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1 Introduction20

Near-wall turbulence is one of the most interesting subjects of turbulence itself because it21

is responsible for some important effects such as friction drag and wall heat transfer. Tur-22

bulent flows can be characterized as inherently unsteady, irregular and three-dimensional23

making the study of such flows difficult. However, the velocity profile in the near-wall24

region often has a particular well-defined shape, which can be described with the “law25

of the wall” [1]. Experimental measurements and Direct Numerical Simulation (DNS)26

results of a flow confined between two parallel planes confirm this velocity profile [2]. For27

flows at high Reynolds numbers, the near-wall region (or boundary layer) is a region of28

strong velocity gradients because the velocity is zero exactly at the wall and approaches29

the bulk velocity over a short distance. Due to these strong gradients present in the30

proximity of the wall, in Computational Fluid Dynamics (CFD) highly refined grids are31

required in order to resolve the boundary layer.32

In order to predict the correct velocity profile and stresses at the wall, the study of33

near-wall region flows has initiated the development of appropriate mathematical mod-34

els, the so-called “wall functions”. The use of wall functions avoids the explicit spatio-35

temporal discretization of the viscous sub-layer and thus drastically decreases the compu-36

tational effort. The first wall function was introduced by Launder and Spalding in 197437

[3]. The idea is to use the law of the wall to compute the wall shear stress τw and to38

adjust the eddy viscosity for the first grid node accordingly to τw. Thus, a wall function39

simulation normally requires that the first cell outside the walls lies in the logarithmic40

region (y+ > 30). Other wall functions have been implemented to work properly with41

smaller y+ [4, 5], and to take the pressure gradients into account [6, 7], which can occur42

when the flow separates from the surface, e.g. with curved geometries [8]. It is worth43

mentioning that each wall function implementation is strictly related to the turbulence44

model used. For this reason, the implementation of a specific wall function for a different45

simulation approach is not straightforward. A more general implementation is the use of46

a skin friction boundary condition as wall function [9, 10]. The latter sets a partial slip47
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velocity on the surface of the wall and it is not related to the specific simulation approach48

used.49

The lattice Boltzmann method (LBM) has been widely used in CFD for simulations50

of incompressible flows including turbulent channel flows with resolved boundary layers51

[11, 12] using surface refined grids [13]. However, it has only recently been used for the52

implementation of a near-wall region treatment [14, 15]. The implementation of [15]53

reconstructs the distributions of the first grid point by evaluating a deviatoric stress. It54

considers the fluid density and velocity at the second node from the wall in the normal55

direction, and recomputes their values at the boundary node.56

In this work we present a new wall function for the LBM which uses only information57

at the boundary nodes (first grid node). After recomputing the quantities at the wall, the58

wall function imposes a partial slip velocity at the boundary surface in order to satisfy59

the skin friction requirement. The use of the boundary node for the evaluation of the wall60

function facilitates the implementation of our model, especially for implementations on61

general purpose graphics processing units (GPGPU) where the locality of the information62

is essential for efficiency of the GPGPU.63

The paper continues with an introduction to boundary layer theory (Sec. 2), the64

cumulant LBM and the computation of required quantities at the wall (Sec. 3), and the65

implementation of the wall function (Sec. 4). Finally, we show numerical results for the66

turbulent channel flow simulation with different grid resolutions and at different Reynolds67

numbers (Sec. 5), and discuss our approach in the conclusion (Sec. 6).68

2 Thin boundary layer approximation69

The Navier-Stokes (NS) equations accurately describe the mechanics of viscous fluids on70

macroscopic scales by a momentum transport equation:71

∂t~u+ (~u · ∇)~u = −1

ρ
∇p+ ν∇2~u+ ~g, (1)
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and a continuity equation:72

∇ · ~u = 0. (2)

Eq. (1) and Eq. (2) are written in incompressible form where ~u = (u, v, w) is the73

velocity of the flow field, ρ is the density, p is the pressure, ν is the kinematic viscosity,74

and ~g = (gx, gy, gz) is an acceleration due to a body force. By assuming the thin layer75

approximation [16–18] we can simplify this set of equations in order to solve them for76

the near-wall region. The hypotheses are: i) neglect of diffusion processes parallel to a77

body surface, ii) replacement of the momentum equation normal to the surface with the78

assumption of zero normal pressure gradient throughout the boundary layer. This means79

that we assume the mean flow as parallel to the wall and statistically steady. Considering,80

for example, a flat wall with a fluid flow moving in X-direction with the normal to the81

wall in Y-direction, we have that:82

v � u, ∂xu� ∂yu, ∂tu = 0, ∂yp = 0, (3)

and Eq. (1) for the X-direction component reduces to:83

0 = −∂xp+ ∂y(µ∂yu) + ρgx, (4)

where µ = ρν is the dynamic viscosity and the term −∂xp is the pressure gradient in the84

direction parallel to the wall. Eq. (4) is solved to obtain the wall shear stress τw:85

τw = µ∂yu, (5)

and the frictional velocity uτ :86

uτ =
√
τw/ρ. (6)

4



In order to express the turbulent boundary layer quantities in dimensionless form, it is87

possible to define the dimensionless wall distance y+:88

y+ =
y

ν
uτ , (7)

and the dimensionless velocity u+:89

u+ =
u

uτ
. (8)

Another important quantity is the skin-friction coefficient Cf :90

Cf =
τw

1/2ρu2
∞
, (9)

with u∞ the free-stream velocity.91

A standard approach to solve Eq. (4) is to integrate in the direction normal to the92

wall and solve for the first derivative of the velocity with a Gauss-Legendre quadrature93

method [19]. The method has to be supplemented by a Newton algorithm for obtaining94

τw. By using the cumulant LBM, in the case of flat walls, it is possible to have directly95

the second derivative of the velocity.96

3 Cumulant LBM97

The LBM is a numerical method for solving the weakly compressible NS equations. It98

is motivated by the Boltzmann transport equation and deals with a discrete local distri-99

bution function in momentum space, f [20]. The discrete lattice Boltzmann equation in100

three dimensions is written as:101

fijk(x+ic∆t)(y+jc∆t)(z+kc∆t)(t+∆t) = fijkxyzt + Ωijkxyzt = f ∗ijkxyzt, (10)

where ic, jc, and kc are the components in velocity space, c = ∆x/∆t is the discrete speed102

and i, j, k ∈ Z and x, y, and z are the variables in space, t is the time variable, Ω is the103

collision operator, and the symbol ∗ means the post-collision state. The evolution of the104
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flow field is split into two steps: the streaming step propagates the distributions according105

to their respective momentum direction from node to node (LHS of Eq. (10)) and the106

collision step rearranges the local distributions on each node (RHS of Eq. (10)). The107

accuracy of the results and the stability of the method depend on the collision operator108

Ω.109

The cumulant LBM is a multiple relaxation time LBM that uses cumulants as quanti-110

ties for the collision operation [21]. Cumulants are the variables of the continuous particle111

distribution function after Laplace-transforming the discrete f from time-velocity-space112

to frequency-velocity-space:113

Cαβγ = c−α−β−γ
∂α∂β∂γ

∂Ξα∂Υβ∂Zγ
ln(L{fijk(ic, jc, kc)})

∣∣∣
Ξ=Υ=Z=0

, (11)

where Ξ, Υ and Z are the coordinates of the frequency-velocity-space. Cumulants are thus114

observable quantities, which are both Galilean invariant and statistically independent of115

each other. They are used only in the collision step where each cumulant is relaxed116

towards its equilibrium with an individual rate ωαβγ:117

C∗αβγ = ωαβγC
eq
αβγ + (1− ωαβγ)Cαβγ, (12)

where C∗αβγ and Ceq
αβγ indicate the post-collision and the equilibrium state of the cumu-118

lants, respectively. After collision, the post-collision particle distribution function f ∗ is119

obtained by a backward transformation from C∗αβγ [21].120

3.1 Second derivative of the velocity by using cumulants121

After performing asymptotic analysis of Eq. (10) up to third order in diffusive scaling, the122

relationship between the third order cumulants and the second derivative of the velocity123

is found [22]:124

C∗120 − C120 − 1/3ρgx

−2
9
ρ
(

1
ω1
− 1

2

) = 2∂xyv + ∂yyu+O(∆x2), (13)
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where ω1 is the relaxation rate related to the kinematic viscosity:125

ν =
1

3

(
1

ω1

− 1

2

)
, (14)

and C∗120 and C120 are the third order cumulants in xyy for the post-collision and pre-126

collision states, respectively. By considering the thin boundary layer approximation (v �127

u), the mixed derivative ∂xyv can be neglected:128

∂yyu ≈
C∗120 − C120 − 1/3ρgx

−2
9
ρ
(

1
ω1
− 1

2

) . (15)

This allows to solve directly the second derivative of the velocity of Eq. (4) and to obtain129

the wall shear stress τw. For the first fluid node close to the wall it is possible to write:130

∂y(µ∂yu) = ∂y(τw) ≈ ∆τw/∆y, (16)

131

µ∂yyu =
τxy − τw
yw

, (17)

132

τw = τxy − ywµ∂yyu, (18)

where yw is the distance to the wall, and the deviatoric stress tensor component τxy is133

locally evaluated at the first fluid node close to the wall by using cumulants:134

−C110
3ω1

ρ
= ∂xv + ∂yu+O(∆x2), (19)

135

τxy ≈ µ

(
−C110

3ω1

ρ

)
, (20)

where C110 is the second order cumulant in xy.136

The derivation of Eq. (15) is given in Appendix A. In contrast to the cumulant method137

it is not straightforward to extract second derivatives of velocities from a moment based138

or BGK Lattice Boltzmann method. Moments by itself have no direct relationship to the139

second order derivatives. Still it would be possible to compute cumulants for a moment140
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based collision operator. However, moment based collision operators are usually not141

second order accurate for third order moments or cumulants. This arises form (among142

other defects) the neglect of third order terms in the Mach number expansion of the143

equilibrium on which the standard MRT methods are based [23]. The information on144

second derivatives of velocities, which we are able to extract from the cumulant method145

due to its superior accuracy, is found at the third asymptotic order in diffusive scaling146

of the third cumulants which is beyond the cut-off accuracy of the Taylor expanded147

equilibrium used in most lattice Boltzmann schemes.148

3.2 Relaxation rates for the third order cumulants149

The third order cumulants used for deriving the second derivative of the velocity and150

thus τw are relaxed towards their equilibrium by the specific relaxation rates ω3, ω4, and151

ω5 [21]:152

C∗120 + C∗102 = (1− ω3)(C120 + C102), (21)
153

C∗210 + C∗012 = (1− ω3)(C210 + C012), (22)
154

C∗201 + C∗021 = (1− ω3)(C201 + C021), (23)
155

C∗120 − C∗102 = (1− ω4)(C120 − C102), (24)
156

C∗210 − C∗012 = (1− ω4)(C210 − C012), (25)
157

C∗201 − C∗021 = (1− ω4)(C201 − C021), (26)
158

C∗111 = (1− ω5)C111. (27)

Previous works showed that with an appropriate combination of the odd and even rates it159

was possible to improve the accuracy of the results for bounded flows (Ginzburg param-160

eters) [24, 25]. In this work we used a combination of the relaxation rates that reduces161

the numerical dissipation [22, 26]. In terms of Ginzburg parameters, the coefficients are:162

Λ3 = 1/12, Λ4 = 1/6, Λ5 = 7/24, (28)
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and the new relaxation rates written as function of ω1 are:163

ω3 =
3(ω1 − 2)

ω1 − 3
, ω4 =

6(ω1 − 2)

ω1 − 6
, ω5 =

12(2− ω1)

12 + ω1

. (29)

We note here that while these parameters reduce dissipation compared to ω3 = ω4 =164

ω5 = 1 they do not increase the convergence order of the method. After the current165

paper was submitted a better parametrization has been found that also improves the166

convergence order of the viscous term [27]. This new parametrization was shown to work167

in combination with very large Reynolds numbers and the drag crisis behind a sphere168

could be captured [28].169

Reducing the numerical dissipation leads to a more realistic turbulence intensity.170

However, it also reduces the stability of the simulation at high Reynolds number (and171

with under-resolved grids). In order to have accurate and stable simulations, we applied172

a limiter coefficient clim ∈ R+ for the relaxation rates [22]. The new relaxation rates with173

the limiter coefficient are shown in Appendix B. In Appendix C we show the comparison174

of the new relaxation rates with the standard set equal to unity (ω3 = ω4 = ω5 = 1) for175

the same test case used for the validation of the wall function.176

4 Frictional partial slip velocity wall function177

The frictional partial slip velocity wall function (FPSV-WF) is based on five inputs.178

These are the fluid velocity ~u, the deviatoric stress tensor τ , the second derivative of the179

wall tangential velocity ∂nnue, the normal to the wall ~n, and the distance to the wall yw.180

The wall tangential velocity is defined as ue = |~u− ~n(~n · ~u)|. The input quantities ~u, τ ,181

and ∂nnue are related to the evolution of the flow and they are computed and updated182

by the LBM kernel, while ~n and yw are geometrical information provided by the grid183

generator LBMHexMesh [22, 29] and they are constant during the simulation for the flow184

problems investigated in this paper. All the inputs are localized on the first fluid node185

next to the wall.186

The configuration of the boundary node is shown in Figure 1. The first fluid node next187
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to the wall is the boundary node and it owns the information from the mesh generation,188

~n and yw. The LBM kernel computes the standard streaming and collision operations for189

all the nodes of the domain, and ~u, τ , and ∂nnue can be computed from the cumulants.190

The boundary condition kernel for the wall function uses this information for imposing191

a slip velocity at the wall.192

The FPSV-WF acts in five steps (Figure 2). The first step computes the streamwise193

direction ~e at the first fluid node with:194

~e =
~u− (~u · ~n)~n

‖~u− (~u · ~n)~n‖
. (30)

The second step calculates the wall shear stress τw. Two methods for computing τw195

are implemented, either by solving the second derivative of the velocity for flat walls with196

cumulants (D2V) or by solving the quasi-analytical solution from Musker [4]. D2V is197

solved by using Eq. (18). To compute the quasi-analytical solution it is necessary to198

calculate the stream-wise velocity ue = ~u · ~e and to solve the Musker law by using a199

Newton algorithm. After obtaining τw, with both methods the frictional velocity uτ is200

computed with Eq. (6).201

Once uτ is obtained, the skin-friction coefficient Cf can be calculated (third step). By202

Figure 1: The information necessary for the FPSV-WF is local and stored at the first fluid
node close to the wall. The sub-grid-distance q is used for the interpolated bounce-back
operation.
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Figure 2: Functional flow block diagram of the FPSV-WF.

substituting Eq. (6) into Eq. (9), it is possible to write:203

Cf = 2
u2
τ

u2
∞
. (31)

For simulations where a force term is used, the free-stream velocity u∞ is evaluated as204

the mean velocity in the bulk 〈ub〉. The symbol 〈·〉 indicates the average in space. When205

setting an inlet boundary condition where the velocity is known, the reference velocity206

can be used for u∞.207

With the skin-friction coefficient a partial slip velocity can be imposed at the wall ~uw208

[9] (fourth step):209

~uw = − 1

Cf
~nT · τ · ~e, (32)

where ~nT is the transpose vector of ~n. the deviatoric stress tensor τ is locally evaluated210

at the boundary fluid node by using cumulants, e.g. Eqs. (19) and (20) for τxy (for the211

other tensor components the equations are similar by exchanging the indices).212

The slip length s can be defined as [30]:213

s = − µ

Cf
. (33)
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Finally, with ~uw the wall function performs the fifth step, that is the interpolated214

bounce-back (ibb) taking into account the sub-grid-distance q [21]. More specifically we215

compute the pre-collision distribution comming into the fluid domain from the boundary216

at the next time step fīj̄k̄(t + ∆t) from the distributions at the same node from the217

previous time step as stated in [31]:218

fijk(t+ ∆t) =
1

1 + q

[
q
(
f ∗ijk(t) + f ∗īj̄k̄(t)

)
+ (1− q)fijk(x)

]
− 6wijk(iuw + jvw + kww)

q + 1
.

(34)

In this wijk denote the lattice weights as given in [21]. The overbar on the indices219

indicates the inverse direction to direction ijk of the particle leaving towards the wall.220

The velocity components uw, vw and ww denote the slip velocities at the wall which221

are to be calculated by the wall model. All distributions are evaluated at the same222

node. The boundary condition can be modified to either use only the pre- or the post-223

collision distributions. Using only the precollision distributions is trivially accomplished224

by applying the collision operator during the evaluation of the boundary condition. Using225

only the post-collision distributions can be accomplished by inverse BGK approximation226

[21]:227

fijk(t) ≈
f ∗ijk(t)− f ∗ijk(t)

2
+
f ∗ijk(t) + f ∗

īj̄k̄
(t)− ω1(f eqijk + f eq

īj̄k̄
)

2− 2ω1

. (35)

Where f eqijk is the usual BGK equilibrium distribution [21]. Note that, given a known228

slip velocity, this boundary condition is entirely local both in space and time.229

The use of the first grid node for the evaluation of the wall model has been argued as230

not optimal [32]. For under-resolved grids, the information fed into the wall function at231

the first grid node is unavoidably affected by numerical errors, thus reducing the accuracy232

of the wall model [32]. Grid converged results showed better accuracy for wall function233

evaluations from the fourth grid node in the direction normal to the wall [32]. However,234

as already addressed in Sec. 1, the use of the first grid node has the advantage of not235
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requiring any interpolation, which makes the implementation straightforward.236

By considering the new relaxation rates introduced in Sec. 3.2 we reduce the numerical237

dissipation, thus improving the accuracy of the results. A comparison of the results238

obtained by the new relaxation rates with those ones obtained by the standard relaxation239

rates (equal to unity) is given in Appendix C.240

5 Results241

The FPSV-WF was validated by conducting numerical simulations of the turbulent chan-242

nel flow test case for different Reynolds numbers, grid resolutions, and different methods243

for computing τw.244

5.1 Computational domain and settings245

The geometry of the test case is shown in Figure 3. The flow is confined between two246

infinite planes, one on the bottom and one on the top. All other faces represent periodic247

boundary conditions. The directions were stream-wise (X), normal (Y), and span-wise248

(Z). The height of the channel was H = 2N with N = 1 m being the half channel height.249

In order to let the turbulence develop in both stream-wise and span-wise directions, the250

length L and the widthW of the channel were set three times the heightH (L = W = 3H)251

[15]. Uniform grids were generated by discretizing the half channel height N with three252

different resolutions: a very coarse one with 10 points, a less coarse one with 20 points, and253

Figure 3: Channel flow between two infinite planes, at the bottom and at the top. All
the other sides are periodic boundary conditions. The height of the channel is H = 2N ,
with N = 1 m. The length and width are L = W = 3H and the flow is driven by an
acceleration ~g.
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grid name L W N H [# points] ∆x [m] ∆t [s]

N10 60 60 10 20 0.1 0.008
N20 120 120 20 40 0.05 0.002
N40 240 240 40 80 0.025 0.0005

Table 1: Summary of the grid information for the turbulent channel flow simulations.

third one with 40 points. Since the LBM computes on grids with cell aspect ratio equal to254

one, the discretization in the other two directions (L and W ) was of the same resolution.255

Table 1 shows the number of points used for the three different meshes. Importantly,256

the choice of such coarse grids was intentional in order to stress the FPSV-WF with an257

under-resolved near-wall region mesh.258

The flow moved inside the channel in the stream-wise direction (X) driven by an259

acceleration ~g. The acceleration ~g was set adaptively in order to have a specific space-260

average velocity in the bulk domain ~ub,0 [33]:261

~g =

(
〈uτ 〉2

N
+

(ub,0 − 〈ub〉)ub,0
N

, 0, 0

)
, (36)

where 〈uτ 〉 is the average of the computed uτ over all the boundary nodes, and 〈ub〉262

the average over all the nodes in the bulk. The specific velocity ~ub,0 = (νRe/H, 0, 0)263

was calculated according to the simulated Reynolds number Re = ub,0H/ν. The Re264

was computed from the frictional Reynolds number Reτ = uτN/ν by using the Dean265

correlation [15]:266

Re =

(
8

0.073

)4/7

Re8/7
τ . (37)

In order to compare the numerical results with the DNS data, two Reτ were chosen267

for which spectral method DNS experiments were available [2]. These were chosen as268

Reτ = 950 and 2 000 and they corresponded to Re = 37 042 and 86 734, respectively.269

The kinematic viscosity ν and the frictional velocity uτ were accessible from experiments270

[2]. In order to validate the FPSV-WF boundary condition with a higher Re, a third271

simulation for Reτ = 16 000 was conducted. The specific space-average velocity ub,0 was272
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Reτ Re ν [m2/s] ×10−5 uτ [m/s] ~ub,0 [m/s] ~ub,0,lb Malb

950 37 042 4.85909 0.04539 (0.9, 0, 0) (0.072, 0, 0) 0.125
2 000 86 734 2.06186 0.04130 (0.9, 0, 0) (0.036, 0, 0) 0.062
16 000 933 877 0.19277 0.03084 (0.9, 0, 0) (0.018, 0, 0) 0.031

Table 2: Summary of the computational set-up for the turbulent channel flow simulations.

chosen equal to the previous two cases, and Re was adjusted by setting ν accordingly.273

All the fluid properties of the three different Reτ are given in Table 2, together with ub,0274

and Mach number (Ma) in lattice units (subscript lb).275

All the simulations were ran with the D3Q27 cumulant LBM solver LBMCumulantFoam276

[22] as under-resolved DNS without any explicit turbulence models. For the coarser grid277

N10, the time-step was ∆tN10 = 0.008 s in order to have the maximum velocity in the278

bulk smaller than 0.1 in lattice units. For the other grids, the time-step was set by279

diffusive scaling of ∆tN10 with respect to the cell size ∆x (∆t ∝ ∆x2). The values of280

the grid spacing ∆x and time-step ∆t for the three grids are shown in Table 1. The281

simulations were allowed to run over several channel passages before the analysis started.282

Data were obtained for the average of 60 channel passages, for a sample of nodes covering283

a line located at the middle of the channel from the bottom plane to the top plane. For284

averaging the channel was mirrored at the middle plane.285

The cases for the two grid resolutions N10 and N20 and the three frictional Reynolds286

numbers (950, 2 000, and 16 000) were simulated with the Musker law FPSV-WF and287

the D2V FPSV-WF. The grid N40 was also simulated for the three frictional Reynolds288

numbers but only with the D2V FPSV-WF.289

5.2 Normalized velocity profiles290

The instantaneous velocity colour plot for the grid N20 for the three different Reynolds291

numbers is shown in Figure 4. The eddy sizes were largest for the lowest Reτ = 950292

decreasing with higher Re (Figures 4a, 4c, and 4e). For the higher Reτ = 16 000 the293

surface close to the top wall showed only few spots of low velocities (Figure 4f), resulting294

in a thinner boundary layer thickness. With lower Reynolds numbers the zones of small295
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(a) Reτ = 950

(b) Reτ = 950

(c) Reτ = 2 000

(d) Reτ = 2 000

(e) Reτ = 16 000

(f) Reτ = 16 000

Figure 4: Instantaneous velocity colour plot in the channel domain for the grid N20 at
different Reτ by using the Musker law FPSV-WF. Slice at the centre of the channel (a,
c, e) and isometric view (b, d, f).

velocities became larger, and therefore the boundary layer thickness was bigger (Figures296

4d and 4b).297

In order to have quantitative results for the velocity field, the normalized velocity298

profiles for all the simulations were measured (Figure 5). The numerical results were299
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(a) Reτ = 950, Musker law (b) Reτ = 950, D2V

(c) Reτ = 2 000, Musker law (d) Reτ = 2 000, D2V

(e) Reτ = 16 000, Musker law (f) Reτ = 16 000, D2V

Figure 5: Normalized velocity profile for the three different grid resolutions N10, N20,
N40, the three different frictional Reynolds numbers Reτ = 950 (a, b), Reτ = 2 000 (c,
d), Reτ = 16 000 (e, f), and the two different FPSV-WF methods, Musker law (a, c, e)
and D2V (b, d, f).

compared to the DNS data [2] for the first two frictional Reynolds numbers Reτ = 950300

and 2 000, while for the higher Reτ = 16 000 the Musker law was used as reference.301

The Musker law FPSV-WF showed reasonable results for all the Reynolds numbers302

and grid resolutions. Interestingly, the first point of the profile agreed well with the DNS303

data independently on the grid size (Figures 5a, 5c, and 5e). The rest of the profiles for304

the grid N20 was closer to the reference than for the coarser grid N10, thus showing a305

certain grid convergence of the results. Moreover, the grid N10 showed an evident kink306
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at the second grid point while for the grid N20 this kink was smaller.307

The D2V FPSV-WF showed larger discrepancies in the velocity profiles (Figures 5b,308

5d, and 5f). With the very coarse mesh N10 the wall function overestimated the wall309

shear stress τw and consequently uτ for all the Reynolds numbers, and the velocities were310

lower than in the DNS data. By increasing the resolution with the grid N20, the velocity311

profiles for the Reτ = 950 and 2 000 had a reasonable agreement with the DNS data,312

while for the higher Reτ = 16 000 the velocities were lower. With the grid N40, the313

velocity profiles for the Reτ = 2 000 and 16 000 had a better agreement with the DNS314

data than the grid N20, while for the lower Reτ = 950 this was not the case.315

The deviation from the Musker law and its improvement for higher resolution is shown316

in Figure 6. In general, the trend is close to second order for the D2V approach except317

for the highest resolution and the lowest Reynolds number. In that case the y+ of the318

first grid point is very close to the value of the intersection between the linear and the319

logarithmic profile of the “law of the wall” (y+ ≈ 11). This region is the zone where the320

transition from laminar to turbulent flow happens, which is a phenomenon very difficult321

to model.322

Note that a wall function is, in general, applicable only if the first grid point is323

sufficiently far away from the wall (outer layer, y+ ≈ 30). However, with under-resolved324

grids (y+ > 30) the information extracted from the first grid node necessary for applying325

the wall function presents errors (from the bulk), reducing the efficiency of the model326

(a) Musker law (b) D2V

Figure 6: Deviation of the normalized velocity from the Musker law in the L2-norm for
the two methods and different resolution.
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[32].327

The grid resolutions that we used in this work, especially the very coarse one, are328

purely academic and can not be used for solving complex engineering cases. For giving329

an example, a generic car driving in a free-stream flow has Re ≈ 8 000 000 (with velocity330

39 m/s and reference length 3 m). By using the resolutions ∆x = 0.1, 0.05, 0.025 m331

we would have y+ ≈ 510, 360, 250, respectively. These values of y+ are too high for332

obtaining proper results from the wall model, being the information from the outer layer333

affected with errors. In order to apply properly the wall function for the car given in334

the example, we should provide y+ ≈ 30, which corresponds to a grid resolution of ca.335

∆x = 0.0004 m.336

5.3 Normalized Reynolds shear and normal stresses337

The normalized Reynolds shear stress u′v′+ was computed as the product of the fluctu-338

ating parts of the velocity field in the stream-wise and normal directions:339

u′v′+ = uv+ − ū+v̄+, (38)

340

uv+ =
1

nt

te∑
t=ts

uv

u2
τ

, ū+ =
1

nt

te∑
t=ts

u

uτ
, v̄+ =

1

nt

te∑
t=ts

v

uτ
, (39)

where ts and te were the initial and final averaging time-steps, respectively, and nt was341

the total number of time-steps used for the averaging process. Other stress components342

for (e.g. vv+ are obtained by exchanging the variables in Eq. (38) and (39). Figure 7343

shows the Reynolds shear stress profiles for all the simulations.344

The Musker law FPSV-WF showed reasonable agreement for Reτ = 950 and 2 000 for345

both grids. For the grid N10, the kink in the velocity profile at the second grid point was346

also visible in the Reynolds shear stress, having a larger value than in the DNS data. This347

affected all the rest of the profile, producing a larger slope of the curve than in the DNS348

data. The grid N20 shows a wide bump in the profile close to the wall for Reτ = 2000.349

The D2V FPSV-WF shows large discrepancies in the profiles for Reτ = 950 and 2 000.350

The coarser grid N10 over predicted τw and uτ , and the normalized Reynolds shear stress351
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profiles displays smaller values and lower slopes than in the DNS data. With the grid N20352

the situation improved, τw and uτ decreased and the normalized Reynolds shear stress353

were closer to the reference, especially in the bulk of the domain. For the grid N40, the354

normalized Reynolds shear stress profiles for Reτ = 2 000 and 16 000 were similar to those355

ones of grid N20. For Reτ = 950, the profile was similar to that one of grid N20 close to356

the wall and to that one of grid N10 at the centre of the channel.357

(a) Reτ = 950, Musker law (b) Reτ = 950, D2V

(c) Reτ = 2 000, Musker law (d) Reτ = 2 000, D2V

(e) Reτ = 16 000, Musker law (f) Reτ = 16 000, D2V

Figure 7: Reynolds shear stress for the three different grid resolutions N10, N20, N40,
the three different frictional Reynolds numbers Reτ = 950 (a, b), Reτ = 2 000 (c, d),
Reτ = 16 000 (e, f), and the two different FPSV-WF methods, Musker law (a, c, e) and
D2V (b, d, f).
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For the higher Reτ = 16 000, no reference data were available for comparison. Never-358

theless, their trends were in accordance with the profiles at lower Reynolds numbers for359

both the FPSV-WFs.360

Figure 8 shows the Reynolds shear stress components u′u′, v′v′ and w′w′ obtained by361

the two methods for Reτ = 2000 compared to the DNS data from [34]. Here the D2V362

method gives results closer to the reference than the Musker law method. No improvement363

of the deviation from the reference is observed for higher resolution in the case of u′u′364

and v′v′, especially for the Musker law.365

(a) Reτ = 2 000, N10 (b) Reτ = 2 000, N20

(c) Reτ = 2 000, N10 (d) Reτ = 2 000, N20

(e) Reτ = 2 000, N10 (f) Reτ = 2 000, N20

Figure 8: Wall-normal Reynolds shear stress for Reτ = 2 000 and two different resolutions
compared to the DNS data from [34].
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6 Conclusion and outlook366

The FPSV-WF has been tested with turbulent channel flow simulations at different367

Reynolds numbers with very coarse grids. It is important to remark that under-resolved368

DNS (and also LES) will surely introduce numerical errors, and thus the wall function369

will not work as expected (over or under predictions) [32].370

The Musker law FPSV-WF over predicted the normalized velocity and Reynolds shear371

stress profiles in the channel for all the Reynolds numbers tested (Figures 5a, 5c, 5e, 7a,372

7c, and 7e). The reason could be due to the large kink at the second grid point, leading373

to the over estimation of the rest of the profile. While the velocity of the first grid point374

was enforced by the wall function, this does not hold for the second grid point. Therefore,375

the velocity at the second grid point depended on the grid resolution while at the first376

one it did not. The coarser grid N10 had a larger kink at the second grid node than377

the grid N20. The first grid point was also the boundary node where the wall function378

computed the wall shear stress applying the slip velocity. Therefore, the wall function379

did not depend on the grid resolution and both grids N10 and N20 gave results in a380

reasonable agreement with the DNS data. Because of the results for the grids N10 and381

N20 were already satisfactory, we did not perform simulations for the grid N40 with this382

method.383

The D2V FPSV-WF showed discrepancies in all the profiles (Figures 5b, 5d, 5f, 7b, 7d,384

and 7f). The reason could be due to the method chosen for solving the second derivative385

of the velocity of Eq. (18) for obtaining the wall shear stress τw. The method computed a386

finite difference between the fluid node and the position of the wall. While this approach387

gave correct results of τw for the Poiseuille flow at low Reynolds number, it was strongly388

dependent on the grid resolution for turbulent flows at high Reynolds number. Especially389

for the coarser grid N10, τw was over estimated, leading to a lower slip velocity at the wall390

and to a lower position of the first grid point in the profiles in comparison to the reference391

data. By increasing the resolution with the grid N20, the error of the computed τw was392

lower, and all the profiles were in reasonable agreement with the DNS data, especially for393
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the two lower Reτ = 950 and 2 000. For the higher Reτ = 16 000 the error was still high.394

This was expected with respect to [32]. With under-resolved grids the information fed to395

the wall function from the first grid node presented errors which reduced the efficiency396

of the model. The finer grid N40 showed mixed results. For the lower Reτ = 950 the397

results were worse than for the grid N20, while for the other two Reynolds numbers were398

better. The reason can be that, for Reτ = 950, the y+ of the first grid point was very399

close to the value of the intersection between the linear and the logarithmic profile of the400

“law of the wall” (y+ ≈ 11). This region is the zone where the transition from laminar401

to turbulent flow happens, which is a phenomenon very difficult to model. Nevertheless,402

the method proposed in Eq. (18) had the advantage to use information from cumulants,403

which was available directly at the boundary nodes.404

The current work addressed an equilibrium turbulent boundary layer for a flat wall.405

Adverse pressure gradients where not considered.406

Further work could be aimed at addressing the computation of the second derivative of407

the velocity by a more accurate method, e.g. by implementing Gauss-Legendre integration408

[19] or approximation methods [16]. For its application on curved geometries such as409

spheres or cars, the second derivative in wall normal direction of the velocity tangential410

to the wall can not be calculated with the cumulants of the D3Q27 lattice. The reason411

is that the cumulants of third order C300, C030, and C003 are missing. A new lattice that412

supports all ten third order cumulants definition can be used, e.g. the Body Centered413

Cubic (BCC) lattice [35] or the D3Q33 lattice.414
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A Asymptotic analysis up to third order417

Eq. (13) was derived after performing a combination of Taylor expansion [36] and asymp-418

totic analysis [37] of equation Eq. (10) up to the third order in diffusive scaling [21], after419
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rewriting it as [21]:420

fijkxyz(t+∆t) = f ∗ijk(x−ic∆t)(y−jc∆t)(z−kc∆t)t. (40)

The LHS of Eq. (40) can be Taylor expanded in time, the RHS can be Taylor expanded421

in space:422

∞∑
o=0

∆to

o!
∂tofijkxyzt =

∞∑
m,n,l=0

(imjnkl)(−c∆t)m+n+l

m!n!l!
∂xmynzlf

∗
ijkxyzt. (41)

By inserting the moments mαβγ =
∑

ijk i
αjβkγfijk, it is possible to write:423

∞∑
o=0

∆to

o!
∂tomαβγ =

∞∑
m,n,l=0

(−c∆t)m+n+l

m!n!l!
∂xmynzlm

∗
(α+m)(β+n)(γ+l). (42)

The expansion in moments can be used also with the cumulant collision operator since424

cumulants can be transformed into moments. Time and space variables are substituted425

by dimensionless ones by adopting diffusive scaling: ∆t ∝ ε2 and ∆x ∝ ε, with c∆t = ∆x.426

The term ε is the scaling parameter. Eq. (42) becomes:427

∞∑
o=0

ε2o

o!
∂tomαβγ =

∞∑
m,n,l=0

(−ε)m+n+l

m!n!l!
∂xmynzlm

∗
(α+m)(β+n)(γ+l). (43)

The moments are expanded asymptotically in ε:428

mαβγ =
∞∑
q=0

εqm
(q)
αβγ, m∗αβγ =

∞∑
q=0

εqm
∗(q)
αβγ, (44)

and Eq. (43) becomes:429

∞∑
o=0

ε2o

o!
∂to

∞∑
q=0

εqm
(q)
αβγ =

∞∑
m,n,l=0

(−ε)m+n+l

m!n!l!
∂xmynzl

∞∑
q=0

εqm
∗(q)
(α+m)(β+n)(γ+l). (45)

Since the derivation is done for the D3Q27 lattice, only 27 moments are independent.430

The higher order moments are considered by aliasing condition:431

m300 = m100, m400 = m200, m500 = m100, m310 = m110 (46)
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and so on. The moments are collision invariant at order zero ε0 and first order ε1 (no432

proof) [21]:433

m
(0)
αβγ = m

∗(0)
αβγ, m

(1)
αβγ = m

∗(1)
αβγ = m

eq(1)
αβγ . (47)

The relationship between the third order cumulants and the second derivative of the434

velocity is obtained at third order ε3. For obtaining the second derivative in Y of the435

velocity in X (∂yyu), it is possible to write (α = 1, β = 2, and γ = 0):436

m
(3)
120 + ∂tm

(1)
120 = m

∗(3)
120 − ∂xm

∗(2)
220 − ∂ym

∗(2)
110 − ∂zm

∗(2)
121 (48)

+1/2(∂xxm
∗(1)
120 + ∂yym

∗(1)
120 + ∂zzm

∗(1)
122 ) (49)

+∂xym
∗(1)
210 + ∂xzm

∗(1)
221 + ∂yzm

∗(1)
111 . (50)

Due to Eq. (47), the moments of first order ε1 can be written as (θ = 1/3 is the dimen-437

sionless speed of sound squared):438

m
∗(1)
120 = θm

(1)
100 = 1/3ρ(0)u(1), (51)

439

m
∗(1)
122 = θ2m

(1)
100 = 1/9ρ(0)u(1), (52)

440

m
∗(1)
210 = θm

(1)
010 = 1/3ρ(0)v(1), (53)

441

m
∗(1)
221 = θ2m

(1)
001 = 1/9ρ(0)w(1). (54)

442

m
∗(1)
111 = 0, (55)

The moment of second order m
∗(2)
110 can be written as:443

m
∗(2)
110 = (1− ω1)m

(2)
110 + ω1m

eq(2)
110 , (56)

with m
(2)
110 [21]:444

m
(2)
110 = m

∗(2)
110 − (∂xm

eq(1)
210 + ∂ym

eq(1)
120 + ∂zm

eq(1)
111 ). (57)
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The following terms are introduced:445

m
eq(2)
110 = ρ(0)u(1)v(1), (58)

m
eq(1)
210 = θρ(0)v(1) = 1/3ρ(0)v(1), (59)

m
eq(1)
120 = θρ(0)u(1) = 1/3ρ(0)u(1), (60)

m
eq(1)
111 = 0. (61)

By inserting Eqs. (57) and (61) into Eq. (56), it is possible to write:446

m
∗(2)
110 =

(1− ω1)

ω1

(−∂x1/3ρ(0)v(1) − ∂y1/3ρ(0)u(1)) + ρ(0)u(1)v(1). (62)

The moment of second order m
∗(2)
220 can be written as:447

m
∗(2)
220 = θρ(0)m

∗(2)
200 + θρ(0)m

∗(2)
020 − θ2ρ(2), (63)

where:448

m
∗(2)
200 = (1− ω1)m

(2)
200 + ω1m

eq(2)
200 , (64)

m
∗(2)
020 = (1− ω1)m

(2)
020 + ω1m

eq(2)
020 , (65)

and [21]:449

m
(2)
200 = m

∗(2)
200 − (∂xm

eq(1)
100 + ∂ym

eq(1)
210 + ∂zm

eq(1)
201 ), (66)

m
(2)
020 = m

∗(2)
020 − (∂xm

eq(1)
120 + ∂ym

eq(1)
010 + ∂zm

eq(1)
021 ), (67)

The following terms are introduced:450

m
eq(2)
200 = θρ(2) + u(1)2ρ(0), (68)

m
eq(2)
020 = θρ(2) + v(1)2ρ(0), (69)

m
eq(1)
100 = ρ(0)u(1), (70)
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m
eq(1)
201 = m

eq(1)
021 = θρ(0)w(1) = 1/3ρ(0)w(1), (71)

m
eq(1)
010 = ρ(0)v(1). (72)

By inserting Eqs. (72) into Eqs. (67), and Eqs. (67) into Eq. (A), it is possible to write:451

m
∗(2)
200 = θρ(2) + u(1)2ρ(0) − (1−ω1)

ω1
(∂xρ

(0)u(1) + ∂y1/3ρ(0)v(1) + ∂z1/3ρ(0)w(1)), (73)

m
∗(2)
020 = θρ(2) + v(1)2ρ(0) − (1−ω1)

ω1
(∂x1/3ρ(0)u(1) + ∂yρ

(0)v(1) + ∂z1/3ρ(0)w(1)). (74)

By inserting Eqs. (74) into Eq. (63), the moment m
∗(2)
220 becomes:452

m
∗(2)
220 = 1/3

(
1/3ρ(2) + u(1)2ρ(0) − (1−ω1)

ω1
(∂xρ

(0)u(1) + ∂y1/3ρ(0)v(1) + ∂z1/3ρ(0)w(1))
)

(75)

+1/3

(
1/3ρ(2) + v(1)2ρ(0) − (1−ω1)

ω1
(∂x1/3ρ(0)u(1) + ∂yρ

(0)v(1) + ∂z1/3ρ(0)w(1))
)

(76)

−1/9ρ(2). (77)

The moment of second order m
∗(2)
211 can be written as:453

m
∗(2)
121 = θm

∗(2)
101 . (78)

The moment m
∗(2)
101 can be derived similarly to the moment m

∗(2)
110 in Eqs. (56)–(62). It454

reads:455

m
∗(2)
101 =

(1− ω1)

ω1

(−∂x1/3ρ(0)w(1) − ∂z1/3ρ(0)u(1)) + ω1ρ
(0)u(1)w(1). (79)

The last step is to insert the Navier-Stokes momentum equation into the term ∂tm
(1)
120:456

∂tm
(1)
120 = ∂tθm

(1)
100 = ∂t1/3ρ(0)u(1). (80)

The Navier-Stokes momentum equation for the X-component reads:457

∂tu
(1) = −∂xu(1)2 − ∂yu(1)v(1) − ∂zu(1)w(1) − 1

ρ(0)
∂xp (81)

+1
3

(
1
ω1
− 1

2

) [
∂xxu

(1) + ∂yyu
(1) + ∂zzu

(1)
]

+ gx. (82)
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Finally it is possible to rewrite Eq. (50) as:458

m
∗(3)
120 −m

(3)
120 = 1/3ρ(0)∂tu

(1) + ∂xm
∗(2)
220 + ∂ym

∗(2)
110 + ∂zm

∗(2)
121 (83)

−1/2(∂xxm
∗(1)
120 + ∂yym

∗(1)
120 + ∂zzm

∗(1)
122 ) (84)

−∂xym∗(1)
210 − ∂xym

∗(1)
221 − ∂yzm

∗(1)
111 . (85)

The last step is to insert Eqs. (82), (79), (77), (62), (55), (54), (53), (52), and (51) into459

Eq. (85). By changing the moments with the cumulants, it is possible to obtain the460

relationship of Eq. (13):461

C∗120 − C120 = −2

9
ρ

(
1

ω1

− 1

2

)
[2∂xyv + ∂yyu] + 1/3ρgx +O(∆x2). (86)

B Relaxation rates for the third order cumulants with limiter coefficient462

The standard set of the relaxation rates for the third order cumulant is to put ω3 = ω4 =463

ω5 = 1. The collision reduces to C∗α+β+γ=3 = Ceq
α+β+γ=3 = 0, i.e, the cumulants returns464

to equilibrium at every time step and the memory of the collision is erased. For this465

reason, the standard set shows superior stability properties, especially at high Re (low466

viscosities). However, discarding completely the memory of the collision we increase the467

leading error (numerical dissipation).468

In order to reduce this error, a new set of relaxation rates has been introduced [22].469

As shown in Eq. (29), they are related to the kinematic viscosity through the parameter470

ω1. For high Re (low viscosities), ω1 → 2 and thus ω3 → 0, ω4 → 0, ω5 → 0, and471

C∗α+β+γ=3 → Cα+β+γ=3. This means that the third order cumulants return very slowly472

to equilibrium, and they largely keep the memory of the collision. Hence for very low473

viscosities (high Re), in addition to a poor grid resolution, the simulation might become474

unstable.475

For this reason we propose a limiter for the third order cumulants. The limiter avoids476

the third order cumulants growing excessively without affecting the reduced numerical477
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dissipation. The idea is similar to the clipping method also used in some turbulence478

models [38] in order to limit the growth of certain variables which may otherwise increase479

indefinitely. Unlike in a classical clipping method our restriction is smooth. The bounded480

version of the new relaxation rates with limiter coefficient clim becomes [22]:481

ωlim3a = ω3 +
(1− ω3)|C120 + C102|
|C120 + C102|+ clim

ρ

, ωlim3b = ω3 + (1−ω3)|C210+C012|
|C210+C012|+

clim
ρ

,

ωlim3c = ω3 + (1−ω3)|C201+C021|
|C201+C021|+

clim
ρ

, (87)

482

ωlim4a = ω4 +
(1− ω4)|C120 − C102|
|C120 − C102|+ clim

ρ

, ωlim4b = ω4 + (1−ω4)|C210−C012|
|C210−C012|+

clim
ρ

,

ωlim4c = ω4 + (1−ω4)|C201−C021|
|C201−C021|+

clim
ρ

, (88)

483

ωlim5 = ω5 +
(1− ω5)|C111|
|C111|+ clim

ρ

, (89)

where lim stands for bounded version with limiter coefficient. The collision of the third484

order cumulants becomes:485

C∗120 + C∗102 = (1− ωlim3a )(C120 + C102), (90)

486

C∗210 + C∗012 = (1− ωlim3b )(C210 + C012), (91)
487

C∗201 + C∗021 = (1− ωlim3c )(C201 + C021), (92)
488

C∗120 − C∗102 = (1− ωlim4a )(C120 − C102), (93)
489

C∗210 − C∗012 = (1− ωlim4b )(C210 − C012), (94)
490

C∗201 − C∗021 = (1− ωlim4c )(C201 − C021), (95)
491

C∗111 = (1− ωlim5 )C111. (96)

The limiter coefficient acts as follows:492

• ωlim(·) → 1 for ρ|C(·)| � clim, it restores the values of the rates to one (standard493
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value),494

• ωlim(·) → ω(·) for ρ|C(·)| � clim, it sets the values of the rates to those ones calculated495

by Eq. (29).496

For smooth solution the third order cumulants C(·) do not deviate far from zero and the497

cumulant LBM uses the optimized relaxation rates. However, the third order cumulants498

may become large when the solution starts to oscillate, leading to unstable solutions. In499

this case, the clim acts to set the relaxation rates to the stable values (equal to one).500

Table 3 reports the settings for the limiter coefficient clim for each simulation con-501

figuration. The parameters were selected manually close to the stability limit of the502

individual cases. The symbol (-) means a simulation with relaxation rates as in Eq. (29)503

without limiter coefficient. Interestingly, with only 20 grid nodes in the half channel eight504

(N20), the simulation at Reτ = 950 was performed without limiter coefficient. For the505

other simulations the value of clim was manually increased until a stable solution was506

obtained. Previous test have shown that the accuracy of the solution is only a weak507

function of clim such that its actual value was not very important. In the future, a more508

rigorous way of determing clim is desirable.509

C Relaxation rates comparison510

We compared simulation results based on the new set of the relaxation rates for the third511

order cumulants with the standard set equal to unity (ω3 = ω4 = ω5 = 1). The very512

coarse grid N10 together with the Musker law method for the FPSV-WF and the lower513

frictional Reynolds number Reτ = 950 was used. Due to the coarse resolution of the514

Reτ N10 N20 N40

950 0.45 - -
2 000 0.3 2.25 -
16 000 0.25 1 1

Table 3: Summary of the limiter coefficient clim for the turbulent channel flow simulations.
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mesh, the simulation with the new set of the rates needed a limiter coefficient clim = 0.45515

in order to obtain a stable solution, as reported in Table 3.516

The instantaneous velocity colour plot on a slice at the centre of the channel showed517

large differences in the eddies size and turbulence intensity for the two sets of the relax-518

ation parameters (Figure 9). With the standard set (ω3 = ω4 = ω5 = 1), the boundary519

layer did not become turbulent (Figure 9a). The new set produced an highly turbulent520

flows even with a very coarse grid (Figure 9b). The flow field in the bulk was greatly521

different, being smoother for the standard set and more turbulent for the new one.522

The above results were confirmed by plotting the normalized velocity profiles and the523

normalized Reynold shear stress profiles in the direction normal to the planes (Figure524

10). The standard set of the relaxation rates showed a lower y+ at the first grid point525

and a higher velocity profile in comparison to the DNS data (∗ points in Figure 10a).526

The new set showed a reasonable agreement with the DNS results (+ points in Figure527

10a). The same observations held for the Reynold shear stress profiles. While the new528

set showed a good agreement with the DNS data (+ points in Figure 10b), the standard529

set gave considerably lower stresses close to wall (∗ points in Figure 10b), thus confirming530

the lower turbulence intensity of this set of relaxation parameters.531

(a) Standard relaxation rates (b) New relaxation rates

Figure 9: Instantaneous velocity colour plot on a slice at the centre of the channel for the
coarser resolution grid (N10) at Reτ = 950. Simulations were conducted with the Musker
law FPSV-WF by using the relaxation rates equal to one (a) and new set of relaxation
rates (b).
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(a) Normalized velocity profile (b) Reynolds shear stress

Figure 10: Normalized velocity profile (a) and Reynolds shear stress (b) for the coarser
resolution grid (N10) at Reτ = 950. Simulations were conducted with the Musker law
FPSV-WF by using the new set of the relaxation rates (NEW RATES) and the standard
set equal to unity (RATES 1).
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