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Abstract

Multiple numerical approaches have been developed to simulate porous media
fluid flow and solute transport at the pore scale. These include methods that 1)
explicitly model the three-dimensional geometry of pore spaces and 2) those that
conceptualize the pore space as a topologically consistent set of stylized pore
bodies and pore throats. In previous work we validated a model of class 1, based
on direct numerical simulation using computational fluid dynamics (CFD) codes,
against magnetic resonance velocimetry (MRV) measurements of pore-scale ve-
locities. Here we expand that validation to include additional models of class 1
based on the immersed-boundary methd (IMB), lattice Boltzmann method (LBM),
smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-
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network model or PNM). The PNM approach used in the current study was re-
cently improved and demonstrated to accurately simulate solute transport in a
two-dimensional experiment. While the PNM approach is computationally much
less demanding than direct numerical simulation methods, the effect of conceptu-
alizing complex three-dimensional pore geometries on solute transport in the man-
ner of PNMs has not been fully determined. We apply all four approaches (CFD,
LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreac-
tive solute transport, and intercompare the model results with previously reported
experimental observations. Experimental observations are limited to measured
pore-scale velocities, so solute transport comparisons are made only among the
various models. Comparisons are drawn both in terms of macroscopic variables
(e.g., permeability, solute breakthrough curves) and microscopic variables (e.g.,
local velocities and concentrations).

Keywords: Pore-scale modeling, porous media flow, validation, computational
fluid dynamics, lattice Boltzmann method, pore-network method,
immersed-boundary method

1. Introduction

Flow and transport processes in porous media have been intensively studied
over decades because of their importance in many industrial, biological, and en-
vironmental applications [6]. Pore space geometry and topology are key factors
that influence flow and transport phenomena through porous media, but the com-
plexity of natural pore geometries renders it challenging to both measure and sim-
ulate pore-scale flow and transport processes. So mathematical models are often
developed and applied under different conditions [7]. Because of the availabil-
ity of increasingly more powerful computional resources, pore-scale modeling
has become an important tool for studying complex flow and transport processes
and relating them to macroscopic phenomena, and are complemented by sim-
plified representations of porous media, such as regular or random sphere packs
[8, 9, 10, 11, 12, 13] and physical micromodels [14].

Various computational methods have been developed and applied at pore scale
to study flow and transport phenomena [15, 16, 17]. Considering the complexity
of the pore geometries, the first step prior to modeling is to characterize the pore
space and structures. Imaging techniques such as X-ray microtomography (XMT)
[18] and magnetic resonance velocimetry (MRV) measurements [19, 20, 21, 22,
23] have made it possible to obtain accurate 3D characterizations of the pore ge-
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ometry at high resolution. Pore-scale modeling can then proceed either by simu-
lating directly on the complex pore geometry, or on a conceptualized pore network
that maintains the same topological structure. The first type of model is typically
referred to as direct numerical simulation (DNS). DNS approaches include com-
putational fluid dynamics (CFD) [24], Lattice-Boltzmann method (LBM) [25],
and smoothed particle hydrodynamics (SPH) [26]. The second type of model rep-
resents the pore space as a network connected by stylized pore bodies and pore
throats, and most commonly takes the form of pore-network models (PNM) [27].
Both flow and transport processes can be represented using either of these ap-
proaches.

Computational fluid dynamics (CFD) techniques use various numerical dis-
cretization methods (e.g. finite volume method, finite difference method, etc)
to solve the governing partial differential equations (PDEs, e.g. Navier-Stokes
equations for incompressible flow). Their use in pore-scale modeling requires
generation of a structured or unstructured numerical mesh describing the pore
geometry. Smolarkiewicz & Winter [2] applied an implicit immersed-boundary
method (IMB) to conduct a series of numerical simulations of the flow through
randomly generated media of different porosities. Recently, Yang et al. [1] used fi-
nite volume method (FVM) based CFD techniques to solve the Navier-Stokes flow
equations on a micro-sized beads pack and successfully compared the pore-scale
flow field with magnetic resonance velocimetry (MRV) measurements. These and
many other CFD-based pore-scale simulation studies have demonstrated the po-
tential utility of numerical simulations and provided preliminary verification of
their equivalence to experimental observations.

The lattice-Boltzmann method (LBM) is a particle-based, modern numerical
approach and very well suited for solving the flow since its strength lies however
in the ability to easily represent complex physical phenomena in irregular geome-
tries. It has been successfully used in the study of flow in porous media at the pore
scale [29]. Pan et al. [30] quantitatively evaluate the capability and accuracy of the
LBM for modeling flow through porous media. Three-dimensional flow through a
body-centered cubic (BCC) array of spheres and a random-sized sphere-pack were
both examined in their study. Their results demonstrate that the Multi-Relaxation-
Time (MRT)LBM model is superior to the BhatnagarGrossKrook (BGK)LBM
model, and that interpolation significantly improves the accuracy of the fluid-
solid boundary conditions. Recently, Khirevich et al. [31] introduced the two-
relaxation-times (TRT)-LBM model and thoroughly studied its impact on the ac-
curacy of the drag force/permeability computations with the D3Q19 velocity set
in both regular and random packings of monodispersed spheres or cubics.
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The Smoothed Particle Hydrodynamics (SPH) method, is a mesh-free La-
grangian particle method first proposed for astrophysical problems by Lucy [32]
and Gingold and Monaghan [33] and now widely applied. A key advantage of
particle methods such as SPH is in their ability to advect mass with each particle,
thus removing the need to explicitly track phase interfaces for problems involving
multiple fluid phases or free surface flows. The computational price for managing
free particles has been improved by the development of new parallel hardware ar-
chitectures. In contrast to the LBM, SPH directly solves discretized forms of the
PDEs, just as do the CFD techniques. Tartakovsky et al. [4] compared their SPH
solution of the diffusion equation with fixed and moving reactive solidfluid bound-
aries to analytical solutions and LBM simulations. Coupled three-dimensional
flow, reactive transport and precipitation in a fracture aperture with a complex
geometry were also successfully simulated.

The fourth major pore-scale modeling approach - pore-network method (PNM)
- simulates the pore geometry by conceptually interconnecting fundamental units
such as pore throats and pore bodies. This method retains the complete topology
of a real pore geometry, but does not represent the actual details of the pore struc-
tures as required by the other methods. Because the solution of PDEs for the pore
network model reduces to simultaneous solution of a set of analytical solutions
for flow in each network element, the pore network method is less computation-
ally demanding than the other approaches, and has been successfully applied to
a broad range of problem types (e.g., [34, 27]). Mehmani et al. [5] developed
a new streamline splitting method (SSM) to more accurately solve the flow and
transport system at the pore scale. SSM was verified with direct simulations and
validated against micromodel experiments across a wide range of pore-structure
and fluid-flow parameters.

Each pore-scale numerical approach mentioned above has strengths in areas
such as accuracy, flexibility, computational speed, or scalability. Hence there is a
strong benefit in intercomparing these models using benchmark problems. While
each of these four methodologies has been widely applied to simulate pore-scale
fluid flow and other processes, there have been relatively few systematic compar-
isons of these different methodologies for a complex representative of real porous
media. Oostrom et al. [14] conducted a series of nonreactive solute transport ex-
periments in pore-scale micromodels and offered the data to the pore-scale model-
ing community to test their numerical simulators. Five pore-scale models and one
continuum-scale model were used to simulate the experiments in 2D, including
CFD, LBM and PNM. Comparisons between experimental and numerical results
for the four challenge experiments show that all pore-scale models were all able

4



to satisfactorily simulate the experiments. However, comparable studies based on
three-dimensional porous geometries have not yet been performed.

Recently, researchers at Montana State University used high-resolution mag-
netic resonance velocimetry (MRV) to generate three-dimensional images of fluid
flow through a randomized bead pack at pore-scale resolution (40 micrometers).
The bead pack used for MRV measurements was constructed of 6864 monodis-
persed polystyrene beads (Duke Scientific, Inc.) with a diameter of 500µm. The
MRV results were previously compared with FVM-based CFD models by [1].
The results compared very well spatially, which inspired the extension of these
validation studies to include a variety of pore-scale simulation methods, lead-
ing to the research reported here. In the current benchmark study, six compu-
tational codes embodying the four major pore-scale numerical approaches intro-
duced above (CFD, LBM, SPH and PNM) ) have been applied to the same bead
pack simulation described in [1] . This paper describes and intercompares the
results of flow and solute transport simulations among these four methodologies
and with the experimental MRV observations.

The outline of this paper is as follows: 1) the benchmark problem is intro-
duced, including the pore geometry, flow and solute tracer conditions, and in-
formation on mesh generation methods; 2) the four major pore-scale numerical
approaches are described in greater detail, including three CFD codes (two FVM
and one IMB), one LBM code, one PNM code and one SPH code. Information
includes descriptions of the governing equations, numerical algorithms, boundary
conditions, mesh type and grid resolutions, computing cost and other requirements
of each method; 3) results of the simulations are presented in terms of both flow
field comparisons (velocities, pressure drop, etc.) and solute transport compar-
isons (breakthrough curves and dispersion); and 4) a summary of conclusions is
provided.

2. Benchmark Problem

The benchmark problem describes flow and non-reactive solute transport through
a centimeter-scale column packed with 6864 random monodispersed polystyrene
beads (Figure 1). The diameter of the beads is 500µm, and the porosity of the
beads pack is 0.4267 as measured by the MRV experiments. However, the mod-
eled porosity is mesh-dependent and varies slightly among the various numerical
simulations. The pore geometry used in the various numerical models was spec-
ified directly from the voxel data provided in the MRV geometry dataset. The
centroids (locations of the beads center) were identified from the voxel data using
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an algorithm called Sphere Lociextraction through Iterative Erosion (SLIE, [1]).
The dimensions of the beads pack, the flow conditions and boundary conditions
for the pore-scale simulations were specified to match the experimental conditions
(Table 1). However, for CFD simulations, in order to achieve fully-developed flow
at the inlet and outlet faces, two buffer regions were added to the inlet and outlet
of the beads pack. For the flow conditions, standard properties of water (density
and viscosity) were applied. For the boundary conditions, a fixed volumetric flow
rate of 100ml/hr (2.771× 10−5kg/s) was employed at the inlet, consistent with
experimental conditions. The outlet boundary is defined as a specified pressure
condition. The other surfaces are treated as no-slip boundaries. However, the
specific treatment of boundary conditions varies somewhat among the different
numerical approaches as described in the next section. The darcy flux, average
pore velocity and grain-scale Reynolds number of the experimental system are
listed in Table 1, and demonstrate that the flow is in the laminar regime.

Solute transport was not conducted in the MRV experiments, and thus was
not simulated in previous work reported by [1]. Accordingly, solute transport
simulations performed here can only be compared among the various codes and
methods, not with experimental observations. For the numerical simulations re-
ported here, the solute was assumed to have a molecular diffusion coefficient (Dm)
of 2.08×10−9m/s2, representative of a dilute bromide tracer. The corresponding
Schmidt number (Sc =

µ

ρDm
) is 428.3.

Table 1: Dimensions and parameters of the column
Parameter Symbol (Units) Value

Length of the column Lc(mm) 16.8
Length of the beads pack Lb(mm) 12.8
Diameter of the column D(mm) 8.8
Diameter of the beads dp(mm) 0.5

Porosity ε 0.4267
Volumetric flow rate Q(kg/s) 2.771×10−5

Fluid density ρ(kg/m3) 997.561
Fluid dynamic viscosity ν(pa− s) 8.887×10−4

Darcy flux q(m/s) 4.556×10−4

Pore velocity ve(m/s) 1.068×10−3

Reynolds number Rep 0.6
Molecular diffusion coefficient Dm(m2/s) 2.08×10−9

Schmidt number Sc 428.3
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Figure 1: Computational domain of the benchmark beads-pack problem: pore geometry, dimen-
sion and boundary conditions.

3. Numerical Model Descriptions

In the current study, we intercompare four major pore-scale numerical ap-
proaches that can be divided into two classes: 1) those that explicitly model
the three-dimensional geometry of pore spaces and 2) those that conceptualize
the pore space as a topologically consistent set of stylized pore bodies and pore
throats. Three of the four approaches (CFD, LBM, and SPH) belong to Class 1,
and the fourth (PNM) belongs to Class 2. An overview of the six computational
codes considered, which implement these four model types, is shown in Table 2,
which includes the model names, institution names and numerical methods used
to solve governing equations for both the flow and transport processes.

Computational meshes used to represent the complex pore geometry for the
numerical simulations were generated in two ways (Figure 2): 1) structured (Carte-
sian) mesh, and 2) unstructured body-fitted meshes based on the sphere geometry.
The direct voxel meshing approach simply uses Cartesian-type mesh elements de-
fined in direct correspondence to the cubic voxel elements output images from
the MRV measurement. The images captured using magnetic resonance imaging
(MRI) technique were defined using two different resolutions: 20 µm and 40 µm.
The same mesh resolutions were used directly in the CFD-TETHYS and LBM
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Table 2: Summary of the numerical models
Name of the code Institution Numerical method

TETHYS Pacific Northwest National Laboratory Finite volume
StarCCM+ CD-adapco Finite volume

EULAG University of Arizona Immersed-boundary
UT-PNM University of Texas Pore network

iRMB-LBM Technische Universität Braunschweig Lattice Boltzmann
ISPH Sandia National Laboratories Smoothed Particle Hydrodynamics

simulations. CFD-IMB simulations are less dependent on the grid resolution (the
solid boundaries are simulated by forces). Hence an 80 µm structured mesh was
used. The particle-based SPH simulations used 34 µm and 23 µm as their grid
resolutions respectively. The STAR-CCM+ code was employed to perform CFD
simulations based on an unstructured body-fitted mesh (40 µm as base size) as
described in [1].

3.1. Computational Fluid Dynamics (CFD)
CFD applications to pore-scale simulations are often referred as direct nu-

merical simulations (DNS, class 1) because the governing conservation equations
(mass and momentum) for laminar flow and the passive scalar equation for trans-
port are solved on a fixed mesh that retains the full pore geometry to the limits of
the grid resolution and, for grid-independent solutions, are effectively exact solu-
tions of the Navier-Stokes equations. For the current benchmark problem, three
different computational codes/packages were tested: two use FVM and one uses
IBM.

3.1.1. TETHYS
The Transient Energy Transport Hydrodynamics Simulator (TETHYS) code,

developed at Pacific Northwest National Laboratory, is an applied CFD toolkit
for environmental simulations with the capabilities to simulate hydrodynamics,
solute transport and reactions. TETHYS uses a finite-volume scheme [35] to dis-
cretize the governing equations for conversation of mass, momentum (Navier-
Stokes equations) and transported scalars on an unstructured mesh. Previous re-
search using TETHYS includes laminar flow and scalar transport in a tube with
sinusoidal-wavy wall [36], 3D pore-scale flow in a beads pack[1] and 3D pore-
scale flow and solute transport in a soil column [37].

TETHYS uses the finite volume method (FVM) [38] to discretize the govern-
ing PDEs into a system of algebraic equations that are solved using iterative linear
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Figure 2: Representative mesh used in the pore-scale simulations (sampled at the selected slice
320 located at the center of the beads pack): a) 40 µm-structured (Cartesian) mesh used in CFD-
TETHYS and LBM; b) unstructured body-fitted mesh used in STAR-CCM+; c) and d) are zoomed-
in mesh samples from the same location on slice 320.
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algebra methods. A segregated solution scheme based on the SIMPLE algorithm
[35] is used to solve the flow field [36]. Second-order convection schemes are
available for the transport of both momentum and scalars. These are implemented
for unstructured meshes using the methods of [39]. In this work, central differ-
encing was used for momentum, and MUSCL for scalar transport. An implicit
first-order scheme is used for transport time marching.

Unstructured rectilinear meshes with two resolutions (20 µm, 72.1M cells,
and 40 µm, 9.1M cells) were used in TETHYS simulations (Figure 2a,c). For
both meshes, a steady hydrodynamic solution was obtained first, then used as a
constant flow field for the transport simulation. For hydrodynamics, the bound-
ary conditions used in the TETHYS simulation followed the experimental setup.
A constant mass flow rate was imposed at the inlet and a constant pressure was
imposed at the outlet. All solid walls were treated as no-slip wall boundaries.
The initial conditions were zero velocity and constant pressure. For the trans-
port simulation, the passive scalar value was initially zero everywhere. The inlet
concentration was set equal to 1.0 for 2.798 seconds then 0.0 for the rest of the
simulation period (50 seconds).

The transport simulations were performed on the Cascade cluster at the Envi-
ronmental Molecular Sciences Laboratory (EMSL). The transport simulation on
the 40 µm mesh used 480 cores for approximately 7 hours. For the 20 µm mesh,
the simulation used 1600 cores and took approximately 12 hours.

TETHYS was also used to compute a macroscopic effective axial dispersion
coefficient directly using the method of volume averaging (MVA) [40, 41, 42].
Richmond et al. [36] provides a full description of the implementation of MVA in
TETHYS and a simple application as validation. To use MVA, the domain of in-
terest must have a periodic boundary in the axial direction. Only the 40 µm mesh
was used. The inlet and outlet boundaries were changed to periodic boundaries
with the same pressure drop that was produced in the original hydrodynamic sim-
ulation. The original hydrodynamic solution was used as initial conditions. After
convergence, the resulting flux was the same as specified in the CFD simulation.
The MVA calculations converged very slowly for the Peclet number correspond-
ing to the simulated case, and thus were very computationally expensive. The
calculation was performed on PNNL’s Institutional Computing clusters (Olympus
and Constance) using 480 cores and took approximately 5 days to complete.

3.1.2. STAR-CCM+
The commercial software STAR-CCM+ (CD-adapco, Melville, NY, USA)

was used to simulate pore-scale flow and transport in the beads pack. Previous
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research [1, 14] has demonstrated the advantages and accuracy of using STAR-
CCM+ for pore-scale modeling in complex pore geometries. Employing a user-
defined automatic sphere generation script implemented in STAR-CCM+, a CAD
geometry description of the beads pack was constructed. Then during the em-
bedded mesh generation procedure, the surfaces of the spheres and the pore space
were smoothly meshed by polyhedral cells and prism layers (Figure 2b). 7 million
polyhedral cells were generated by this approach, which was previously demon-
strated to be sufficient based on mesh-independence studies reproted in [1].

Three-dimensional Navier-Stokes equations describing incompressible fluid
flow and a passive scalar transport equation at the pore scale are discretized using
standard FVM techniques [38] and an algebraic multigrid linear solver. The nu-
merical algorithms include a second-order upwind scheme for convection and dif-
fusion terms, an implicit first-order scheme for time marching and second-order
central differencing scheme for the unsteady term. The iterative SIMPLE algo-
rithm is also used to couple the velocity and pressure fields. The convergence
criteria is set to be 10−6 for continuity.

The boundary conditions, initial conditions and flow/solute transport condi-
tions are the sames as those in TETHYS. The simulations were run in parallel
on a DELL workstation T7500 (Intel(R) Xeon(R) CPU, 2.53GHz, 4 processors).
The flow field solution was found to converge in about 3000 iterations requiring
15 hours. Upon convergence the flow field was fixed during the solute transport
simulation. The time step was 0.01 seconds for the transient passive scalar simu-
lation with 100 inner iterations. The total simulation time was 50 seconds, which
required 45 hours of total computing time.

3.1.3. EULAG
Pore-scale simulation requires two key ingredients: a method for prescribing

pore space; and a method for representing relevant elements of fluid dynamics.
The latter method is technically simple, and advantageous when multiple real-
izations of a pore spaces are required. EULAG is a multi-scale computational
fluid model developed by NCAR, see [43] for a recent review, that has been
adapted to simulate flows through porous media in [2]. The adaptation utilizes
the the immersed-boundary (IMB) method that employs fictitious body forces in
the equations of motion to mimic the presence of solid structures and internal
boundaries. The particular technique adapted is a variant of feedback forcing,
with implicit time discretization admitting rapid attenuation of the flow to stagna-
tion (within solid structures) in O(∆ t) time comparable to the time step ∆ t of the
fluid model.
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In EULAG, the governing system of the conservation laws is integrated nu-
merically using a second-order-accurate, semi-implicit, non-oscillatory forward-
in-time (NFT) approach, either as Lagrangian evolution equations or Eulerian
conservation laws. In this adaptation of EULAG to porous media, all calculations
used the Eulerian option in a Cartesian-framework,

The Cartesian model domain is resolved with Nx ×Ny ×Nz = 128× 128×
256 points of the regular grid with uniform intervals ∆x = ∆y = ∆z = 80µm. In
[2] adaptation of EULAG to porous media to support gravity driven flows and
simulating flow with through the bead pack with prescribed volumetric flux was
achieved by setting the gravity is to g = 0.049349 and the kinematic viscosity of
that water µ = 10−6m2s−1 to simulate flow with the desired Reynolds number
(Rep = 0.6).

With the same flow condition setup used in the other CFD simulations, EU-
LAG was programmed in MATLAB and running in a desktop machine (single 3.2
GHz processor). The flow field solution was converged in 300 iterations requiring
a simulation time of 4 hours.

3.2. Pore Network Model (PNM)
The University of Texas (UT) group used a pore-network model (PNM) to

simulate the flow and transport processes. Pore networks are simplified repre-
sentations of porous media and are networks of interconnected pores and throats.
Often, pores are approximated by spheres and throats by cylinders. It was at-
tempted to honor the real pore geometry of the beads pack as closely as possible.
PNM typically assume that pores comprise all the volume of the pore space and
that throats solely provide resistance to flow. In real, complex porous media the
geometry of each throat in the network is unique. The flow equation is obtained
by imposing mass balance at every pore and since the fluid is Newtonian and in-
compressible, it results in a linear system of equations. Solving this system gives
the pressure and velocity fields needed for subsequent solution of the transport
equation. The details of this procedure are given by [44].

The PNM simulations of flow and transport in this work were performed using
three different Eulerian methods: a) the mixed-cell method (MCM) (e.g. [45, 46],
b) the streamline-splitting method (SSM) [5], and c) the superposing transport
method (STM) [44, 47]. For more information on these models the reader is
additionally referred to a recent review by [48]. In MCM, all the void volume is
assigned to the pores and throats are assumed to be volumeless. MCM additionally
assumes the solute to be perfectly mixed within pores and ignores the shearing
of solute due to non-uniform velocity profiles within throats; the latter referred
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to as shear-dispersion hereafter. SSM similarly neglects shear-dispersion within
throats, but properly accounts for the partial mixing of solute within pores. In
SSM, the void volume is similarly assumed to be concentrated at the pores. On
the other hand, STM properly accounts for shear-dispersion within throats, but
assumes perfect mixing within pores. In STM, we assume all the void volume to
be concentrated at the cylindrically shaped throats, and the pores to be volumeless.
STM is by no means limited to this latter assumption, which was made merely out
of convenience and to follow common practice in the literature regarding similar
Lagrangian network models of transport [47, 48]. In STM, the shearing of the
solute within the cylindrical throats is, thus, due to the parabolic velocity profile
within them.

For compatibility reasons with the PNM codes used herein, the cylindrical
beads-pack column was cropped into a cuboid with the same height in the y-
direction, and a square-shaped cross-section with a diameter equal to the column
diameter. The pore-network was extracted from the cropped domain using LSU’s
Avizo module, which employs a techniques outlined in [49]. Briefly, a maximal
ball algorithm is used to locate the centers of each pore. Throat hydraulic con-
ductivities are then calculated using methods from [50], whereby irregular throat
shapes are mapped onto triangular, square, and circular geometries, depending on
their shape factors. A constant pressure gradient was imposed on the pore network
in the y-direction to establish steady-state flow and compute the pressure/velocity
fields. Solute was then injected through the inlet by imposing a constant inlet
concentration of 1 for the duration of 2.798 secs, which was thereafter set to 0 for
the rest of the simulation. Zero concentration gradient was imposed at the outlet.
Breakthrough profiles (BTP) were obtained by computing the flux-averaged con-
centrations of all throats at the outlet face of the network. All three methods were
implemented in MATLAB and were run on a desktop machine with an Intel Core
i7-4790 CPU @ 3.6GHz processor and 32GB of Random Access Memory.

The BTP obtained from SSM is not shown in this paper, as it is almost identical
to that of MCM. This is in agreement with the conclusion drawn by [47]: pore-
level mixing assumptions have little impact on longitudinal dispersion in disor-
dered granular media. The wall-clock times for the MCM, SSM, and STM simu-
lations were 45 secs, 50 mins, and 3.5 days, respectively. We note that the majority
of the difference between the computation times of MCM and SSM were caused
by their very different implementations. While the implementation of MCM uti-
lizes heavy vectorization and avoidance of loops, that of SSM does not. On equal
grounds, SSM should be roughly twice as costly as MCM. Both MCM and SSM
use the adaptive time stepping ode23tb solver in MATLAB, which is an imple-
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mentation of TR-BDF2, an implicit Runge-Kutta formula. The relatively higher
computational cost of STM, however, is to a larger extent algorithmic. STM solves
a non-local (in time) transport equation, which requires pore concentrations to be
dynamically recorded during the simulation [47]. This is a memory-intensive pro-
cess. In addition, STM uses a constant time step throughout the simulation (unlike
MCM and SSM). These two factors are the major contributors to STMs higher
computational cost. However, practical solutions to considerably alleviate these
problems were proposed in [47], the implementation of which will the subject of
future work.

3.3. Lattice Boltzmann Method (LBM)
The lattice Boltzmann simulations were performed with the cumulant lattice

Boltzmann method [3]. This method uses a finite velocity discretization of the
Boltzmann Transport Equation using 27 speeds. The lattice Boltzmann method
operates in the hydrodynamic limit of the Boltzmann Transport Equation such that
the Navier-Stokes Equation is recovered for small Mach and Knudsen numbers.

The Boltzmann Transport Equation is originally an equation for gaseous flow.
In the low Mach number limit gases and liquids usually behave very similar but
the flow through a porous medium is an exception to this rule. Due to the high hy-
drodynamic resistivity of the geometry in the current study a significant pressure
drop between inlet and outlet is observed. In a gas this would lead to a compress-
ible flow condition since the density of an isothermal gas is linked to its pressure.
As the fluid in the current study is water we have to modify the lattice Boltzmann
method such that density and pressure are decoupled [51]. The density of the fluid
is enforced to be constant and an incompressible steady state solution is obtained.

The incompressible cumulant lattice Boltzmann method was implemented for
parallel execution on General Purpose Graphics Processing Units (GPGPUs) us-
ing CUDA. The geometry was discretized with a sparse Cartesian grid using the
Eso-Twist data structure [52]. The communication between GPGPUs was done
using MPI.

The boundary conditions were constant velocity at the inlet, no-slip at the
surface of the spheres and the bounding cylinder and non-reflective extrapolation
at the outlet.

Two resolutions were considered. The grid with a resolution of 20 µm con-
tained about 53.5 million nodes while the grid with resolution of 40 µm had about
6.7 million nodes. The case with lower resolution was run on a single TESLA
K40c GPGPU requiring 4.5 hours for the flow simulation of about 72 seconds
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real time. We achieved a performance of approximately 233.3 million node up-
dates per second (MNUPS). The high resolution case was distributed over two
K40c and six TESLA C1060 GPGPUs and required 61,07 hours (2 x K40c GPG-
PUs) and 66,93 hours (6 x TESLA C1060 GPGPUs) for the flow simulation of
about 72 seconds real time.

3.4. Smoothed Particle Hydrodynamics (SPH)
In this work we use a consistent second-order Incompressible Smoothed Par-

ticle Hydrodynamics (ISPH) method [53]. The method is implemented using the
massively parallel particle library LAMMPS [54] and the linear algebra library
Trilinos [55].

The Smoothed Particle Hydrodynamics (SPH) method is a fully Lagrangian
Particle Method for solving conservation equations. Traditionally, incompressible
fluids are treated in SPH as weakly compressible fluids and an equation of state is
used to close the system of the momentum and continuity equations. The speed of
sound, c is chosen so that the Mach number M satisfies the condition M = c

v 6 0.1.
Under this condition, the compressible fluid behaves as incompressible. Standard
SPH discretization is based on the bell-shaped compactly-supported kernel W (x),
and represents spatial derivatives of any function in terms of the values of this
function at discretization points and derivatives of W . The advantage of standard
SPH is that the resulting momentum equations have the form of the equations of
Molecular Dynamics, i.e., the SPH descrtization of the continuity, momentum,
and advection diffusion equations exactly conserves mass and momentum and,
when explicit time integration is used, the SPH algorithms are easily paralleliz-
able. There are two main challenges in application of the weakly-compressible
time explicit SPH method to flow in porous media. The accuracy of the standard
SPH discretization is hard to control as it depends on the SPH particle distribution.
As particles becomes disordered, the convergence rate of SPH method becomes
less than two with respect to the resolution parameter, h, the support of W . The
second challenge is that the time step in explicit time integration schemes, sub-
ject to the CFL conditions, becomes prohibitively small because of the speed of
sound and viscosity constraints. A review of the SPH methods with application to
pore-scale flows can be found in [56].

The consistent ISPH method uses a splitting scheme to ensure a divergence-
free velocity field, which relaxes CFL constraints and allows taking a significantly
larger time steps comparing to the weakly compressible SPH. To achieve second
order accuracy in time and space, the consistent ISPH method uses an incremental
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pressure correction scheme in combination with differential operator renormaliza-
tion.

SPH simulations with two different resolutions are performed. In these simu-
lations, SPH particles are initially placed on Cartesian mesh with grid sizes 34 µm
and 23 µm. SPH particles located inside the beads are labeled as “solid” particles,
their positions are fixed in space and they are used to impose the no-slip boundary
condition according to the method of [57]. The rest of the particles are labeled as
fluid particles, and their positions are advected in time with velocities found from
the SPH solution of the Navier-Stokes equations. The periodic boundary condi-
tion is used at the top and bottom of the bead pack and the flow is driven by a
body force. The initial velocity is set to zero and the NS equations are integrated
until steady state average velocity is reached.

The simulations were run on the Hopper supercomputer at the National En-
ergy Research Scientific Computing (NERSC) center using up to 30000 CPUs for
the higher resolution simulations. The computing time for flow simulations was
approximately 7 hours.

3.5. Summary of the numerical models
A total of four pore-scale models (six computational codes/packages) were

used to simulate flow and transport in the benchmark beads pack problem. A
summary is given in Table 3, which includes the name of the code, the mesh used
in the simulation (mesh type, grid size and number of cells) and computing cost.
It is obvious that PNM runs the fastest due to the relative simplicity of the model.
On the other hand, the computational cost of the DNS were substantial, with run
times up to several days on supercomputers to resolve the more complex problems
dealing with high pore-aspect ratios and a flow-focusing heterogeneity. With the
implementation of the modern GUGPU technique (CUDA), the computing time
could be dramatically shortened, which is concluded from the LBM runs.

4. Results

In this section, we present a series of comparisons for flow and transport
among the above mentioned six pore-scale codes/packages. First, simulated ve-
locity fields are evaluated including macroscopic pressure drop and permeability,
contour plots of velocities and point-by-point velocity values at selected locations.
Second, for the transport simulation, breakthrough curves are presented followed
by the dispersion analysis using both analytical solution fitting and volume aver-
aging method [41].
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Table 3: Summary of the mesh, grid size and run time *(f: flow; t: transport)
Code Mesh type Grid size No. of Cells Machine Run time*

TETHYS Cartesian 20 µm 72.1M 1600 CPUs f: 9 hrs
t: 12 hrs

TETHYS Cartesian 40 µm 9.1M 480 CPUs f: 4 hrs
t: 7 hrs

STAR-CCM+ Polyhedral 40 µm 13M 4 CPUs f: 15 hrs
t: 45 hrs

EULAG Cartesian 80 µm 1.1M desktop f: 4 hrs
PNM – – – desktop f: 1 s

t: MCM - 45 s
t: SSM - 50 mins
t: STM - 3.5 days

LBM Cartesian 20 µm 53.5M 2 TESLA K40c f: 61.07 hrs
LBM Cartesian 40 µm 6.7M 1 TESLA K40c f: 4.5 hrs
ISPH Meshless 34 µm 4.8M 30k CPUs f: 7 hrs

4.1. Flow Field
4.1.1. Pressure drop and permeability

The pressure drop across the bead pack column is an important parameter to
evaluate the macroscopic performance of the pore-scale models. In the intercom-
parisons, the pressure drop is numerically measured by the pressure difference
between the inlet and outlet of the column. The expected pressure drop across the
uniform sphere packs can be estimated through correlations presented in [58, 59],
which gives a value of 14.29 Pa. The pressure drop can also be estimated using
the well-known Carman-Kozeny equation [60]. The values of the pressure drop
are summarized in Table 4. Using a structured voxel mesh, the corresponding
calculated pressure drops from TETHYS simulations were 13.32 Pa (40 µm) and
13.19 Pa (20 µm), respectively, with differences less than 1% compared to the
Carman-Kozeny correlation (13.19 Pa) and 4.5% compared to the correlation in
[58, 59]. Using the same grid resolutions, pressure drop from LBM simulations
were 15.20 Pa and 16.26 Pa, which are slightly higher than those computed from
TETHYS. EULAG used a coarser grid resolution (80 µm) and resulted in a higher
pressure drop than the other methods (17.13 Pa). The grid resolutions used in SPH
simulation was fine enough that the calculated pressure drop was 13.61 Pa with
less than 5% difference. The simulated pressure drop for STAR-CCM+ (using
unstructured body-fitted mesh) was 13.65 Pa, with a difference of only 4.5%. For
Class 2 model-PNM, the pressure drop along the beads pack was 13.26 Pa, which
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is also very close to the results from Carmen-Kozeny equation and CFD simula-
tions.

Given the total flux, pressure drop, and column porosity, the permeability as-
sociated with each simulation can also be calculated. The permeability of the
packed bed, based on the simulated pressure drop for one of the Class 1 model
using body-fitted mesh (STAR-CCM+ simulation), is around 4.2×10−6cm2 The
corresponding estimate from the Class 2 model (PNM) is 4.23× 10−6cm2, very
close to the value simulated by the CFD method. This value is in the typical range
observed for clean well-sorted sand. Therefore the simulated macroscopic behav-
ior is consistent with that expected based on established empirical relationships
for packed bed systems.

Table 4: Comparison of the pressure drop (∆P) along the axial direction of the beads pack
Numerical Method ∆P(Pa) Error %
[Eisfeld, Reichelt] 14.29 0

Carmen-Kozeny Eq. 13.19 7.7
TETHYS (40 µm) 13.32 6.79
TETHYS (20 µm) 13.19 7.7

EULAG 17.13 19.87
LBM (40 µm) 15.20 6.37
LBM (20 µm) 16.26 13.79

StarCCM+ 13.65 4.48
SPH 13.61 4.76
PNM 13.26 7.21

4.1.2. Velocity comparisons
Contour plots of the simulated velocity magnitude along a selected axial slice

(Y = 6.4mm) in the middle of the bead pack, obtained from all Class 1 pore-scale
models, are shown in Figure 3. We find similar flow field patterns in the pore
space simulated using different models with either structured or body-fitted mesh.
However, due in part to different grid resolutions, the magnitudes of the velocities
are not exactly the same. We also note that higher velocities are observed in
the near-wall region, where the local porosity is higher than average because of
arrangements of the grains associated with the wall effect.

The spatial patterns of velocity are generally in excellent agreement among the
different models, but some differences can be noticed in detailed views. Figure 3h
shows an expanded view of the subregion of slice 320 indicated by the black box in
Figure 3f. Five locations in this subregion (around a pore with high velocity) were
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Figure 3: Color contour plots of velocity in slice 320 (in the middle of the packed-bed at Y =
6.4 mm): (a) STAR-CCM+ simulation; (b) TETHYS 40 µm simulation; (c) TETHYS 20 µm
simulation; (d) ISPH simulation; (e) LBM 40 µm simulation; (f) LBM 20 µm simulation; (g)
EULAG simulation; (h) Magnified visualization of velocity fields in the subregion of slice 320
indicated by a black box in (f) and (g)
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selected to compare point-to-point values. Table 5 provides a tabular listing of the
actual values of three velocity components (axial and two transverse directions) at
all five points. We note that the values predicted by the five different simulation
methods are mostly similar, but in selected cases the differences are significant, in
particular in those models that employed different grid resolution or mesh type.
Results from STAR-CCM+ and ISPH are the closest; we note that both of these
methods avoid discrepancies associated with the stair-step mesh geometry used in
the other Class 1 methods.

Table 5: Comparison simulated values of axial and transverse velocity components at five selected
locations in slice 320 indicated in Figure 4.1.2

STAR-CCM+ TETHYS LBM EULAG ISPH
20 µm 40 µm 20 µm 40 µm

vy (m/s)
Point 1 0.007142 0.007038 0.006622 0.008135 0.007834 0.006554 0.007035
Point 2 0.005387 0.005942 0.005667 0.005071 0.004249 0.004728 0.005453
Point 3 0.005186 0.005013 0.004774 0.004299 0.003282 0.004882 0.005213
Point 4 0.00186 0.002042 0.001958 0.003321 0.003238 0.00899 0.00189
Point 5 0.000425 0.000431 0.000407 0.000854 0.001347 0.000357 0.000432
vx (m/s)
Point 1 -0.00055 -0.000566 -0.000584 -0.000731 -0.000589 -0.00042 -0.00056
Point 2 -0.000542 -0.000539 -0.000514 -0.000252 -0.00027 -0.00039 -0.000548
Point 3 -0.000636 -0.000641 -0.000622 -0.000722 -0.000347 -0.000547 -0.000642
Point 4 -0.000096 -0.000094 -0.000102 -0.000186 -0.000146 -0.00088 -0.000092
Point 5 0.000088 0.000093 0.000090 0.000071 0.00005 0.000043 0.000084
vz (m/s)
Point 1 -0.000182 -0.000185 -0.000177 -0.002234 -0.002223 -0.000172 -0.000179
Point 2 -0.000148 -0.000143 -0.000139 -0.001897 -0.001668 -0.000131 -0.000145
Point 3 -0.000097 -0.000110 -0.000110 -0.001304 -0.001202 -0.000082 -0.000096
Point 4 -0.000942 -0.000931 -0.000906 -0.000946 -0.000741 -0.000756 -0.000947
Point 5 -0.000634 -0.000592 -0.000682 -0.000587 -0.000864 -0.000423 -0.000659

4.2. Solute Transport
4.2.1. Breakthrough curves

In this section, computed results for solute transport are presented and com-
pared between CFD and PNM simulations. Figure 4 shows three-dimensional vi-
sualizations of tracer concentration in the beads pack at four selected times (t = 5,
15, 25, and 35 seconds), which were simulated by TETHYS (Class 1 CFD-FVM).
For the solute transport simulations (based on converged steady-state flow solu-
tion), we imposed a pulse-type constant concentration at the inlet of the column
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Figure 4: Visualizations of tracer concentration at four selected simulation times: (a) 5 s; (b) 15 s;
(c) 25 s; (d) 35 s.

for 2.78 seconds then kept it as zero for the rest of the simulation period. There-
fore the highest concentrations occur in the early stages of the transport simulation
(Figure 4a). By using pressure boundary condition at the outlet, we made sure that
the solute would exit eventually (Figure 4d). From those images, it is clear that
the pore geometry has a major impact on the character of the transport simulation.
It is evident that there is strong preferential flow along the column walls, which is
an artifact that would not occur in the natural system. In the absence of this wall
effect, the overall flow rate and effective hydraulic conductivity would be smaller,
and the tracer breakthrough would occur later.

Figure 5b shows the contour plot of the solute concentration on the selected
slice 320 at time = 10 seconds. By comparing with the velocity magnitude contour
plot (Figure 5a), it is clear that solute trapping occurs in lower-velocity regions,
which are towards the central part of the beads pack. This trapped tracer can be
expected to lead to extended tailing in the corresponding breakthrough curve.

Figure 6 shows simulated breakthrough curves at the inlet and outlet of the
beads pack column for the bromide tracer. Three pore-scale models were used
to simulate solute transport based on the flow field solutions. At the inlet, we
employed a pulse-type incoming concentration (duration = 2.78 seconds) as de-
noted in the figure. At the outlet, breakthrough concentrations were calculated
from the simulation results using a flux-weighted average at each time step. The
breakthrough curve results are consistent with the interpretations drawn from the
visualizations (Figure 4). In particular, the long extended tailing in the break-
through curves reflect the trapping of solute in low-advection regions. The peak
of the breakthrough curves appear at around 22 seconds, which includes the time
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Figure 5: Contour plots of velocity (left image) and tracer concentration at time = 10 s (right
image) in slice 320.

for the solute traveling through the extruded buffer regions added to the beads
pack. The breakthrough curves computed from TETHYS using both 40 µm and
20 µm structured mesh are very close to each other and to the results from STAR-
CCM+ using the unstructured body-fitted mesh. However, the breakthrough curve
simulated using the Class 2 model - PNM - shows some discrepancies from the
Class 1 models. Since the PNM did not include the buffer regions, we ran a com-
parable STAR-CCM+ simulation without the buffer regions for a more relevant
comparison as shown in (Figure 6). From this comparison, it can be seen that the
initial arrival and rising limb of the breakthrough curves are very similar between
the two methods, but the PNM method appears to be more dispersive in nature,
leading to a lower peak and longer tail. This difference may be in part due to the
cropping of the column edges to create the cubic domain for PNM; the edges of
the model domain have generally faster velocities due to the edge effects therefore
leading to apparently longer travel times when only the central part of the domain
is considered. Further analyses are being conducted to determine the cause of this
discrepancy between the models.

4.2.2. Dispersion analysis
The macroscopic longitudinal dispersion coefficient can be estimated from the

simulations for comparison. Here we used to methods to estimate dispersion. For
the simulation methods that performed transport simulations, the resulting break-
through curves were fitted with a standard one-dimensional advection-dispersion
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Figure 6: Computed breakthrough curves (concentration of solute tracer over time) at the outlet of
the column.
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model using the STAMMT-L code. We also used the method of volume averag-
ing (MVA), solved numerically using the TETHYS code, to obtain estimates of
dispersion coefficients corresponding to the simulated system. Richmond et al.
[36] modified the MVA that it could be applied to unsteady cases. The modified
MVA has been previously validated for the simple cases of flow between parallel
plates and tubes, and was subsequently applied to a sinusoidal wavy tube problem
and successfully compared with transport simulations based on a particle tracking
method [36].

The results of the MVA analysis for a range of normalized Pe numbers (Pe =
Sc×Re, from 0.1 to 1000) are presented in Figure 7. The calculated Pe number
of the current beads pack problem is 257 (Pe∗ = 110). The estimated dispersion
coefficients based on fitting of the simulated breakthrough curves are also shown
in Figure 6. The results show very good agreement between the modified MVA
method and the values fitted to the 1D advection-dispersion equation.

5. Conclusions

We have performed comparative simulations of an experimental porous medium
using six different codes representing four general pore-scale modeling approaches.
The methods vary widely in the degree of complexity of representation of the
porous media geometry, the numerical algorithms used, mesh resolution and ge-
ometry, and computational requirements. Quantitative comparisons are drawn in
terms of microscopic measures (pore-scale velocities) and macroscopic measures
(permeability, breakthrough curves, effective dispersivity). All models and codes
gave broadly similar results in all categories, although there were some differences
that may be deemed significant depending on the model context.

In particular, the EULAG implementation of the Immersed Boundary Method
and the Lattice Boltzmann Method implementation both led to a smaller effective
permeability (larger pressure drop) for the mini-column than the other CFD meth-
ods that had been previously validated against the experimental measurements.
Comparisons of simulated tracer breakthrough were only performed for a subset
of the codes considered, but illustrated some differences between the CFD meth-
ods (which were consistent with each other) and the PNM method, which matched
the early breakthrough closely but led to a lower peak concentration and longer
late arrival tail (i.e., larger apparent dispersivity).

The computational demands of the various methods also varied widely, with
some methods running in minutes on a single processor and others requiring hours
or days on large supercomputers. The PNM in particular is highly computationally
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Figure 7: Computed axial dispersion coefficients.
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efficient, and therefore may be very well suited to rapid screening of alternatives
or performing very large simulations in cases where modest overestimation of
dispersive transport is not problematic.

Additional analyses are needed to clearly identify the sources of the observed
discrepancies, and further work is needed to enhance code capabilities to allow
common comparison of transport simulations across the full suite of methods.
However, in general we believe that this study provides a strong foundation for
further development and application of pore-scale simulation methods to problems
of porous media flow and transport.
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