fi j1 − fi j1̄) − w(κi j|0 + Ki j|0(1 − δρ)), (14)

κi j|2 = ( fi j1 + fi j1̄) − 2w( fi j1 − fi j1̄) + w2(κi j|0 + Ki j|0(1 − δρ)), (15)
κi|0γ = (κi1|γ + κi1̄|γ) + κi0|γ, (16)
κi|1γ = (κi1|γ − κi1̄|γ) − v(κi|0γ + Ki|0γ(1 − δρ)), (17)

κi|2γ = (κi1|γ + κi1̄|γ) − 2v(κi1|γ − κi1̄|γ) + v2(κi|0γ + Ki|0γ(1 − δρ)), (18)
κ0βγ = (κ1|βγ + κ1̄|βγ) + κ0|βγ, (19)
κ1βγ = (κ1|βγ − κ1̄|βγ) − u(κ0βγ + K0βγ(1 − δρ)), (20)

κ2βγ = (κ1|βγ + κ1̄|βγ) − 2u(κ1|βγ − κ1̄|βγ) + u2(κ0βγ + K0βγ(1 − δρ)). (21)

The symbols on the left hand side of equations (13) to (18) denote chimeras that are partly moments and partly
distributions. For example the chimera κ00|0 can be understood as a distribution in its first two indices (x− and
y−dimensions) while it is a central moment in z−dimension. The chimeras are only used inside the transformation for105

reducing the computational cost. Equations (13) to (21) represent a divide and conquer algorithm for the fast compu-
tation of central moments. The fast central moment transform is equivalent to the direct central moment transform but
it requires only a third of the floating point operations of the latter.

Since we started from the original distributions fi jk rather than from the modified ones (i.e. fi jk + wi jk(1 − δρ)) we
have introduced the constant parameters K that can be computed from the weights wi jk:110
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Ki j|γ =
∑

k

kγwi jk, (22)

Ki|βγ =
∑

j

jβKi j|γ, (23)

Kαβγ =
∑

i

iαKi|βγ. (24)

2.2. Forward cumulant transformation

The non-conserved cumulants are computed from the central moments. In what follows we omit equations for
cumulants which can be obtained by permuting indices in the listed equations. The first few cumulants are seen to be
identical to the first few central moments:

C110 = κ110, (25)
C200 = κ200, (26)
C120 = κ120, (27)
C111 = κ111. (28)

Equations for C101 and C011 and so on are obtained by permuting the indices in the above equations. Differences115

from central moments start at order four:

C211 = κ211 − ((κ200 + 1/3)κ011 + 2κ110κ101), (29)
C220 = κ220 − ((κ200κ020 + 2κ2

110) + (κ200 + κ020)/3(1 − δρ) − δρ(1 − δρ)/9), (30)
C122 = κ122 − ((κ002κ120 + κ020κ102 + 4κ011κ111 + 2(κ101κ021 + κ110κ012)) + (κ120 + κ102)(1 − δρ)/3), (31)
C222 = κ222 − (4κ2

111 − 16κ011κ101κ110 − 2κ220κ202κ022 + κ022κ200 + κ202κ020 + κ022κ200

−4(κ020κ
2
101 + κ200κ

2
011 + κ002κ

2
110) + 2(κ102κ120 + κ012κ210 + κ021κ201)

−
2
3

(κ002κ020 + κ002κ200 + κ020κ200 + 2(κ2
011 + κ2

101 + κ2
110))(1 − δρ)

+
1
3

(κ022 + κ202 + κ220)(1 − δρ) −
1
9

(κ002 + κ020 + κ200)(1 − δρ)(1 − 2δρ)

+4(κ112κ110 + κ121κ101 + κ211κ011) −
1

27
((1 − δρ) − 3(1 − δρ)2 + 2(1 − δρ)3)), (32)

and so on by permuting indices.

2.3. Collision

The collision thus explicitly reads:

C∗110 = (1 − ω1)C110, (33)
C∗101 = (1 − ω1)C101, (34)
C∗011 = (1 − ω1)C011. (35)

For correcting some error terms and for enhancing the interpolation order in the grid refinement it is useful to120

calculate the first derivatives of the velocity:
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Dxu = −
ω1

2
(2C200 −C020 −C002) −

ω2

2
(C200 + C020 + C002 − κ000), (36)

Dyv = Dxu +
3ω1

2
(C200 −C020), (37)

Dzw = Dxu +
3ω1

2
(C200 −C002), (38)

Dxv + Dyu = −3ω1C110, (39)
Dxw + Dzu = −3ω1C101, (40)
Dyw + Dzv = −3ω1C011, (41)

We note that Equations (39) to (41) are required only for the grid refinement and might be skipped in the usual
collision step. We also note that only the shear rate can be computed directly from the cumulants which is not possible
for the vorticity. Equations (36) to (38) are required to modify the following cumulants in their equilibrium:

C∗200 −C∗020 = (1 − ω1)(C200 −C020) − 3
(
1 −

ω1

2

)
(u2Dxu − v2Dyv), (42)

C∗200 −C∗002 = (1 − ω1)(C200 −C002) − 3
(
1 −

ω1

2

)
(u2Dxu − w2Dzw), (43)

C∗200 + C∗020 + C∗002 = κ000ω2 + (1 − ω2)(C200 + C020 + C002) − 3
(
1 −

ω2

2

)
(u2Dxu + v2Dyv + w2Dzw). (44)

Computing the gradients of velocity from the second order cumulants and feeding them back into the equilibria125

of the corresponding cumulants improves the Galilean invariance of the viscosity. Details on this can be found in
Appendix H of [42].

The equilibria for all remaining cumulants are zero:

C∗120 + C∗102 = (1 − ω3)(C120 + C102), (45)
C∗210 + C∗012 = (1 − ω3)(C210 + C012), (46)
C∗201 + C∗021 = (1 − ω3)(C201 + C021), (47)
C∗120 −C∗102 = (1 − ω4)(C120 −C102), (48)
C∗210 −C∗012 = (1 − ω4)(C210 −C012), (49)
C∗201 −C∗021 = (1 − ω4)(C201 −C021), (50)

C∗111 = (1 − ω5)C111, (51)
C∗220 − 2C∗202 + C∗022 = (1 − ω6)(C220 − 2C202 + C022), (52)
C∗220 + C∗202 − 2C∗022 = (1 − ω6)(C220 + C202 − 2C022), (53)

C∗220 + C∗202 + C∗022 = (1 − ω7)(C220 + C202 + C022), (54)
C∗211 = (1 − ω8)C211, (55)
C∗121 = (1 − ω8)C121, (56)
C∗112 = (1 − ω8)C112, (57)
C∗221 = (1 − ω9)C221, (58)
C∗212 = (1 − ω9)C212, (59)
C∗122 = (1 − ω9)C122, (60)
C∗222 = (1 − ω10)C222. (61)

Note that the relaxation of the third order and fourth order cumulants are grouped. This grouping is irrelevant
as long as ω3 = ω4 and ω6 = ω7. Grouping the cumulants in this way provides us with the largest number of130
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independently adjustable relaxation rates without compromising the isotropy of the method. The grouping is based
on the rotational properties of the respective quantities. For example C120 + C102 is invariant under rotation about the
Ξ axis while C120 − C102 is sensitive to such a rotation. The combination C220 + C202 + C022 is the isotropic part of
the fourth order cumulants and is hence given another relaxation rate than the non-isotropic fourth order cumulants.
This grouping becomes essential when the relaxation rates of the higher order cumulants are optimized for higher135

accuracy [48]. The higher order cumulants or moments are often dismissed as unimportant but they play a big role
in superconvergent lattice Boltzmann schemes as recently shown for the diffusion part [48, 49] and the advection part
[71] of the LBM. The higher order moments can also be useful for solving for additional equations as has been recently
shown for the recovery of the vorticity from the fifth order moments in a MRT setting [72]. The same approach can
be directly implemented in the cumulant method too. However, using the fifth order moments/cumulants to compute140

the vorticity implies the wrong value for the fifth cumulants which inevitably limits the accuracy to second order
accuracy while the cumulant method with correct fifth moments can be fourth order accurate when using the proper
parametrization [48].

2.4. Backward cumulant transformation

After the collision the cumulants have to be transformed back into central moments:145

κ∗211 = C∗211 + ((κ∗200 + 1/3)κ∗011 + 2κ∗110κ
∗
101), (62)

κ∗220 = C∗220 + ((κ∗200κ
∗
020 + 2κ∗2110) + (κ∗200 + κ∗020)/3(1 − δρ) − δρ(1 − δρ)/9), (63)

κ∗122 = C∗122 + ((κ∗002κ
∗
120 + κ∗020κ

∗
102 + 4κ∗011κ

∗
111 + 2(κ∗101κ

∗
021 + κ∗110κ

∗
012)) + (κ∗120 + κ∗102)(1 − δρ)/3), (64)

κ∗222 = C∗222 + (4κ∗2111 − 16κ∗011κ
∗
101κ

∗
110 − 2κ∗220κ

∗
202κ

∗
022 + κ∗022κ

∗
200 + κ∗202κ

∗
020 + κ∗022κ

∗
200

−4(κ∗020κ
∗2
101 + κ∗200κ

∗2
011 + κ∗002κ

∗2
110) + 2(κ∗102κ

∗
120 + κ∗012κ

∗
210 + κ∗021κ

∗
201)

−
2
3

(κ∗002κ
∗
020 + κ∗002κ

∗
200 + κ∗020κ

∗
200 + 2(κ∗2011 + κ∗2101 + κ∗2110))(1 − δρ)

+
1
3

(κ∗022 + κ∗202 + κ∗220)(1 − δρ) −
1
9

(κ∗002 + κ∗020 + κ∗200)(1 − δρ)(1 − 2δρ)

+4(κ∗112κ
∗
110 + κ∗121κ

∗
101 + κ∗211κ

∗
011) −

1
27

((1 − δρ) − 3(1 − δρ)2 + 2(1 − δρ)3)). (65)

The remaining central moments are obtained by permuting the corresponding indices. Second and third order
central moments are directly obtained from the cumulants according to equations (25)-(28). In order for the forcing
to take effect, the first central moments have to change sign:

κ∗100 = −κ100, (66)
κ∗010 = −κ010, (67)
κ∗001 = −κ001. (68)

This is done because half the force was applied in a different frame of reference prior to the central moment
transformation.150

2.5. Backward central moment transformation

The back transformation to distributions reads:
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κ∗0|βγ = κ∗0βγ(1 − (u/c)2) − 2(u/c)κ∗1βγ − κ
∗
2βγ − K0βγ(1 − δρ)(u/c)2, (69)

κ∗1̄|βγ = ((κ∗0βγ + K0βγ(1 − δρ))((u/c)2 − u/c) + κ∗1βγ(2u/c − 1) + κ∗2βγ)/2, (70)

κ∗1|βγ = ((κ∗0βγ + K0βγ(1 − δρ))((u/c)2 + u/c) + κ∗1βγ(2u/c + 1) + κ∗2βγ)/2, (71)

κ∗i0|γ = κ∗i|0γ(1 − (v/c)2) − 2(v/c)κ∗i|1γ − κ
∗
i|2γ − Ki|0γ(1 − δρ)(v/c)2, (72)

κ∗i1̄|γ = ((κ∗i|0γ + Ki|0γ(1 − δρ))((v/c)2 − v/c) + κ∗i|1γ(2v/c − 1) + κ∗i|2γ)/2, (73)

κ∗i1|γ = ((κ∗i|0γ + Ki|0γ(1 − δρ))((v/c)2 + v/c) + κ∗i|1γ(2v/c + 1) + κ∗i|2γ)/2, (74)

f ∗i j0 = κ∗i j|0(1 − (w/c)2) − 2(w/c)κ∗i j|1 − κ
∗
i j|2 − Ki j|0(1 − δρ)(w/c)2, (75)

f ∗i j1̄ = ((κ∗i j|0 + Ki j|0(1 − δρ))((w/c)2 − w/c) + κ∗i j|1(2w/c − 1) + κ∗i j|2)/2, (76)

f ∗i j1 = ((κ∗i j|0 + Ki j|0(1 − δρ))((w/c)2 + w/c) + κ∗i j|1(2w/c + 1) + κ∗i j|2)/2. (77)

Note that we write the crystallographic indices of the lattice directions in Miller notation with 1̄ = −1 [73].

2.6. Relaxation rates
From the different relaxation rates only ω1 has a leading order influence on the results. The kinematic shear155

viscosity ν of the model is set by choosing ω1 such that:

ν =
1
3

(
1
ω1
−

1
2

)
∆x2

∆t
. (78)

The remaining relaxation rates are set here to unity (ω2 = · · · = ω10 = 1). This is a very stable choice but more
accurate choices exist [48].

3. Grid refinement

Grid refinement for the lattice Boltzmann method has been pioneered twenty years ago by Filippova and Hänel160

[74, 75] but remains to be an active subject of research [76, 77, 78, 79]. The idea behind the grid-refinement is to use
nested Cartesian grids of different resolution which allow to apply the unmodified lattice Boltzmann equation in the
bulk of the domain and to provide suitable coupling mechanisms at the interfaces between such domains. We shall
note here that not all grid refinement techniques conform to this principle [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91].
Those models are not discussed here.165

It is common to distinguish between interpolation methods [74, 75, 92, 93, 76, 94, 78] and volumetric methods
[95, 96, 79]. Interpolation methods couple two grids of different resolution by interpolation of the distributions
while volumetric methods split up the Wigner-Seitz cells of the lattice nodes when going from the coarse to the fine
grid and average over several Wigner-Seitz cells when going from fine to coarse grids. Despite their popularity, the
interpolation methods suffer from certain problems that render them useless for flows of high Reynolds number unless170

certain correction steps are introduced [76, 78]. The most important problem of these models is that no interpolation
is usually performed when distributions are moved from the fine to the coarse grids since all nodes on the coarse grids
have matching neighbors on the fine grid side. This of course violates the Nyquist-Shannon sampling theorem [97]
according to which the signal being decimated must not contain any frequencies which cannot be represented on the
coarse grid side. It is hence obvious that a naive transfer of data from the high resolution grid to the lower resolution175

grid must fail unless the simulation is well resolved also on the coarse grid side. This is certainly not the case in
large eddy simulations and this is the reason why the interpolation methods needs to be supplemented by explicit
filtering [76]. Volumetric grid coupling does not suffer from this problem since the grids of different resolution
are staggered in space and this alone acts as an implicit low pass filter that conforms with the Nyquist-Shannon
theorem. Volumetric grid refinement techniques are therefore more robust than interpolation methods. However, it180

is important to understand that this is not due to the way data is mapped from one grid to the other (interpolation
versus volumetric) but it results from the differences in the alignments of the grids (over-lapping versus staggered).
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Recognizing this important difference we proposed [98, 99, 100] to use compact interpolation on staggered girds, and
thereby combining the advantages of both approaches with the additional advantage of quadratic interpolation order
on a minimal stencil. The method described below has successfully be applied to many applications including, in185

particular, highly turbulent flows [42, 43, 44, 45, 46, 49]. It is suitable for block structured grids and list based grids
[101]. Recently, a similar method has been used by Qi et al. [102].

Our grid refinement technique works by coupling two grids of different resolution through interpolation. At each
interface the grid is refined by a factor of two and we use acoustic scaling such that two time steps on the fine grid
correspond to one time step on the coarse grid. Interpolation at the interface between two grids serve two purposes:190

First, the hydrodynamic quantities have to be transferred from one grid to the other at the highest affordable accuracy.
Second, the data going from the fine grid to the coarse grid have to be filtered in such a way that they do not contain
waves which cannot be represented on the coarse grid. At the same time the interpolation of the velocity field should
be quadratic in space such that no numerical viscosity is introduced.

For the compact interpolation of the velocity components we start from quadratic interpolation functions:195

u(x, y, z) = a0 + axx + ayy + azz + axyxy + axzxz + ayzyz + axxx2 + ayyy2 + azzz2 + axyzxyz, (79)
v(x, y, z) = b0 + bxx + byy + bzz + bxyxy + bxzxz + byzyz + bxxx2 + byyy2 + bzzz2 + bxyzxyz, (80)
w(x, y, z) = c0 + dxx + cyy + czz + cxyxy + cxzxz + cyzyz + cxxx2 + cyyy2 + czzz2 + cxyzxyz. (81)

To determine the 33 coefficients in the equations we use the known velocities u, v, w at the nodes assumed to be at
positions {±1/2,±1/2,±1/2} in the local coordinate system centered in the middle of the cell. However, these are only
8 × 3 = 24 independent quantities. The missing nine values are obtained from the gradients of velocity as computed
from the pre-collision cumulants by equations (36) to (41). However, in order to to do this we have to reduce the
8 × 5 = 40 derivatives at the eight nodes to nine values. This is done by averaging each of the five derivatives in200

two spatial directions and taking the central difference in the third dimension. For example, we obtain the second
derivative Dx(Dxv + Dyu) by:

Dx(Dxv + Dyu) =
1
4

 1∑
j,k=0

(Dxv + Dyu)(1/2)( j−1/2)(k−1/2) − (Dxv + Dyu)(−1/2)( j−1/2)(k−1/2)

 . (82)

where the indices of the derivatives refer to the coordinates in x, y and z direction in the local coordinate system of the
source cell. By taking the corresponding derivatives of the (79) - (81) we find the following relationships:

Dx(Dxv + Dyu) = 2bxx + axy, (83)
Dy(Dxv + Dyu) = 2ayy + bxy, (84)
Dx(Dxw + Dzu) = 2cxx + axz, (85)
Dz(Dxv + Dzw) = 2azz + cxz, (86)
Dy(Dyw + Dzu) = 2cyy + byz, (87)
Dz(Dyw + Dzu) = 2bzz + cyz, (88)

Dx(Dxu) = 2axx, (89)
Dy(Dyv) = 2byy, (90)
Dz(Dzw) = 2czz. (91)

The remaining information is taken from the actual velocities at the nodes. The resulting set of equations is solved205

for the parameters a?, b? and c?. In addition to the velocity the density must be interpolated which is done by tri-linear
interpolation. The interpolation function reads:

δρ(x, y, z) = d0 + dx + dyy + dzz + dxyxy + dxzxz + dyzyz + dxyzxyz. (92)
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The parameters are obtained by equating δρ(x, y, z) with the densities at the eight vertexes of the source cell.
Depending on whether the grid refinement is used for the lattice Boltzmann equation with varying density [42] or
with constant density we define for the case with varying density: ρ = 1 + δρ and for the constant density case as used210

in the current paper ρ = 1.
By evaluating the interpolation functions u(x, y, z), v(x, y, z), w(x, y, z) and δρ(x, y, z) at the coordinates of the

destination nodes, we can compute the macroscopic quantities at these nodes. In addition, we can easily compute the
non-equilibrium part of the second order cumulants. We know from asymptotic analysis that they are related to the
derivatives of velocity via equations (36) to (41). The derivatives of the velocities are obtained by taking the analytical215

derivative of the polynomials (79) to (81). Thus, the pre-collision second order cumulants at the destination nodes are
computed as:

C011 = −
σρ

3ω1d
(bz + cy +A011(x, y, z)), (93)

C101 = −
σρ

3ω1d
(az + cx +A101(x, y, z)), (94)

C110 = −
σρ

3ω1d
(ay + bx +A110(x, y, z)), (95)

C200 =
δρ

3
−

2σρ
9ω1d

(2ax − by − cz + B(x, y, z) + C(x, y, z)), (96)

C020 =
δρ

3
−

2σρ
9ω1d

(2(by − B(x, y, z)) − ax − cz + C(x, y, z)), (97)

C002 =
δρ

3
−

2σρ
9ω1d

(−ax − by + B(x, y, z) + 2(cz − C(x, y, z))), (98)

where ω1d is the value of ω1 on the destination grid. The parameter σ is introduced to scale the derivatives to the
coordinate system of the destination grid. For coarse to fine interpolation it takes the value σc→ f = 1/2 and for fine to
coarse interpolation it takes the value σ f→c = 2.220

The space dependent functions are:

A011(x, y, z) = bxzx + cxyx + bzyy + 2cyyy + bxyzxy + 2bzzz + cyzz + cxyzxz, (99)
A111(x, y, z) = axzx + 2cxxx + ayzy + 2cxyy + axyzxy + 2azzz + cxzz + cxyzyz, (100)
A110(x, y, z) = axyx + 2bxxx + 2ayyy + bxyy + ayzz + bxzz + axyzxz + bxyzyz, (101)
B(x, y, z) = 2axxx − bxyx + axyy − 2byyy + axzz − byzz − bxyzxz + axyzyz, (102)
C(x, y, z) = 2axxx − cxzx + axyy − cyzy − cxyzxy + axzz − 2czzz + axyzyz. (103)

Beside the conserved cumulants and the cumulants of second order all remaining cumulants can be set to zero.
The coupling algorithm between the grids is analogous to the two-dimensional case described in [103, 100]. For

each coarse time step there are two fine time steps, one that is synchronous with the coarse time step and one that
is asynchronous. Instead of interpolating in time we use a small overlap between the grids. Before the synchronous225

time step, the pre-collision distribution on either side of the interface are reconstructed from the interpolation in the
overlap region. On the fine side two rows of nodes are interpolated together. If the source cell is incomplete because
it cuts into a boundary condition and some of the vertices are not inside the fluid domain, the method uses a nearest
complete source cell and evaluates the interpolation function outside of that cell such that extrapolation towards the
boundary is used (see Figure 1). In the asynchronous fine time step, no grid coupling is performed and the first line230

of fine nodes erodes away. Before the next coupling the first line of nodes on the coarse grid and the second line on
the fine grid become invalid due to lack of nearest neighbors. In the following synchronization all invalid nodes are
refilled by interpolation and the cycle begins again.

In order to have the same speed of sound on both sides of the interface, which is a physical condition for zero
reflection at the interface [104, 105], we use acoustic scaling. This means the velocity is not scaled but the diffusion235
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(a) Interpolation cells (b) Grid interface

Figure 1: Interpolation cells and grid interface. The upper cell on the left side is the fine to coarse interpolation cell. The data from the nodes
at the vertices are used to compute the data at the coarse node in the center. The lower cell is the coarse to fine interpolation cell. The data at
the vertices of the outer cell is used to interpolate to the eight fine nodes inside the cell. The picture at the right shows the arrangement of the
grid with the interpolation cells being highlighted. The grid allows for a small overlap between the fine and the coarse grids in order to avoid
interpolation in time. Circles represent regular nodes while diamonds denote the nodes that are obtained from interpolation. If the interface cuts
into a boundary condition not all vertices associated with the interpolation cell are available and the respective node (marked by triangles) have to
be extrapolated from the nearest complete source cell as indicated by the arrows. This grid coupling method does not need to distinguish between
different orientations of the wall and between planes, corners and edges. It is therefore well suited for arbitrary shape grid refinement which is
obviously mandatory for porous media.

coefficients and hence the relaxation rates have to be scaled such that:

τ1 f = 2τ1c ⇔

(
1
ω1 f
−

1
2

)
= 2

(
1
ω1c
−

1
2

)
, (104)

where indices f and c indicate the values for the fine and the coarse grid, respectively.
Applying the diffusive scaling with τ1 f = τ1c and ∆t f = 4∆tc is avoided in grid refinement as this would lead to

a jump in the speed of sound such that the interface would acoustically behave like a solid boundary. Even if sound
waves are not our primary interest here we note that they are always present. A reflective grid interface would act as240

a parasitic resonator. This is completely avoided by using acoustic scaling.

3.1. Evaluation of numerical viscosity at grid interfaces

We emphasized that quadratic interpolation is necessary to avoid the introduction of numerical viscosity at the
grid interface. To demonstrate this point we conduct a simple test with pressure driven flow through a channel as
described in [76]. Dissipation P in a steady flow can be computed from the volume flux ΦV and the pressure drop ∆p245

over the volume:

P = ΦV∆p. (105)

The dissipation in a fluid is a function of its viscosity and is constant along the length of a channel. If the effective
viscosity suddenly changes we expect a discontinuity in dissipation, which in a channel flow with constant flow rate
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implies a jump in the pressure gradient which is easily detected. Thus, a simple laminar channel flow is a minimalistic
and suitable example to investigate the presence or absence of numerical viscosity at the grid interface.250

Here we conduct two simulations, one using compact interpolation and one using linear interpolation for velocity.
The setup consists of a channel of length L = 40∆xc, width L/2 and thickness 2∆x with periodic boundary conditions
in the third direction. The flow is driven by a pressure pmax = 10−7 at the inlet and zero pressure at the outlet. Two
different viscosities were used to demonstrate their influence on the accuracy of the interpolation. The grid is refined
upstream from x = L/2. The pressure along the channel is depicted in Figure 2. It is seen that the linear interpolation255

results in a kink in pressure at the grid interface whereas the compact interpolation results in a smooth slope. We
also note that the kink in Figure 2(a) increases in magnitude for smaller viscosities. This is because the ratio between
numerical and physical viscosity increases with decreasing physical viscosity. The error introduced through linear
interpolation is hence more significant for high Reynolds number flow. We thus demonstrated that our method of
grid refinement based on compact quadratic interpolation is free of numerical viscosity as seen from the fact that no260

dissipation occurs at the interface and the slope is constant for both viscosities.

ν = 1 × 10-2 Δ x2/Δ t
ν = 5 × 10-3 Δ x2/Δ t

p/pmax
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(a) linear interpolation

ν = 1 × 10-2 Δ x2/Δ t
ν = 5 × 10-3 Δ x2/Δ t
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0.6

0.8
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(b) compact (quadratic) interpolation

Figure 2: Comparison of the pressure drop along a channel for a grid that is refined at L/2. Plot (a) shows the case for linear interpolation of
velocity. The slop of the pressure has a clear kink which is due to the spurious dissipation originating from the numerical viscosity at the grid
interface. Plot (b) shows the result for compact quadratic interpolation where no numerical viscosity is observed.

4. Numerical investigations of permeability and Forchheimer coefficient of porous materials

The Darcy law [106] describes the relation between the pressure gradient
dp
dx

and the velocity of an incompressible
flow through a porous medium as a function of the dynamic viscosity (property of the fluid) µ and permeability
(property of the pore space geometry) κ. For isotropic porous materials the model equation is given as:265

−
dp
dx

=
µ

κ
uD. (106)
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The Darcy velocity uD is computed as the product of the averaged pore velocity 〈ū〉 and the porosity φ =
VV

VT
or as

the ratio of the flow rate Q and the cross section area A of the porous medium:

uD = 〈ūp〉φ =
Q
A
. (107)

The dimensionless characteristic number of flow through porous materials is the pore scale Reynolds number
which is based on the pore size Lp:

Re =
uDLp

ν
. (108)

The Darcy law is valid only for Re � 1. Forchheimer [1, 107] extended the Darcy equation for higher pore scale270

Reynolds numbers by a non-linear additional term:

−
dp
dx

=
µuD

κ
+ βρu2

D, (109)

where ρ is the density of the fluid. If we use the dimensionless Ergun coefficient [106] cF = β
√
κ we find:

−
dp
dx

=
µuD

κ
+

cF
√
κ
ρu2

D. (110)

Below, the permeability and the Forchheimer coefficient of two materials are obtained by simulation: porous
aluminum PA80-1101 and sintered bronze SBP1202. The geometry is obtained by computer tomography (CT) (see
Figure 3). The pore size of the porous materials is between 80 and 110 µm for porous aluminum and app. 120 µm275

for sinter bronze. The porosity is 46% and 36%, respectively. Both scans are discretized with the native resolution
of the scan ∆x =3.9 µm. Uniform Cartesian grids with about 2.5 billion grid points are used for the simulation. This
translates to about 68 billion degrees of freedom. The flow is driven by a pressure difference between two opposing
sides of the domain. All other sides are closed with no-slip boundary conditions. Simulations are conducted for dif-
ferent Reynolds numbers. Figure 4 shows the computed effective permeability and the fitted Forchheimer equation as280

a function of the pore scale Reynolds number. For sufficiently low Reynolds numbers the permeability is independent
of the Reynolds number. Above Re ∼ 0.1 the permeability starts to decrease with growing Reynolds number. The
data is fitted to the Forchheimer equation in order to determine the Forchheimer coefficient β. Table 1 shows that
the static air flow resistivity (rsim) of porous aluminum and sintered bronze computed with the cumulant LBM is in
essentially quantitative agreement with experimental data (rexp). The resistivity has been determined experimentally285

at the Physikalisch-Technische Bundesanstalt Braunschweig using the alternating airflow method (ISO9053/DIN EN
29053) [38]. The conversion of the permeability κ to the flow resistivity r is accomplished by the following transfor-
mation

r=
µ0

κ
with µ0 = 18.24 × 10−6 kg

ms
, (111)

where the value of the dynamic viscosity µ0 corresponds to the viscosity of air at a temperature of 20 ◦C.

Simulation Material κ × 10−10[m2] CF[−] rsim[Ns/m4] rexp[Ns/m4] Deviation [%]
Case A PA80-110 1.28675 5.0583 142,279 145,490 2.2
Case B SBP120 2.81863 0.69117 64,712 64,686 -0.04

Table 1: Permeability, Forcheimer-coefficient and flow resistance of PA80-110 and SBP120 samples. Experiments are described in [38].

1produced by Exxentis AG, Schartenfelsstrasse 6, 5430 Wettingen, Switzerland
2produced by GKN Sinter Metals Filters GmbH, Dahlienstrasse 43, 42477 Radevormwald, Germany
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(a) PA80-110 (b) SBP120

Figure 3: CT scans of porous aluminum PA80-110 (a) and sinter bronze SBP120 (b).
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Figure 4: Effective permeability of porous aluminum PA80-110 (a) and sintered bronze SBP120 (b) and fitted Darcy-Forchheimer equation as a
function of Reynolds number.
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||ux − uDNS
x ||l2 ||

√
R+

11 −
√

R+
11

DNS ||l2 ||

√
R+

33 −

√
R+

33
DNS ||l2

LBM 0.0349 0.1479 0.1276
VRANS 0.0249 0.0678 0.164

Table 2: Deviation of the LBM and the VRANS results from [111] from the DNS results from [108] as depicted in Figure 7 computed by Equation
(112). The VRANS model was designed to capture the Reynolds stresses of the considered kind of porous media accurately. It is observed that our
method shows comparable deviations from both the DNS data and the VRANS model. We note that Reynolds stresses are statistical values that
are susceptible to turbulent intermittency. Thus the accuracy Reynolds stresses obtained from DNS data is strongly depending on the details of the
statistical procedure used which results in a finite and usually unknown uncertainty.

5. Channel flow above porous bed290

In this section the turbulent boundary layer above a porous material is investigated. The first example considers
an artificial porous medium and it is shown here since DNS reference data are available for comparison. The second
example considers a realistic porous material obtained from a CT scan.

5.1. Turbulent channel with cube array

As a validation study for a turbulent boundary layer over a porous medium we computed a channel flow over an295

artificial porous material. Figure 5 shows the geometric setup of the simulation. The channel height H is used for the
definition of the computational domain, which measures 3H × 2H × 2H. The lower half of the channel is filled with
an array of cubes representing a generic porous medium. The cube size and the distance between the cubes is H/20.
The boundary conditions are periodic in flow direction. A forcing is used to drive the flow with the target Reynolds
number Re = 5500 = umean ∗ H/ν, starting from an initial plug flow with constant velocity in the domain. No-slip300

boundary conditions are used at the wall. Three refinement levels are used. The resolution of the upper boundary
layer is chosen to obtain a dimensionless wall distance of the first grid node of z+ ' 2. The case is not physical as
the cubes float while being stationary. The case is considered here for comparison to the DNS data from Breugem
and Boersma [108] where this setup was chosen as a generic benchmark. Figure 6 shows the instantaneous flow using
the Q-criterion [109, 110] colored by the normalized velocity magnitude together with a zoom area. It gives an idea305

of the complexity of the flow field at a resolution of about 90 million grid points and about 2.3 billion degrees of
freedom. Figure 7 shows time averaged velocity profile and RMS values of the fluctuations in comparison with DNS
data from Breugem and Boersma [108] and with result of the VRANS simulation [111, 112] (see also [40]). The
streamwise mean velocity profile of the LBM simulation is in good agreement with DNS and VRANS. After reaching
a dynamic equilibrium for the bulk flow the macroscopic quantities are volume averaged with the cellular filter from310

[113]. The volume averaged data is obtained every 2250 time steps (on the coarsest grid), which correspond to half
an eddy turnover time (ETOT). The data is averaged in time over 50 of such intervals. We further compare the result
of our simulation and those from the VRANS simulation to the DNS by calculating the l2−norm of quantity Φ:

||Φ − ΦDNS ||l2 =

√√∫
(Φ − ΦDNS )2dV∫

(ΦDNS )2dV
. (112)

The results for the velocity and two components of the Reynolds stress are shown in Table 2. The results of the
LBM simulation show a small but notable deviation from the DNS as well as the VRANS simulations. We note315

that the VRANS model was designed to capture accurate Reynolds stresses for homogeneous porous media and was
calibrated to exactly the DNS data from Breugem. The VRANS result can therefore be regarded as a gold standard in
this context. We also note that the DNS data has an unknown uncertainty especially for the Reynolds stresses which
are statistical quantities. Finally we note that flow over a porous medium might dependent strongly on the anisotropy
of the pores [114].320

5.2. Turbulent channel with a porous aluminum bed

After the successful validation with an artificial porous medium, a channel partially filled with porous aluminum
PA80-110 is simulated (see Fig. 8). The length of the computational domain is 64 mm, the height is 17 mm and

15



Figure 5: Geometric setup of channel with an array of cubes.

the depth is 8 mm. Periodic boundary conditions are used in streamwise and spanwise directions. No-slip boundary
conditions are used in wall-normal directions. Adaptive forcing based on a proportional-integral-derivative (PID)325

controller is applied in order to achieve the bulk Reynolds number Re = 51000. The porous bed is constructed with
32 periodic copies of the porous aluminum PA80-110 scan, which has a dimension of 4 mm × 4 mm × 1 mm. The
computational grid consist of approx. 1.2×109 grid nodes. The resolution of the grid close to the top and bottom walls
and inside the porous aluminum is 10 µm corresponding to the normalized wall distance on the top of z+ ' 1. The
simulation reaches dynamic equilibrium after 50 ETOT. Additional 10 ETOT are used for collecting the turbulence330

statistics.
The mean velocity profile of a turbulent flow satisfies the law of the wall [115].

U+ =
1
K

ln z+ + C+. (113)

In (113) U+ is the streamwise mean velocity and z+ is the wall distance normalized by the friction velocity uτ. K
is the von Kármán constant and C+ is a constant. For smooth walls K ≈ 0.41 and C+ ≈ 5 [106]. The friction velocity
is defined as335

uτ =

√
τ

ρ
, (114)

where τ is the shear stress and ρ is the density of the fluid.
Figure 9 shows the streamwise mean velocity of the channel flow with smooth walls and with porous aluminum

in comparison with DNS data for the smooth wall [116]. The friction Reynolds number of the DNS is Reτ ≈ 2000
[116, 117] and is close to Reτ ≈ 2474 on the smooth wall of the channel. The logarithmic law for flow over a
completely rough wall is defined as [118]:340

U+ =
1
K

ln
(

z+

z+
0

)
, (115)

where z+
0 is the characteristic roughness length. Nikuradse’s equivalent sand roughness ks [118] describes the velocity
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Figure 6: Iso-surfaces of Q-criterion [110] colored by the normalized velocity magnitude.
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Figure 7: The normalized streamwise mean velocity and Reynolds stress in streamwise and wall-normal direction. We compare our results to the
DNS results from Breugem [108] and the VRANS results from [111]. A quantitative comparison of the deviations of the LBM and VRANS results
from the DNS data is presented in Table 2.

Figure 8: Geometric setup of the turbulent channel with porous aluminum.
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distribution across the depth and is defined as a function of roughness length as

z0 =
30
ks
. (116)

We obtain z+
0 = 26.9 as a z-intercept of the linear fit of the logarithmic part of the mean velocity profile on a

semi-logarithmic diagram. The roughness Reynolds number is ksuτ
ν

= 808. Flows with a roughness Reynolds number
larger than 70 are considered completely rough [106], i.e. viscous effects are assumed to be negligible on the scale of345

the roughness elements. The streamwise mean velocity profile close to the porous aluminum is shown in Figure 9.

U+ = 1/K ln (z+/z0
+)

U+ = 1/K ln z+ + C+

U+ = z+

smooth channel LBM
porous channel top wall LBM
Hoyas & Jimenez
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Figure 9: Streamwise mean velocity profile normalized by friction velocity.

Figure 10 shows the streamwise velocity profile normalized by the bulk velocity. In the zoom area we observe
that the velocity in the upper part of the porous aluminum is negative, i.e. the flow turns counter-streamwise. Figure
11 shows the instantaneous velocity in the channel and inside the upper most pore of the porous aluminum. It is
clearly seen that the flow shows the typical lid-driven cavity behavior. The back-flow represented by the lower part350

of the vortices in the upper most pores leads to this counter-streamiwse velocity. To the best of our knowledge, this
statistically relevant property of the boundary layer inside the porous medium has not been reported before and may
play an important role in the design of consistent homogenized boundary conditions at the interface between the
porous medium and the airspace for RANS type flow models of flow in porous media.

The averaged Reynolds stress

Ri j =
1

AS f

∫
S

(
1
T

∫
T

(u′iu
′
j)dt

)
dS , (117)

where AS f is the area of the surface S occupied by fluid of the x − y plane and u′ is a turbulent fluctuation, is shown355

in Figure 12. The left picture shows that the magnitude of the Reynolds shear stress close to the rough wall is larger
than close to the smooth wall. The increase of the stress corresponds to a higher friction factor C f = 2(uτ/U2

b) [119]
on the rough wall as compared to the smooth wall. The friction factor of the rough wall is found to be 2.088 times
the friction factor of the smooth wall in this case. The right picture shows the Reynolds wall-normal stress of the flow
close to the top wall in comparison to DNS data.360
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Figure 10: Streamwise mean velocity profile (a), the small rectangle on the left shows zoom area (b). The horizontal velocity component inside the
pore close to the surface is observed to be smaller than zero, indicating that the flow moves in the opposite direction compared to the flow above the
porous medium. The kink in the velocity profile at the surface of the porous medium (plot b) is due to the sudden increase of volume occupied by
fluid. For averaging, the sum of the velocities of all nodes in each x − y plane was divided by the number of nodes in the plane that were occupied
by fluid.

Figure 11: Lid-driven cavity effect in a pore close to the surface of the porous aluminum. The picture on the right shows a zoom into the pore
indicated by the small box in the bottom of the picture on the left. The reason why the flow moves counter stream-wise in a certain depth is
explained by the vortices formed in the upper most pores. In a certain depth, the vortex at the entrance of the pore recirculates causing the fluid
to move in opposite direction to the main flow which is well known from driven cavity flows. The zero-velocity contour for ux is shown inside
the pore. Below the uppermost line the flow moves in opposite direction to the main flow. This effect is not captured by volume averaged RANS
models which predict a monotonous decrease of velocity with increasing depth.
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Figure 12: Normalized Reynolds stress profile with respect to channel high (a) and on the top wall (b).

6. Flow around a flat plate with porous inlay

The last example shows the interaction of the porous medium with an external flow in developed turbulence. For
this flow around a flat plate with an additional porous inlay at the end is simulated. The simulation setup is close
to the experimental one [39]. The experiment was carried out at the low noise wind tunnel of the Institute for Fluid
Mechanics at TU Braunschweig (ISM). It is a small low speed wind tunnel with a cross section of 600 mm × 400365

mm and an open recirculation region (Eiffel type) with a closed test section. Velocities are measured using Particle
Image Velocimetry (PIV). For this case a flat plate of size (1000 mm × 40 mm × 10.5 mm) was positioned in the wind
tunnel at an angle of attack of 0◦. The Mach number of the flow was about Ma = 0.05, which leads to a Reynolds
number of about Re = 106 based on the plates total length. A zigzag-tape was attached close to the leading edge of
the plate to trigger turbulence. The porous inlay is positioned at the trailing edge of the plate and adjusted so that370

the upper surface of the inlay and plate are in the same plane. The metal foam MF4503 is used as a porous material
for the inlay. Some physical properties of the MF450 are presented in Table 3. Both the zigzag tape and the porous
inlay are included in our simulation setup. From the PIV measurements mean velocity profiles as well as turbulent
fluctuations of the streamwise and vertical component of the velocity are available at a distance of 935 mm from the
front edge along a line normal to the surface of the plane. The turbulence intensity of the incoming velocity is very375

low (Ti < 0.1%). In the numerical setup it was assumed to be zero.

Porosity φ 0.91
Permeability κ 2.0 × 109 m2

Typical pore size Lp 450 µm

Table 3: Physical properties of metalfoam MF450.

3produced by Alantum Europe GmbH, Raiffeisenallee 6, 82041 Oberhaching, Germany
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For the simulation, a 3D non-uniform Cartesian grid with 6 levels of refinement and about 700 million grid points
is used, which translates to about 19 billion degrees of freedom. The full length of the upper part of the plate is
resolved with a grid spacing equal to 78 µm corresponding to z+ ' 2. This results in 276×106 points in the finest grid
layer used to resolve the boundary layer. A no-slip boundary condition is used for the plate and a velocity boundary380

condition is set at the inflow plane. A zero pressure boundary condition is used for the outflow and a slip boundary
condition is used for the upper and lower domain boundaries. The accuracy of all boundary conditions is of second
order. The simulation domain is 4 cm wide. At the sides where the domain is cut, periodic boundary conditions are
used. For the digital reconstruction of the inlay geometry a CT scan of the metal foam MF450 is used. The sample
has dimensions of 5 mm × 5 mm × 1.8 mm and consists of about 822 million voxels. In order to model the inlay the385

scan was reproduced 128 times and mirrored in order to avoid artifacts at the interfaces. The computational grid is
refined at the porous inlay with grid spacing 39 µm corresponding to z+ ' 1 and 178 ×106 points. The simulation
domain with the porous inlay is sketched in Figure 13.

Figure 13: The geometric setup of the simulation of the flat plate with porous inlay.

The simulation uses ∼ 780, 000 core hours. For the six different levels of resolution the time step is refined
proportional to the grid spacing. The simulation runs for 94,000 time steps on the coarsest level corresponding to 0.80390

s real time. The solver records macroscopic quantities, time averaged velocities and fluctuations every 1000 coarse
time steps. The averaged velocities and the Reynolds stresses above the porous medium are monitored. A dynamic
steady state is reached after 61,000 time steps on the coarsest level. Figure 14 shows an isosurface of the instantaneous
pressure field.

Figure 15 shows the normalized mean velocity profile and the Reynolds shear stress of the simulation of the plate395

with porous inlay in comparison with experimental data. The coordinate in wall-normal direction is normalized with
the boundary layer thickness δ99 that is about 17 mm. It is observed that the Reynolds shear stress in our simulation is
lower than the one measured by particle image velocimetry. This is to be expected since our method does not resolve
all scales down to the Kolomgorov scale. It is known the implicit large eddy models underestimate the magnitude of
total Reynolds shear stress [120] as the unresolved scales are essentially ignored.400

7. Conclusion

In this work we investigated turbulent flows in porous media and over porous surfaces. The simulations based
on the cumulant lattice Boltzmann model show good to excellent agreement with experimental and DNS data. The
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Figure 14: Iso-surfaces of the instantaneous pressure field.
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Figure 15: Comparison of normalized velocity profile and Reynolds shear stress between simulation and experiment for the flat plate with porous
inlay. The shear stress shows a larger deviation from the reference than the velocity provile which is consistent with the results presented in Figure
7.
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massively parallel VirtualFluids LBM framework with its sophisticated grid refinement treatment allows to conduct
resolved simulations on the pore scale including the viscous sublayer. We conclude that the cumulant LBM is a405

suitable model to investigate turbulent flows without the need for an explicit turbulence model.
One of the results of our simulation was the identification of small recirculation in the upper most pores observed

when turbulent flow passes over a porous medium. The immanent recirculation causes the averaged flow in a certain
shallow depth inside the porous medium to flow in counter stream-wise direction. Current volume averaged RANS
models do not capture this effect.410

The computed permeability and Forchheimer-coefficient for porous aluminum and sintered bronze are in quanti-
tative agreement with experimental data. The validation results obtained so far motivate the next step which is the
aeroacustic analysis of a 1 : 10 scale wind tunnel model of a wing extended by an anisotropic porous inlay at the
downstream edge in order to analyze the detailed mechanism for the noise decrease observed in experiments. This
will allow to determine optimal properties of the porous materials under consideration. According to initial setup tests415

these simulations will require app. 5 × 109 grid nodes resulting in about 1.3 × 1011 degrees of freedom.
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Forschungszentrum für Luftfahrt, 2016.655
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