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We consider the problem of routing a fleet of feeders for civil air-to-air refueling
operations. In the air-to-air refueling problem, a fixed set of cruisers requires refueling
by a fleet of feeders at fixed locations and fixed points in time. A typical objective
function is to minimize the fuel consumption or the total number of required feeders.

We formulate a discrete optimization problem based on an ODE model for the fuel
consumption of the feeders. The fuel consumption of a feeder depends on its weight.
The weight changes over time and depends significantly on the fuel mass stored in
the feeder. The fuel mass stored depends on the length of the route and the fuel mass
for the requests served. We prove NP-hardness of the problem and develop a column
generation approach. We prove several structural properties of the model that allow
us to improve the solution method. The resulting method is applicable in practice,
which we demonstrate by conducting computational experiments on instances for
both random generated demands and demands based on real-world air-traffic. We
compare the optimized routes to state-of-the-art solutions.

It turns out that mathematical optimization techniques on average reduce the fuel
consumption of the feeder fleet by more than half.

Keywords – Air-to-Air Refueling, Branch-and-Price, Column Generation, NP-hardness, Sustainable
Aviation

1. Introduction

According to the International Civil Aviation Organization, it is expected that the world scheduled
passenger traffic will quadruple by 2045 [24]. To reduce the environmental impact, especially the carbon
footprint, the European Comission’s “Flightpath 2050” defines a target of 75 % CO2 reduction per
passenger-kilometre through technological development by 2050 [14]. Moreover, the price for kerosene is
forecasted to more than double by 2050 from the current price of approximately US$0.05 kW−1 h−1 [40].
As a result, considerable effort has already been made in order to increase the fuel efficiency of aircraft
operations.

One promising concept to further increase efficiency is the introduction of air-to-air refueling oper-
ations: Dividing a flight range into smaller parts and refueling on air between parts allows to design
aircrafts with reduced weight, which can traverse the flight range with a decreased fuel burn. The
cruiser-feeder approach to air transport has been studied as part of the RECREATE (REsearch on a
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CRuiser Enabled Air Transport Environment) project, resulting in a predicted 4.5 %–6 % reduction in
operating costs [34].

Aside from the construction of the cruiser and feeder aircraft, a key aspect regarding the overall
efficiency of an air-to-air refueling operation is the scheduling of the operation itself. While the optimized
design of the cruisers ensures a decreased fuel consumption of the cruisers themselves, the feeder aircrafts
consume fuel while serving the cruisers. To increase the efficiency of the overall operation, it is imperative
to keep these additional costs as low as possible. While previous research [34, 16, 32] laid focus on design
aspects as well as on the cruiser operation, the feeder side of the problem consists of two different
optimization goals, both influencing the cost caused by the feeder fleet.

The first goal is the reduction in fuel consumption of the feeders. In earlier simulations, a simple
distribution system was employed in order to assign the feeders in order to satisfy the cruisers’ demands.
A more thorough investigation of the underlying combinatorial problem is likely to yield solutions with
significantly reduced fuel consumption.

The second goal is the reduction of the size of the feeder fleet, which is not only beneficial in itself,
but may also yield a reduction with respect to the size of the feeder bases. A reduction of the cost of
the required infrastructure in turn benefits the entire cruiser-feeder system. Again, an optimized feeder
distribution could allow for the reduction of the fleet size as well as the necessary feeder infrastructure
on the ground.

Still, we would like to point out that these two goals can be adversarial. Specifically, a larger feeder
fleet size may very well yield savings in terms of fuel consumption, whereas an increased fuel budget
may allow for a smaller fleet. We will proceed to consider both goals separately, giving some examples
for the trade-off between the objectives later on.

Structure of the Paper

First, we formally define the air-to-air refueling problem. Second, we give a literature overview and
briefly discuss the underlying scenario and its use in related work. Section 2 is devoted to the physical
model of the feeder fuel consumption across different flight phases.

We go on to introduce two competing integer programming models based on this physical model
in order to solve the air-to-air refueling problem in Section 3. Aside from formulating the models, we
adapt a well-known labeling algorithm [3] to solve the emerging pricing problem and discuss some details
pertaining to the Branch-and-Price framework.

In Section 4, we proceed to computationally evaluate our formulations both on the original scenario
and a number of artificially generated instances. We compare the running times of the formulations and
examine the quality of the obtained optimal solutions related to the preexisting state-of-the-art heuristic.
Lastly, we give our conclusion as well as an outlook regarding potential future work in Section 5.

1.1. Problem Definition

An instance of the air-to-air refueling problem consists of a set R of refueling requests. Each request
r ∈ R has an origin orig(r) and a destination dest(r), a time θ(r), and a requested fuel mass M req(r).
The time θ(r) determines when the refueling operation must start. The coordinates orig(r) and dest(r)
are the endpoints of the route along which the refueling operation takes place. The feeders operate from
a base b. In order to fulfill a series r1, . . . , rk of requests in R, a feeder departs from the base b, moves to
orig(r1), performs a refueling operation at time θ(r1) arriving at dest(r1), moves to orig(r2) and so on,
until finally returning to the base b from dest(rk). Note that while feeders are allowed to loiter between
requests, each request r ∈ R must be served precisely at θ(r).

Coordinates are given by longitude / latitude pairs, and feeders / cruisers are assumed to fly on shortest
paths (on great circle routes) between coordinates. We denote the distance between two coordinates p
and p′ by d(p, p′). We compute this distance using the Haversine formula [29]. This distance function
is metric. Furthermore, we assume for technical reasons that the coordinates of the base, the request
origins, and the request destinations are pairwise different.

We suppose that the feeders are uniform with respect to their physical properties and flight charac-
teristics. Specifically, feeders maintain a constant speed v during the entire refueling operation, they
have a constant lift over drag ratio denoted by L/D, a specific fuel consumption sfc, and an efficiency
X satisfying

X =
v · L/D

sfc
.
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Furthermore, each feeder has an Operational Empty Weight Mac and a Maximum Take-off Weight
M takeoff > Mac. The difference Mmax := M takeoff −Mac is available to store the fuel, which is either
delivered to cruisers or burned during the flight of the feeder itself.

1.2. Related Work

Air-to-air refueling has received a lot of attention over the last years. We refer to [43] for an overview on
the state of research in air-to-air refueling, including engineering aspects such as hose design, position
tracking and rendezvous scheduling. Apart from the RECREATE project (see above), several approaches
regarding the scheduling have been made. In [15], a multi-objective IP is used to determine the optimal
redezvous points for the refueling process (see also the references therein for further solution approaches
for this specific problem). Using a reformulation as a parallel machine scheduling problem with due
dates, the authors of [27] allow the refueling to take place somewhen in a certain interval and minimize
the tardiness. In contrast to the previous application in military operations, civil air-to-air refueling
must take the safety and comfort of passengers into account. Hence, in [44], it is assumed that there
should be no flight maneuvers on the side of the cruisers involved. This amounts to a flight guidance
problem, where an optimization model is used to shape the trajectory of the feeder such that its velocity
vector aligns with the velocity vector of the cruiser near their rendezvous point.

In the same line of thought, we regard the rendezvous points (and times) as fixed, leading to a routing
problem for the feeders. Routing problems are among the most famous combinatorial optimization
problems. The problem of finding a shortest path for single vehicles has evolved from the usage of
Dijsktra’s algorithm to highly sophisticated preprocessing schemes (see [4]), including aspects such as
time dependence [9] and multi-modality [8].

Whereas these problems are generally polynomially solvable, there are a number of routing prob-
lems which are NP-hard to solve, including the problem of finding shortest paths subject to resource
constraints [5] or time-windows [10].

While it is possible to derive combinatorial algorithms forNP-hard problems, oftentimes it is advisable
to use (mixed) integer programming [45] techniques instead (we shall follow this approach as well). The
field of integer programming has been studied extensively (for a survey, see [26]) for the last sixty years,
yielding theoretical results as well as well-tested, ready-to-use software, which can easily be adapted to
specific use cases.

Apart from topics such as cutting planes, branching rules, and symmetry handling, an import tech-
nique is that of column generation (see [33]). A column generation approach allows for the exploitation
of the problem structure in order to find decompositions into subproblems. While some progress has
been made regarding generic column generation algorithms (see [17]), the structure of a specific combina-
torial optimization problem cannot generally be automatically recognized, necessitating the adaptation
of existing integer programming software to specific problems. We will follow this approach in order to
solve the air-to-air refueling problem.

The air-to-air refueling problem is closely related to the vehicle routing problem (VRP), a generaliza-
tion of the famous traveling salesman problem (TSP) as well as the Dial-a-Ride (DARP) problem. Both
problems have received a lot of attention in combinatorial optimization (see [30, 19] for summaries),
which has lead to the development of heuristic algorithms as well as exact formulations.

The heuristics employed to solve the VRP fall into the categories of sequential construction routines
and iterative improvement procedures (see [31] for a summary). The sequential construction of VRP so-
lutions is usually performed using so-called cluster-first, route-second algorithms, which employ different
clustering techniques in order to find a partition of the requests into subsets to be served by individual
vehicles.

Many widely used approaches to solve VRPs / DARPs to optimality are indeed based on mixed integer
programming techniques. Depending on various problem characteristics, different formulations are used
by different authors. On the one hand, there are formulations based on arc variables [7]. On the other
hand, decompositions including path-based subproblems often yield good results [11]. We have opted to
use a path-based approach as well, since we are dealing with the fact that the physical model used for
the fuel consumption of the feeder aircraft makes arc-based formulations impractical, c.f. Section 2.

A notable extension of the VRP incorporates time windows into the routing problem: Each request
must be served within a certain time window, thereby restricting the set of feasible tours (see [10, 28]).
We would like to point out that while the air-to-air refueling problem can be seen as a special case of
time-window based VRPs (where the time-windows are fixed to single points), we chose to employ a
different approach in order to handle time dependence. Specifically, the fixed refueling times allow us to
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incorporate the time dependence into the underlying graph without having to perform a complete time
expansion.

More recently, the VRP has been reexamined from an environmental standpoint. Instead of minimiz-
ing the travel time and / or vehicle utilization costs, attention has been turned to lowering the carbon
footprint of vehicle fleets. To decrease fuel consumption, the authors of [13] include fuel consump-
tion / refueling of street vehicles into the VRP. The authors model fuel consumption as being given in
terms of a fixed rate of gallons per mile and consider the problem of minimizing the total mileage,
comparing the computational performance of several heuristics with that of a MIP solver based on a
two-index formulation.

Another area of research focuses on the VRP of electric vehicles (see [41, 23]). Specifically, electric
vehicles must be charged at charging stations, which are still sparsely distributed in many road networks.
Therefore the authors of [41] include charging stations as separate vertices in the VRP. Part of the
difficulty lies in the fact that that the limited battery charge requires frequent charging stops. What
is more, recharging times of electric vehicles can range to more than one hour, resulting in significant
downtimes and necessitating careful planning. The energy consumption for road segments is given as a
fixed value regardless of mass, battery charge or alike, making the problem in some sense complementary
to ours.

1.3. Underlying Scenario

To generate an air-to-air refueling problem, an underlying cruiser scenario is needed. The cruiser network
for this scenario is based on the transatlantic traffic on 7/1/2011, extracted from Eurocontrol data. A
more detailed description can be found in [34]. The following will give a short overview on the scenario
design: To generate benefits with air-to-air refueling in civil aviation, a long range flight has to be
replaced by an aircraft constructed for shorter ranges. Currently no aircraft fits the needed layout. Thus
the aircrafts used in the scenario have been designed for this purpose (see [16]). Furthermore, a reference
aircraft has been devised to calculate the fuel consumption of a direct flight without air-to-air refueling.

Today’s feeder aircrafts are multi-role aircrafts and are therefore constructed for refueling and as
transport aircrafts. To benefit from civil air-to-air refueling, the feeder aircraft has to be designed
specifically for this task. The feeder used in the following scenario is a joint wing tanker model from TU
Delft [16] for the use in civil air-to-air refueling.

The scenario uses eight feeder bases as point of origin for the feeder aircraft. These feeder aircraft
could refuel the cruiser aircraft at any point within the range of the feeder. The refueling point has been
optimized to minimize the fuel consumption of the cruiser and an idealized feeder [34]. Between the
airports and the refueling point, all aircrafts fly direct great circle routes. For comparison, the reference
aircraft also use direct routes.

In the original simulation, the feeders’ scheduling has been based on a first-come-first-serve method.
Airborne feeders have been prioritized over feeders on the ground to reduce the necessary number of
feeders. Thus the feeder scheduling has neither been optimized for fuel consumption nor to minimize
the number of feeders at any base. Solving these problems will provide a clearer picture of the necessary
resources on the feeder side.

2. Physical Model

To keep calculation times within reasonable boundaries, the model used for the fuel calculation employs
some simplifications. During the whole flight the lift over drag ratio L/D is constant and differs only
between the different aircraft types. The used L/D is the L/D in the cruise phase and the optimal
altitude. As the feeder aircraft has been designed for refueling, the refueling altitude is its optimal
altitude. While the cruiser aircraft spends most time at cruiser altitude, the feeder aircraft spends
significant time in climb and descent. Thus, the calculated fuel consumption will be slightly lower than
the real fuel consumption.

The specific fuel consumption sfc is assumed to be constant as well, which leads to the same effect as
mentioned with the L/D. Furthermore, the fuel calculation assumes constant flight conditions. Thus,
the additional fuel spent during acceleration is not taken into account. Finally, the aircrafts fly on great
circle routes and turn instantly. The additional fuel spend during the turn is again not part of the fuel
calculation.

Let M denote the fuel mass of the feeder as a function of the time θ throughout the different flight
phases. Fuel is consumed at a rate which depends linearly on the total weight of the aircraft, i.e., there
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exists a constant c such that
Ṁ(θ) = c · (Mac +M(θ)) .

In the following we will go into details regarding different operational phases and their respective fuel
consumptions. We would like to point out that the resulting linear ODE can be solved explicitly using
exponential functions (for an overview on ODEs, see [21]). Note that this model is widely used in the
area of aeronautical engineering, yielding the so-called Breguet range equation. For more details on the
topic, see [2, Chapter 5.12].

Free flight

During free flight the only cause for a change in fuel mass is the fuel burn of the feeder itself. The fuel
burn depends on the total mass of the feeder, given by M(θ)+Mac. Additional parameters are the flight
speed v of the feeder, its lift over drag ratio L/D, and its specific fuel consumption sfc. The fuel burn
is then given as

Ṁ(θ) = −M
ac +M(θ)

L/D
· sfc. (1)

For a given fuel mass M0 at a time θ0, this yields the solution

M(θ) =
(
M0 +Mac) · exp

(
−(θ − θ0)v

X

)
−Mac, (2)

where X := v · (L/D)/sfc denotes the aircraft efficiency (see [36]).

Climb

The climb of a feeder from its base involves the ascent to the cruising altitude of the cruisers to be
refueled. We assume that the ascent is conducted at a fixed rise angle γ. To account for the increased
fuel burn during the climb, we adjust the lift over drag ratio to

(L/D)′ :=
1

1/(L/D) cos(γ) + sin(γ)
.

This leads to a decreased efficiency Xclimb in the otherwise unmodified Equation (2). The constant angle
γ translates into a fixed distance dclimb and a corresponding duration ∆θclimb := dclimb/v in order to
reach the required altitude. As a result, feeders can begin serving requests only after the minimum climb
duration of ∆θclimb after takeoff.

With respect to the distances, we assume that if the distance between the base and the initial position
of the initial cruiser to be refueled is less than dclimb, the climb is flown in a suitable pattern connecting
base and request. If on the other side the distance between base and cruiser is more than dclimb, then
the advance of the feeder towards the cruiser consists of an initial climb followed by a free flight phase
with a sufficiently long duration.

Descent

The descent phase is in principle no different than the free flight phase itself, except for the fact that the
final descent to the base can be executed in gliding flight while the engines are executed in idle speed.
We denote this gliding distance by dgliding. During the gliding phase, fuel is burnt at a constant rate
ρgliding independent of the mass of the feeder. If the distance from the feeder’s current position to the
base does not exceed dgliding, then the entire distance is traversed gliding. Otherwise, an initial free flight
phase is executed to get within a distance of dgliding to the base.

Refueling

The refueling operation itself is the most complex of the different phases. It is conducted in three steps.
First, the feeder approaches the cruiser and connects its refueling boom to the cruisers fuel receptacle.
We let ∆θapproach be the corresponding approach duration. As soon as the contact is established, fuel
is pumped from feeder to cruiser at a constant rate. The rate is chosen such that the wet contact
duration ∆θcontact is fixed. After the fuel transfer is completed, the boom is disconnected and the feeder
retreats from the cruiser, requiring a retreat duration ∆θretreat. Since the entire refueling maneuver is
executed at constant speed v, the different durations translate into equivalent distances. The approach
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Figure 1: The fuel mass of a feeder during a refueling operation including approach, wet con-
tact, and retreat. Requested fuel mass: M req = 10 000 kg, final fuel mass: 5 000 kg,
parameters according to Table 1.

towards and retreat from the cruiser correspond to free flights (where the difference in fuel mass is given
by Equation (2)). The pumping rate is determined by the requested amount of fuel M req(r), and the
contact duration θcontact. The change in fuel mass during contact time is therefore given by

Ṁ(θ) = −
(
Mac +M(θ)

L/D
· sfc +

M req(r)

∆θcontact

)
,

implying that the fuel mass during contact time is equal to

M(θ) =
(
M0 +Mequiv(r)

)
· exp

(
−v ·∆θcontact

X

)
−Mequiv(r), (3)

i.e., the solution of the free flight equation of type (1) with an equivalent mass of

Mequiv(r) := Mac +X
M req(r)

v ·∆θcontact
.

For a given value M0, we compute the fuel Mcontact at the beginning of the contact using (2), which
we then substitute into (3) as an initial value (thereby preserving continuity), yielding a value M retreat

at the beginning of the retreat phase, which we substitute into equation (2) again, to compute the fuel
mass at the end of the refueling maneuver. An example of the fuel mass during a refueling operation is
shown in Figure 1 (observe the rapid change during the wet contact). The entire refueling operation has
a duration of ∆θrefuel defined as

∆θrefuel := ∆θapproach +∆θcontact +∆θretreat.

Base refueling

The refueling of the feeder itself is conducted at the base before the feeder takes off to subsequently serve
a number of cruisers. We assume that the base refueling operation takes a fixed duration of ∆θbase,refuel

independent of the refueling amount.

Initial fuel mass and fuel burn

We can use the established behavior of the fuel mass during the different phases in order to define
an initial fuel mass function µ : R≥0 × R≥0 → R≥0, describing the initial fuel mass depending on
the final fuel mass Mfinal and the duration ∆θ of an operational phase. In a similar fashion, we let
∆µ : R≥0 × R≥0 → R≥0 be the fuel burn function, i.e., the fuel that is consumed by the feeders
themselves. For any free flight, climb, or descent, the fuel burn coincides with the fuel difference,
whereas during the wet contact between feeder and cruiser, the burned fuel is equal to the fuel difference
minus the requested amount of fuel.

6



Table 1: Model parameters

Description Symbol Value

Feeder

Maximum Take-off Weight M takeoff 62 933 kg
Operational Empty Weight Mac 14 881 kg
Maximum fuel mass Mmax 42 456 kg
Efficiency X 18 393 NM
Speed v 240.3 m s−1

Climb
Required climbing distance dclimb 87.2 km
Climbing efficiency Xclimb 6 621.5 NM

Descent
Gliding distance dgliding 156.8 km
Gliding fuel rate ρgliding 160 kg h−1

Durations

Approach duration ∆θapproach 12 min
Contact duration ∆θcontact 5 min
Retreat duration ∆θretreat 3 min
Base refueling duration ∆θbase,refuel 30 min

Remark 2.1 (Monotonicity). It is easy to see that both µ and ∆µ are non-increasing in both their
arguments. The advantages of this observation are twofold: On the one hand it is sufficient to consider
feeders arriving back at the base without any fuel to spare. On the other hand, the functions µ and ∆µ
agree with the notion of metric distances: It is optimal for the feeders to spend as little time in the air
as possible.

The inclined reader can find the formal definitions of both functions in Appendix A. All relevant
parameter values used by us are listed in Table 1.

3. Formulations

We formulate the refueling problem as a covering problem based on paths through a refueling graph
D = (V,A). To this end, let r ∈ R be some request. We begin by defining the takeoff, landing and base
refueling time of r as

θtakeoff(r) := θ(r)−max

(
∆θclimb,

d(b, orig(r))

v

)
,

θlanding(r) := θ(r) +∆θrefuel +
d(dest(r), b)

v
, and

θbase,refuel(r) := θtakeoff(r)−∆θbase,refuel.

The vertices V of the refueling graph are given as V := V tail ∪ V head ∪ V base, where

V tail :={rtail | r ∈ R}, V head := {rhead | r ∈ R}, and

V base :={rtakeoff | r ∈ R} ∪ {rlanding | r ∈ R} ∪ {rbase,refuel | r ∈ R}.

Every vertex u ∈ V has an associated time θ(u), given as

θ(u) :=



θtakeoff(r) if u = rtakeoff ∈ V base,

θlanding(r) if u = rlanding ∈ V base,

θbase,refuel(r) if u = rbase,refuel ∈ V base,

θ(r) if u = rtail ∈ V tail, and

θ(r) +∆θrefuel if u = rhead ∈ V head.

We can use this definition to order the vertices in V base according to their times via s := vbase
1 , . . . , vbase

N =:

t, where θ(v1) < . . . < θ(vN ). We say that a request r̂ ∈ R is reachable from r iff the speed v is sufficient
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Figure 2: A refueling graph used to model a refueling problem with three requests. Refueling
arcs Areq are drawn thick, base waiting arcs Await dashed, base refueling arcs dotted,
and transit arcs Atransit solid. The base itself is shaded.

to reach r̂ after serving r, i.e.,

θ(r) +∆θrefuel +
d(orig(r), dest(r̂))

v
≤ θ(r̂).

The arcs A are defined as A := Areq ∪Aclimb ∪Adescent ∪Aflight ∪Abase,refuel ∪Await, where

Areq :={(rtail, rhead) | r ∈ R},

Aclimb :={(rtakeoff , rtail) | r ∈ R},

Adescent :={(rhead, rlanding) | r ∈ R},

Aflight :={(rhead, r̂tail) | r, r̂ ∈ R and r̂ is reachable from r},

Abase,refuel :={(rbase,refuel, rtakeoff) | r ∈ R}, and

Await :={((vbase
k , vbase

k+1 )) | k = 1, . . . , N − 1}.

Since all coordinates are pairwise different, and all travel times are positive, the refueling graph D is
acyclic and every arc a := (u,w) has an associated time window ∆θ(a) := [θ(u), θ(w)). As a result, we
can (with a slight abuse of notation) extend the initial fuel function µ to map from A × R≥0 to R≥0.
Specifically, for an arc a ∈ A, we let µ(a, ·) := µ(∆θ(a), ·). The same holds for the fuel burn function ∆µ.
For notational convenience, we also define the set of transit arcs as Atransit := Aclimb ∪Adescent ∪Aflight.
An example of a refueling graph is depicted in Figure 2.

Remark 3.1. Our construction shares some similarity with a time-expansion of a regular vehicle routing
problem. Indeed, the contraction of the request arcs and all waiting / base refueling arcs leads to a graph
with one depot (the contraction of the base arcs, i.e., the base) and |R| many customers.

However, apart from the base, no other vertices are expanded in the sense of being copied multiple
times, largely due to the fact that the requests are fixed in time. As a result, we can avoid discretizing
the time horizon and manage to find optimal solutions for all problems within a reasonable amount of
time (see Section 4).

Objective functions

As mentioned in the introduction, our goal in the air-to-air refueling problem is to reduce operating
costs, determined by both fuel consumption and fleet size. In the former case, the objective function is
given by the fuel burn function ∆µ. In the latter case, every feeder simply contributes a cost of one.
Equivalently, we can define the cost function based on the arcs of the refueling graphs, by assigning a
value of one to all arcs in δ+(s), and zero to all others. In any case, the monotonicity assumption from
Remark 2.1 is justified. In the following, we will use c to denote the objective function, understanding
that c is either ∆µ or the number of feeders.

Feasible paths

In the following, we define the initial fuel of a path P := (a1, . . . , ak−1) with arcs ai := (ui, ui+1), i =
1, . . . , k−1, and vertices V (P ) := {ui | i = 1, . . . , k}. Specifically, the initial fuel mass µP : V (P )→ R≥0
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Figure 3: The refueling graph required for the proof of Theorem 3.2.

at each vertex can be defined recursively via

µP (ui) :=

{
0 if i = k,

µ(ai, µP (ui+1)) if i < k.

We call a path P feasible iff µP (u) ≤ Mmax for all u ∈ V (P ) and denote the set of feasible (s, t)-paths
by P. Note that there is a one-to-one correspondence between the trajectories of feeders and feasible
paths through the refueling graph. We define the fuel burn of a path in a similar fashion:

∆µP (ui) :=

{
0 if i = k,

∆µ(ai, µP (ui+1)) if i < k.

3.1. Complexity

In the following, we will show the hardness of the air-to-air refueling problem:

Theorem 3.2. The problem of minimizing the number of feeders of an air-to-air refueling problem is
NP-hard in the strong sense even if all transit arcs are fixed.

Proof. We reduce from the NP-complete Numerical 3-dimensional matching (N3DM) problem in-
troduced in [18]. An instance of N3DM is given by disjoint sets X, Y , and Z, each of cardinality q, a
weight function s : X ∪ Y ∪ Z → Q>0, and a budget B ∈ Q>0, such that

∑
a∈X∪Y ∪Z s(a) = qB. The

problem asks for a partition of X ∪ Y ∪Z into q sets, each containing exactly one element from each X,
Y , and Z, where the sum of the weights of each set is equal to B.

We will construct an instance of the air-to-air refueling problem which has a feasible solution with q
feeders iff the given N3DM instance is feasible. To this end, let R := X ∪ Y ∪ Z be the set of requests.
We fix the position of the base and place the origins / destinations of the requests on opposite endpoints
of a diameter of a circle with radius % := ∆θrefuelv/2 (≈ 288 km) around the base. This choice of %
implies that the refueling operation can be carried out between those endpoints. For r ∈ R we let

θ(r) :=


θ0 + 1/2∆θrefuel if r ∈ X,
θ0 + (2 + 1/2)∆θrefuel if r ∈ Y, and

θ0 + (4 + 1/2)∆θrefuel if r ∈ Z

for some fixed θ0. Note that the radius permits the feeders to perform the climb during the advance
towards individual requests (since dclimb = 87.2 km < %). We now fix the transit arcs in order to force
the feeders to serve the requests without any flight arcs, yielding the refueling graph shown in Figure 3.

We go on to give values for the requested fuel masses M req. To this end, we note that for fixed values
of ∆θ, as is the case in our construction, the initial fuel function µ is affine in the final fuel mass Mfinal

during the flight, advance, refueling, and descent phase. What is more, µ is also an affine function with
respect to the requested fuel mass M req in the case of the refueling phases (this is easily obtained from
the formal definitions in Appendix A). Since the final fuel mass of one flight phase is equal to the initial
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fuel mass of the succeeding phase, the total amount of required fuel in order to serve requests x ∈ X,
y ∈ Y , and z ∈ Z is of the form

αxM
req(x) + αyM

req(y) + αzM
req(z) + β

for positive constants αx, αy, αz, and β. In particular, the value of β corresponds to the burned
fuel mass for a series of empty requests. From the parameters in Table 1, it is easily calculated that
β ≈ 873 kg < Mmax. Note that while these constants may no be expressible as rational numbers, for
considerations of complexity we can round them to rational numbers of sufficient precision.

Observe that it is possible to scale the N3DM instance (i.e., both B and s) by a positive factor to
obtain an equivalent decision problem. Hence, we scale the instance such that B = Mmax−β and define
the requested fuel mass for r ∈ R as

M req(r) :=


1/αx · s(x) if r ∈ X,
1/αy · s(y) if r ∈ Y, and

1/αz · s(z) if r ∈ Z.
(4)

It is easy to see that there is a one-to-one correspondence between feasible solutions of the matching
instance and solutions of the air-to-air refueling instance consisting of exactly q feeders: On the one
hand, given a partition of X ∪ Y ∪ Z into sets, each consisting of x, y, and z from the respective sets,
we assign the three requests to a feeder. By the choice of M req, the tour must be feasible.

On the other hand, consider a feasible solution of the air-to-air refueling problem with at most q
feeders. Since the requests in X (as well as in Y and Z) are parallel in time, no feeder can serve more
than three requests. Since there are 3q requests, every feeder must serve exactly one request from each
X, Y , and Z. The fact that the tours of the feeders are feasible and the choice of M req ensure that the
solution corresponds to a feasible N3DM solution.

Lastly, recall that N3DM is NP-hard in the strong sense, i.e., the size of the numbers s(·) is bounded
by a polynomial in the input length of the given instance. The values M req(·) are obtained from s and
B via an initial scaling with a factor of (Mmax − β)/B, followed by an application of (4). Since the
respective factors are constant, the sizes of M req(·) remain polynomially bounded.

Corollary 3.3. Minimizing a function c : P → R≥0 over an air-to-air refueling instance is NP-hard
in the strong sense even if all transit arcs are fixed.

3.2. Formulation as Exact Cover

The problem of minimizing a cost function while serving all refueling requests is equivalent to finding a
minimum cost exact cover of the request arcs by feasible paths:

min
∑
P∈P

cPxP

s.t.
∑

P∈P:a∈P

xP = 1 ∀a ∈ Areq

xP ∈ {0, 1} ∀P ∈ P.

(5)

We make the following observation:

Lemma 3.4. Any solution x∗ of (5) consists of paths which are arc-disjoint in Atransit.

Proof. Due to (5), the paths must obviously be arc-disjoint in Areq. Any arc in Atransit \ Areq has at
least one endpoint which is incident to a request arc. Let (u,w) be a request arc. Since δ+(u) and δ−(w)
consist only of the request arc (u,w), the claim follows immediately.

One problem in solving formulation (5) is the (potentially exponential) number of paths in P. To
overcome this, we employ a column generation technique (for a summary on the approach, see [33]) to
generate new path variables as needed. We will give details on the pricing problem below.

In terms of the formulation, we would like to point out that in many cases, including this one,
incorporating a column generation approach into a Branch-and-Bound scheme is a nontrivial matter.
This is due to the fact that the branching decisions made throughout the traversal of the Branch-and-
Bound affects the pricing problems to be solved at individual nodes: Whenever a path variable xP has
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been branched to zero or one, the corresponding additional inequality (xP ≥ 1 or xP ≤ 0) has to be
taken into account during the pricing step, which is highly nontrivial. What is more, the two branches
are unbalanced in the following sense: Branching a path P to one forces all paths P ′ sharing a transit
arc with P to zero, thereby substantially reducing the number of variables and likely increasing the dual
bound of the corresponding subproblem. Conversely, branching a path P to zero has little effect on the
overall problem.

To alleviate this problem, we introduce compound flow variables xa for a ∈ Atransit, where the com-
pound flow over the transit arcs is given by additional linking equations of the form∑

P∈P:a∈P

xP = xa ∀a ∈ Atransit,

which we add to the original problem, obtaining the following formulation:

min
∑
P∈P

cPxP

s.t.
∑

P∈P:a∈P

xP = 1 ∀a ∈ Areq

∑
P∈P:a∈P

xP = xa ∀a ∈ Atransit

xa ∈ {0, 1} ∀a ∈ Atransit

xP ∈ {0, 1} ∀P ∈ P.

(6)

We then instruct the IP solver to primarily branch on compound flow variables by assigning appropriate
branching priorities. However, in light of Theorem 3.2 (the problem is NP-hard even for fixed transit
arcs), we cannot expect to obtain 0/1 solutions even if all flow variables are fully branched out. Indeed,
several of the computational examples (see Section 4) do exhibit this behavior: there are several Branch-
and-Bound nodes in which the optimal solution of the relaxed subproblem has all transit arcs fixed to
0/1 while still containing fractional path variables. Hence, it is necessary to branch on path variables
as well as on compound flow variables, a fact which has to be taken into account in the pricing problem
(see below).

Unfortunately, the approach laid out so far poses another, more subtle problem: As we have remarked,
refueling graphs tend to be rather dense, containing large numbers of arcs. For this reason, the addition
of the compound flow variables and the corresponding equations must be carried out carefully so as not
to increase the size of the relaxations beyond what is needed.

However, while we should not slow down the LP solver by a vastly increased problem size, we still
want to add a sufficient number of compound flow variables as branching candidates in order to take
advantage of the sophisticated branching rules built into most IP solvers. To this end, we opted to
generate new compound flow variables as needed in a second column generation step. Specifically, in
each Branch-and-Bound node, once all path variables have been generated and we fail to find a path with
negative reduced costs, we examine the individual request arcs Areq. For each request arc a(r) := (u,w),
r ∈ R, we consider the arcs in δ−(u). If some of these arcs carry a fractional flow value with respect to
the current relaxation and none of the fractional arcs has an associated compound flow variable, we add
one new compound flow variable and associated equation. We found that this approach works quite well
in practice and seems to provide the underlying IP solver with a sufficiently large number of substantially
different branching candidates while keeping the total problem size in check.

Remark 3.5 (Arc-based formulations). In the context of vehicle routing and dial-a-ride problems, it
is quite common to use an arc-based two- or three-index formulation, mostly coupled with a column
generation framework (e.g., [39, 11]).

We have opted against such a formulation due to the vast increase in problem size: The refueling
graphs for the given instances (see Sect. 4.1) are already very dense, consisting of up to about one
million arcs. In order to incorporate the fuel dependent functions µ and ∆µ, we would have to expand
the graph along the different fuel values (which range from 0 to Mmax ≈ 40 000 kg). Even considering
a moderate resolution of steps of 100 kg, this would add 400 layers of copies of the refueling graph,
significantly slowing down any column generation approach.

Conversely, feasible path variables nicely capture the physical properties of the given model, while
keeping the average number of columns per LP reasonably small (usually below 10 000).

11



The pricing problem

The pricing problem is to find a new column to be added to the relaxation of a given Branch-and-Bound
node. In our case we have to find a new feasible path P ∈ P with negative reduced costs while respecting
previous branching decisions leading up to the current node in the Branch-and-Bound tree.

First, consider the situation at the root node: Given an optimum solution of the LP-relaxation of (6)
for some subset P̃ ⊆ P of the paths, find a path P with negative reduced costs or decide that no such
path exists.

Both the covering constraints and the linking constraints have dual variables (λa)a∈Areq and (δa)a∈Atransit

yielding the reduced costs of P via

cP := cP −
∑

a∈P∩Areq

λa −
∑

a∈P∩Atransit

δa (7)

Since both of our objective functions can be expressed as fuel-dependent, arc-based functions, the same
holds for the reduced costs. However, the definition of the feasible path set P includes an upper bound
on the fuel consumption, turning the pricing problem into a Constrained Shortest Path Problem (CSP).

Despite the fact that the CSP is NP-hard in general (see [22]), there are a number of algorithms, both
IP-based and combinatorial, which solve many real-world problems to optimality within reasonable time
(see [5] for a summary on the subject). We implemented a variant of the labeling scheme introduced
in [3]; see Algorithm 1. For each vertex v ∈ V , the algorithm maintains a set of labels Lv, where each
label ` ∈ Lv is a tuple ` = (M, c) of a fuel mass M and a cost value c. To keep the number of labels as
small as possible, we only keep non-dominated labels in each Lv, where ` = (M, c) is defined to dominate
`′ = (M ′, c′) iff ` 6= `′, M ≤M ′, and c ≤ c′.

For the most part, our adaptations are due to the nature of the refueling problem: Our problem is
complicated by the fact that the cost / resource functions depend on the final fuel mass. On the other
hand, the monotonicity of µ and ∆µ as well as the fact that D is acyclic work to our advantage. We
employed the following changes:

– We used the fact that the refueling graph D is acyclic: It is sufficient to expand labels according
to a topological ordering of V to ensure that all non-dominated paths are found.

– Due to the monotonicity of both considered objective functions, we were able to use c defined as
c(·, 0) as a fuel-independent lower bound of the true cost function c in order to discard suboptimal
labels.

– Similarly, we used µ, obtained from µ(·, 0), as a lower bound to identify labels which are not
contained in any feasible (s, t)-path.

– We used heuristically found paths to update an upper bound on the cost of the optimal path.

We go on to study the impact of branching decisions on the pricing problem. Firstly, consider the
subproblem where some compound flow variable xa has been fixed. If xa has been fixed to one, the
pricing problem does not change at all: While the fixing affects the LP-solution, the only dependency
between paths and compound flow variables is due to the linking constraints, which we already take
into account. If on the other hand xa is fixed to zero, we simply exclude the corresponding arc from
consideration during the execution of Algorithm 1, since no path containing a must be added to the
current subproblem.

Still, according to Theorem 3.2, the problem of optimizing the number of feeders remains NP-hard
even when all transit arcs are fixed to 0/1 values. Thus, we cannot expect to obtain an integral solution
to the corresponding relaxation. This means that, at some point, we may have to branch on path
variables and modify the pricing problem accordingly.

If a variable xP has been fixed to one, we know that the arcs in P ∩ (Atransit ∪Areq) can be excluded,
since they are exclusively used by P in the subproblem. The problematic case occurs when a set P0 ⊆ P
of paths has been branched to zero, in which case we have to find a path minimizing (7) not contained
in P0, corresponding to a routing problem with forbidden paths. The problem of routing with forbidden
paths has been examined previously [38], leading to a dynamic programming algorithm, which solves
the shortest path problem with forbidden paths (SPPFP) in polynomial time [42].

In the more general case of a CSP with forbidden paths, we cannot hope for a polynomial algorithm.
However, we can adapt the dynamic programming algorithm to our use case. Specifically, we detach
the forbidden path problem from the CSP by means of a preprocessing step, generating label sets Lv
corresponding to the paths in P \ P0 for each vertex v ∈ V . We then adapt Algorithm 1 to accept the
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Algorithm 1: A labeling scheme used to find constrained shortest paths

Input : Directed acyclic graph D = (V,A),
Topological ordering s = u1, . . . , un = t of D
Costs c : A×R≥0 → R≥0, Cost bounds c : V × V → R≥0,
Initial fuel function µ : A×R≥0 → R≥0,
Initial fuel bound µ : V × V → R≥0

Output: Feasible (s, t)-path Popt with minimum cost with respect to c
Lu ← ∅ for all u ∈ V \ {t}, Lt ← {(0, 0)}
(copt, Popt)← (∞, ∅)
for j ← n downto 1 do

foreach label `j ← (M j , cj) ∈ Luj do . M j , cj : fuel, cost of label `j
Pj ← the (uj , t)-path corresponding to `j
foreach a← (ui, uj) ∈ δ−(uj) do

M i ← µ(a,M j)
ci ← cj + c(a,M j)
if ci + c(s, ui) ≥ copt then continue
if M i + µ(s, ui) > Mmax then continue

else
P ← composition of the path achieving c(s, ui), arc a, and Pj

if P is feasible and c(P ) < copt then
(copt, Popt)← (c(P ), P )

if (M i, ci) is not dominated in Lui then
Insert (M i, ci) into Lui , remove newly dominated labels from Lui

foreach label `s ← (M, c) ∈ Ls do
P ← (s, t)-path corresponding to `s
if c(P ) < copt then (copt, Popt)← (c(P ), P )

return Popt
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sets Lv as initial labels during its otherwise unmodified execution. In the case where P0 is empty, we
simply generate a single label for vertex t instead, skipping the preprocessing step.

For the preprocessing step, consider first the case of a single forbidden path P 0 and a feasible path
P (i.e., a path not equal to P 0). If we follow P from t to s, we see a (possibly empty) sequence of
arcs shared by P and P 0 up to some vertex v 6= s where the paths split. More formally, there must be
some arc a = (u, v) in δ−(v) in P \ P 0 such that P and P 0 have the same (v, t)-subpath. Therefore,
it is sufficient to create labels for every such vertex u, where costs and initial fuel values correspond to
the composition of the (v, t)-subpath of P 0 and the arc a. If P0 consists of a set of internally disjoint
subpaths, the situation is quite similar, we simply add labels for each of the paths one after another.

Lastly, consider the general case of several paths in P0 not being internally disjoint. In this case, a
vertex v in V \ {s, t} may be contained in a set Pv ⊆ P0 of multiple forbidden paths. Before creating a
label based on an incoming arc a = (u, v) for a path P ∈ Pv, we have to ensure two things. Firstly, a
must not be in P . Secondly, there must not be a path P ′ ∈ Pv containing a and sharing its (v, t)-subpath
with P . Thus, we order the paths in Pv into buckets according to their (v, t)-subpaths and create labels
for each bucket and each arc in δ−(v) not contained in any of the paths of the current bucket. The
unique (v, t)-subpath corresponding to the bucket is used to assign a cost / initial fuel value to the newly
created labels.

Remark 3.6 (Pricing performance). We found that despite of the complexity of the pricing problem, the
labeling scheme introduced to solve the CSP is working efficiently in practice. Even for larger instances
(see Section 4), less than 20 % of the computation time is spent on pricing variables.

One might ask whether a heuristic pricing approach could decrease the time spent to generate new
variables. Specifically, it is sufficient to find suboptimal paths, as long as their reduced costs are negative.
Algorithm 1 lends itself quite well as a heuristic: If we simply return the first path with negative reduced
costs, we can improve the performance of the individual iterations of the pricing procedure.

However, using Algorithm 1 heuristically increases the total computation time significantly. Appar-
ently, the decrease in computation time of the pricing procedure is nullified by the worse quality of the
computed paths. What is more, during the majority of pricing iterations, especially when they occur at
nodes lower in the Branch-and-Bound tree, no paths are found. Instead, the optimality of the given LP
solution is proven, meaning that heuristic paths simply do not exist.

3.3. Formulation as Set Cover

Note that formulation (5) is a textbook case of a set partitioning problem. It is generally preferred,
whenever possible, to relax the partitioning problem to a set covering problem instead. This is due to
the fact that set covering problems are better understood from a theoretical point of view as well as more
tractable in practice (see [6] for an in-depth explanation). The set covering relaxation of (6) is given as

min
∑
P∈P

cPxP

s.t.
∑

P∈P:a∈P

xP ≥ 1 ∀a ∈ Areq

∑
P∈P :a∈P

xP = xa ∀a ∈ Atransit

xa ∈ {0, 1} ∀a ∈ Atransit

xP ∈ {0, 1} ∀P ∈ P.

(8)

We proceed to show that the covering relaxation (8) does indeed yield solutions with the same objective
function value for both objective functions. To this end, we consider shortcut paths. Let P be a path
serving a request r ∈ R and let a, a(r), a′ be the corresponding sequence of arcs connecting vertices u
and w (see Figure 4). The shortcut path P ′ is defined as follows: If both u and w are base vertices,
say bθ and bθ′ with θ < θ′, we know from the construction of the refueling graph that there is a path of
waiting arcs connecting bθ and bθ′ . We replace the sequence a, a(r), a′ by that path. If either u or w are
base vertices, we form P ′ by delaying the takeoff or advancing the landing and inserting some waiting
arcs at appropriate positions. If both u and w are request vertices, we replace the sequence a, a(r), a′

by the arc (u,w), which is guaranteed to exist since w is reachable from u.

Lemma 3.7. Let P be a path, P ′ its shortcut along the sequence a, a(r), a′ for r ∈ R. Then P ′ is
feasible as well. The cost of P ′ with respect to ∆µ does not increase.
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Figure 4: The dashed arc is a shortcut in a sequence of refueling arcs.

Proof. If the sequence a, a(r), a′ is replaced by a single flight arc, feasibility follows from the fact that the
distance function d is metric, and that the initial fuel function µ is non-increasing in the flight duration
(see Remark 2.1).

Regarding the objective function, we observe the following: The monotonicity of ∆µ in the flight
duration ensures that the cost of the flight arc is no more than that of the sequence a, a(r), a′. The
monotonicity in the final fuel mass ensures that the costs of the arcs in P ′ preceeding a does not increase.

Similar arguments can be made in case of delayed takeoffs / advanced landings, and of course in the
case where a takeoff / refueling / landing sequence is replaced by a sequence of waiting arcs.

Note that trivially, the number of paths does not increase when we replace P by P ′, so we can also
use shortcuts when minimizing the number of feeders. We can therefore choose to solve formulation (8)
instead of (6) and obtain equivalent solutions.

A simple primal heuristic

Consider the problem of minimizing the number of feeders required to serve all cruisers (i.e., cP ≡ 1).
In this case, we can utilize the well-known greedy heuristic for the set covering problem [25] in order to
obtain an initial feasible integer solution. Specifically, we perform the following steps:

1. Let k ← 1, A′ ← ∅.
2. Let Pk be the feasible path in (V,A \A′) containing the maximum number of refueling arcs.

3. Set A′ ← A′ ∪A(Pk), k ← k + 1.

4. If there remain uncovered refueling arcs, go to 1.

We find the paths Pk by using a slight adaptation of Algorithm 1: Firstly, we use a cost function c which
is −1 on Areq and 0 otherwise. Secondly, we restrict the search to refueling arcs not yet covered by the
paths P1, . . . , Pk−1, simply by ignoring all arcs in A′ during the search. Note that the path computations
become increasingly easier as more refueling arcs are covered.

3.4. Fundamental Path Graph Formulation

In this subsection, we will discuss some of the drawbacks of the previously defined formulation (6), and
derive an improved formulation. The main shortcoming of (6) is rooted in the fact that the formulation
does not include any information about whether or not different paths can be combined to be served
by a single feeder. Instead of combining a set of paths, it is necessary to find the combination in a
subsequent pricing step. This makes it very hard for any off-the-shelf heuristic to find feasible solutions.
Similarly, the larger number of variables increases the computation time required to solve the occurring
LP-relaxations and to conduct pricing steps. The problem becomes more pronounced if paths consist of
a large number of subpaths.

In the following, we will make the notion of compatibility between different paths more formal. To this
end, consider a feeder traversing the graph D along a (nontrivial) path P ∈ P: After an initial waiting
and refueling step, the feeder takes off to serve requests (following a subpath of arcs in Atransit∪Areq). It
then returns to the base for an intermediate waiting / refueling period, serves some more request, and so
on. An intermediate period corresponds to a sequence of base vertices bθ, . . . , bθ′ , where ∆θ := θ′−θ > 0.
If ∆θ < ∆θbase,refuel, then the feeder is simply waiting at the base before advancing towards another
request. Otherwise, we can assume w.l.o.g. that the feeder is refueling right before taking off at θ′ and
waiting during [θ, θ′ −∆θbase,refuel). Formally, we make the following definition:

Definition 3.8 (Fundamental Path). A path P is called fundamental iff it has the following properties:

– P begins with a base refueling arc and ends with a descent arc.
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– All other arcs of P are in Atransit ∪Areq ∪Await.

– For all a ∈ (P ∩Await) it holds that ∆θ(a) < ∆θbase,refuel.

Remark 3.9. A subject related to fundamental paths is the concept of partial paths (see [37, 35]), in
which a vehicle routing problem is decomposed into paths with restricted length in terms of the number
of their arcs. Variables are introduced for these partial paths, usually combined with a column generation
approach, and the composition of partial paths into proper paths is included in the model. This approach
has the upside of working with any type of vehicle routing problem, whereas the concept of fundamental
paths is applicable to time-dependent VRPs. Fundamental paths on the other hand make it possible to
handle the composition of fundamental paths into tours in a largely implicit fashion while requiring only
a few additional constraints.

We can decompose any arbitrary path P into subpaths at vertices which are sources of base refueling
arcs. We then remove trailing waiting arcs from the subpaths and denote the subpaths by P1, . . . , Pk.
It is easy to see that the paths Pi, i = 1, . . . , k, are fundamental paths.

Each fundamental path Pi with source vertex si and target vertex ti has an associated time window
[θ(si), θ(ti)). The time window of a path P is then given as the union of the time windows of its
fundamental paths.

Definition 3.10 (Conflicting Paths). Two paths P and Q are conflicting iff their time windows intersect.
If P and Q are not conflicting, then the two paths are compatible and can be served by a single feeder.

After having formally defined the concept of conflicting paths, we see that so far we have not handled
conflicts and compatibilities in a very sensible way. In fact, formulation (6) simply overestimates the
time windows of the paths to be equal to the time horizon of the entire instance. On the upside, this
makes the formulation a lot simpler. However, if we take better care of the combinations of different
paths, we can separate the problem of finding paths through the refueling graph from the problem of
assigning sets of conflict-free paths to individual feeders.

Remark 3.11. Decompositions have always played a crucial role in order to solve vehicle routing and
dial-a-ride problems. As an example, the authors of [11] use a cluster first – route second approach
to facilitate the solution of large-scale dial-a-ride problems. Additionally, the authors divide the time
horizon of the problem into different time slices to obtain smaller and easier subproblems.

While we follow a similar approach here, we would like to point out that the decomposition into
fundamental paths is exact (as will be shown in Theorem 3.13). Furthermore, the decomposition is
carried out in an implicit fashion, requiring only a modified pricing procedure and some additional
inequalities added to the master problem.

We can define the problem of assigning fundamental paths to feeders more formally by introducing
the path conflict graph I. This graph contains the paths in P as vertices, where P , Q ∈ P are connected
by an edge in I iff the paths are conflicting. Finding an assignment of a set of paths in P to a fixed
number of feeders is equivalent to solving a graph coloring problem in the conflict graph I.

Coloring problems are in general quite challenging to solve computationally. The large number of
paths constituting the conflict graph further complicates matters. Fortunately, the structure of the con-
flict graph I enables us to solve the assignment problem in an implicit fashion, which adds little overhead
to the formulation. Specifically, we will give a formulation based on fundamental paths, which incor-
porates the assignment problem while only adding one additional variable and linearly many additional
inequalities.

We let Ifund be the conflict graph induced by the set of fundamental paths and make the following
observation:

Lemma 3.12. The conflict graph Ifund of fundamental paths is an interval graph. Every clique in Ifund

intersects in θ(u) for some u ∈ V .

Proof. We already established that the time windows of fundamental paths are intervals. Since edges in
Ifund correspond to intersecting intervals, the first part follows.

For the second part, consider a collection P1, . . . , Pk of fundamental paths forming a clique in I and
note that every pair of paths intersect. Helly’s Theorem (see, e.g., [12]) now implies that all time windows
intersect in a single interval I := [θmin, θmax). Furthermore, the point θmin is given as the left endpoint
of the time window of some Pi, i = 1, . . . , k, which in turn corresponds to a vertex u ∈ V .
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Figure 5: A fundamental path graph Dfund. Refueling arcs are drawn thick, base waiting arcs
dashed, base refueling arcs dotted, and transit / auxiliary arcs solid.

We go on to modify the refueling graph D in order to obtain a fundamental path graph Dfund =
(Vfund, Afund) based on the following rules:

– We add (base) refueling, climb, descent, and flight arcs in the same way as in the refueling graph.
We denote the corresponding arc sets by Abase,refuel

fund , Arefuel
fund and so on.

– We connect each landing vertex bθ with each takeoff vertex bθ′ if 0 ≤ θ′ − θ < ∆θbase,refuel, using
a waiting arc. We define Await

fund to be the set of waiting arcs.

– We add an origin s, a destination t, and auxiliary arcs connecting s to all takeoff vertices, and t
to all landing vertices. We let Aaux

fund be the corresponding set of arcs.

In order to make the most of Lemma 3.12, we define for each u ∈ V the set Aθ(u) as the set of non-
auxiliary arcs whose time-windows contain θ(u), i.e.,

Aθ(u) := {a ∈ Afund \Aaux
fund | θ(u) ∈ ∆θ(a)},

and use these arc sets in order to define clique inequalities of the form∑
a∈Aθ(u)

xa ≤ β.

Furthermore, we let Pfund be the set of (s, t)-paths in Dfund, where we understand that the removal of
the auxiliary variables from some path in Pfund yields a fundamental path as defined above.

In order to restrict the number of required feeders to some value β while satisfying all requests, we
reformulate model (6) in terms of paths through the fundamental path graph Dfund:∑

a∈Aθ(u)

xa ≤ β ∀u ∈ Vfund

∑
P∈Pfund:a∈P

xP = xa ∀a ∈ Atransit
fund∑

P∈Pfund:a∈P

xP = 1 ∀a ∈ Areq
fund

xa ∈ {0, 1} ∀a ∈ Atransit
fund

xP ∈ {0, 1} ∀P ∈ Pfund.

(9)

Note that while the refueling graph and the fundamental path graph are related, there is a number
of subtle differences (see Figures 2 and 5 for examples of the respective graphs). The key difference
lies in the way the waiting periods between requests are represented: In the case of a refueling graph,
the waiting periods are modeled using a series of waiting arcs. In contrast to this, the fundamental
path graph allows any path to finish directly after any landing vertex by skipping to t. Symmetrically,
by skipping from s to any takeoff vertex, a path can be confined to a later time period. While the
fundamental path graph contains waiting arcs as well, these arcs are short with respect to ∆θ and we
can expect a smaller number of them for most instances.

This difference translates to the respective formulations (6) and (9): We can expect a solution of the
set covering formulation to consist of few paths, each covering a large number of requests, whereas a
solution of the fundamental path formulation comprises a larger number of paths containing fewer arcs.
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While limiting the number of paths is achieved explicitly in the set covering formulation, the same effect
is achieved using clique inequalities in the fundamental path graph.

To incorporate the different objective functions, we proceed as follows: In case we wish to minimize
the number of feeders, we add minβ as an objective function (letting β be an optimization variable). In
case we want to minimize fuel consumption without any constraint regarding the number of feeders, we
do not need to include the variable β and the clique inequalities at all. If on the other hand we want
to minimize fuel consumption while restricting the number of feeders, we can fix β to some value while
minimizing.

We would like to remark that Dfund is a directed acyclic graph as well. We can extend the definition
of µ and ∆µ to the auxiliary arcs (where no fuel is consumed) and use Algorithm 1 to find paths
with negative reduced costs in Pfund. We can also generate branching variables as we did in case of
the previous formulation, once again yielding a Branch-and-Price framework. On the other hand, the
restrictions regarding the waiting time between requests make it impossible to reformulate (9) as a
set covering problem. Specifically, we are no longer able to shortcut request arcs by delaying takeoffs
or advancing landings, which might increase base waiting times beyond ∆θbase,refuel. These long base
waiting arcs are specifically excluded from the constructed fundamental path graph.

Theorem 3.13. The formulations (5) and (9) are equivalent in the following sense: Any optimal solu-
tion x̃ of (5) can be transformed into a solution (x∗, β∗) of (9) with the same objective value and vice
versa.

Proof. Let x̃ be an optimal solution of (5). Let P1, . . . , Pk be the paths contained in x̃. We decompose
all Pj , j ∈ [k], into fundamental paths Qji , i ∈ [kj ] for some kj , as described above and let Q be the
resulting set of all paths. We add auxiliary arcs (from s and to t) to each Qi ∈ Q to turn it into an
(s, t)-path in Dfund and set the corresponding entry of x∗ to one. It is easy to see that the paths of
the resulting solution serve all requests. It is straightforward to incorporate the values of the compound
flow variables xa into x∗ as well. Finally, we let β∗ := k be the number of paths in the solution x̃. Note
that this choice of β∗ ensures that all clique inequalities are satisfied: We know from Lemma 3.4 that
the paths P1, . . . , Pk are arc-disjoint on Atransit. Since D is acyclic, these k paths must satisfy the clique
inequalities and so must the paths in Q.

Conversely, consider an optimal solution (x∗, β∗) of (9) and let Q := {Q1, . . . , Q`} be the paths
comprising the solution x∗. If ` ≤ β∗, i.e., if the solution consists of at most β∗ paths, then we can
set x̃(Qj) = 1 for j = 1, . . . , ` to obtain a solution of (5) with an objective value of `. Since (x∗, β∗) is
optimal, it must hold that ` = β∗.

If on the other hand ` > β∗, then we have to combine the fundamental paths into β∗ many paths in
D. Recall that the conflict graph Ifund is an interval graph and therefore a perfect graph. The same
holds for the subgraph of Ifund induced by the paths in Q. The clique inequalities ensure that there is
no clique of size larger than β∗ in this subgraph. We can therefore find a coloring of the paths in Q
consisting of at most β∗ colors. Each color i = 1, . . . , β∗ corresponds to a set of pairwise compatible
paths, which can be combined into a single path Pi. The paths Pi form a solution x̃ of (5) with an
objective value of β∗, as required.

Remark 3.14. The conflict graph Ifund is in fact chordal. Therefore, a coloring of Ifund (and any
induced subgraph) can be easily obtained by ordering the intervals according to their endpoints and
coloring them greedily.

4. Computational experiments

All experiments were conducted using an implementation in the C++ programming language compiled
using the GNU C++ compiler with the optimizing option -O2. We used version 6.0.0 of the SCIP [1]
optimization suite and version 8.1 of Gurobi [20] as underlying LP solver. All measurements were taken
on an Intel Core i7-965 processor clocked at 3.2 GHz. We set a time limit of 3 600 s.

4.1. Instances

In the following, we will briefly discuss the instances used for the computational experiments (see Table 2
for the complete list). The instances fall into two scenarios, namely the Asia and the Transatlantic
Scenario, corresponding to the respective regions of the world.
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Table 2: Instances considered during the computation

Code Name # Requests

Asia

UBBB Heydar Aliyev International Airport 312
UTDD Dushanbe International Airport 78
UAAH Balkhash Airport 112
USNN Nizhnevartovsk Airport 84
UNNT Tolmachevo Airport 300
UWPS Saransk Airport 304
UKFF Simferopol International Airport 540
UOOO Alykel Airport 136

Atlantic

EINN Shannon Airport 300
BIRK Reykjav́ık Airport 120
BGSF Kangerlussuaq Airport 196
CYQX Gander International Airport 1 428
LPLA Lajes Field 158
CYYR CFB Goose Bay 580
CYYQ Churchill Airport 46
LUKK Chisinau International Airport 82

For each scenario, a number of eight tanker bases was chosen, subjecting to the constraint that the
bases should be located at an existing airport with a runway of a length sufficient for the feeder aircrafts.

In the Transatlantic Scenario, likely refueling positions for most flights are located over the northern
Atlantic, south of Greenland. Thus, with Gander International Airport, CFB Goose Bay, Kangerlussuaq
Airport, Reykjav́ık Airport and Shannon Airport, five of the eight feeder bases were chosen located in
this region. To serve the southern traffic between South America, the Caribbean and south Europe,
Lajes Field on the Azores was used as a further feeder base. Churchill Airport was selected to serve
flights to the West Coast from central Europe and Chisinau International Airport to serve flights going
to the Middle East.

The feeder base selection in the Asia Scenario proved more difficult, since the refueling positions for
the flights in the scenario cover a wide area over west and middle Asia, with some flights having refueling
positions even in the eastern parts. To serve a wide variety of flights, the eight bases have been divided
into two groups. The first one, consisting of Heydar Aliyev International Airport (Baku), Saransk
Airport, and Simferopol International Airport is dedicated to flights between Europe, the Middle East,
and India. The airports Dushanbe International Airport, Balkhash Airport, Nizhnevartovsk Airport,
Tolmachevo Airport, and Alykel Airport form a line from the north to the south in central Asia in order
to cover the wide arc of flights connecting to east and southeast Asia.

The workload of the feeder bases varies in both scenarios. In the Asia Scenario, the number of requests
per base ranges from 78 at Dushanbe International Airport (Instance 1) to 540 at Simferopol International
Airport. In the Transatlantic Scenario the difference between the requests at the different bases is even
higher, ranging from 46 request at Churchill Airport to 1428 request at Gander International Airport.
Furthermore, the requests are not equally distributed over the whole day. Most feeder bases have peak
traffic times and times with small or no workload at all. Thus, each instance posed different challenges
for the optimization.

Regarding the cruiser positions, the origins / destinations were chosen such that the base is (approx-
imately) at the center of the circle defined by the origin / destination of the individual requests. Based
on the refueling time ∆θrefuel and the speed v of the feeder, this fixes the requests at distances of about
144 km from the base. Additionally, the cruisers follow their flight corridors, resulting in angles around
the base being distributed around those corresponding to an overall flight path.

The differences in the number of requests and their distribution also affect the sizes of the refueling
graphs used during computations, ranging from just 230 vertices and 1 300 arcs for the base at Churchill
Airport to 7 138 vertices and 994 247 arcs at Gander International Airport. It is worth noting that the
graphs are rather dense, which is due to the fact that, in theory, feeders can spend hours of time in
holding patterns while waiting for cruisers to arrive.
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Table 3: Performance of the set covering formulation (8) and the fundamental path formula-
tion (9) (for the minimization of the number of feeders).

Instance
Set covering Fundamental path

Running time (s) Gap Running time (s) Gap

Asia

UBBB 3 600 0.33 2.89 0
UTDD 3 600 0.11 0.06 0
UAAH 3 600 0.11 0.11 0
USNN 3 600 0.2 0.23 0
UNNT 3 600 0.08 1.70 0
UWPS 3 600 0.06 1.00 0
UKFF 3 600 0.2 25.87 0
UOOO 0.34 0 0.18 0

Atlantic

EINN 2.34 0 1.53 0
BIRK 3 600 0.12 0.08 0
BGSF 3 600 0.35 1.08 0
CYQX 3 600 – 2 882.28 0
LPLA 0.22 0 0.15 0
CYYR 3 600 12 24.08 0
CYYQ 0.18 0 0.08 0
LUKK 0.08 0 0.11 0

Artificial instances

In addition to the 14 instances from Table 2, we generated several artificial instances to study both
the computational performance of our formulations and the effect of instance sizes and properties. We
chose sizes (in terms of |R|) of 100, 200, 500, and 1 000. The instances are based on requests of around
10 000 kg each during a 48 hour time window. The flight corridors are either narrow or wide, the flight
paths either unidirectional or bidirectional. For each variant, we used ten different random seeds, yielding
a total of 160 instances. More details are given in Appendix B. The set of instances (both original and
artificial) may be accessed based on the DOI 10.6084/m9.figshare.8305988.v1.

4.2. Results

We were able to find at least some solution for all instances with respect to both objective functions
within the prescribed time limit of one hour. The resulting costs, as well as a comparison with the
state-of-the-art solution [34], are depicted in Table 5. A comparison of the computation times between
the set covering formulation (8) and the fundamental path formulation (9) is shown in Table 3. In case
an instance was not solved to optimality, the table shows the remaining gap, defined as (p− d)/d, where
p is the objective function value of the best known feasible solution and d is the best known lower bound.

Running times

In terms of running times (see Table 3), the size of the instance plays a significant role. Indeed, the
most challenging instance is also the largest: Gander International Airport (CYQX). Instances with fewer
than 100 requests are solved rather quickly. The relationship between size and computation time is more
clearly visible for the fundamental path formulation, while there are some outliers with respect to the set
covering formulation. Specifically, the instance at Shannon Airport (EINN) is solved remarkably quickly
given its size.

Regarding the different formulations, the fundamental path formulation is clearly superior to the set
covering formulation: The latter fails to solve the larger instances within the time limit, and, in case of
the feeder base at CYQX, even fails to solve the root LP in order to obtain a nontrivial lower bound. In
contrast, the fundamental path formulation solves all instances to optimality in under 50 min.

Regarding the artificial data, the results are even more pronounced (see Table 4 for a summary):
While for the fundamental path formulation, even the largest instances can be solved in under 5 min,
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Table 4: Performance of the set covering formulation (8) and the fundamental path formula-
tion (9) over the artificial instances. Running times are averaged arithmetically, includ-
ing unsolved instances (counting with the time limit of 3 600 s). An instance is defined
by its size, whether it is uni- (U) or bidirectional (B), and whether its flight corridor is
narrow (N) or wide (W).

Instance Set covering Fundamental path

Solved instances Running time (s) Running time (s)

100
U

N 10 0.13 0.04
W 10 0.15 0.04

B
N 10 0.19 0.06
W 9 360.15 0.06

200
U

N 9 720.73 0.27
W 7 1 080.49 0.31

B
N 5 1 800.61 0.41
W 4 2 160.48 0.49

500
U

N 2 2 882.08 5.77
W 2 2 882.66 6.89

B
N 2 2 881.55 7.16
W 2 2 882.82 6.33

1000
U

N 0 3 600 98.88
W 0 3 600 193.19

B
N 0 3 600 223.23
W 0 3 600 271.27

the set covering formulation performs increasingly poorly as the instance size increases, and none of the
largest instances can be solved within the prescribed time limit.

Solution quality

As mentioned before, we are interested in minimizing the feeder fleet size as well as the combined fuel
consumption. We collected the values of both objectives for both the exact solution and the original
distribution system across the different scenarios in Table 5. Firstly, it is worth noting that, while the
number of feeders does not vary too much between the exact and the state of the art solution, the fuel
consumption of the feeder fleet is drastically reduced in the exact solution across all instances.

Specifically, the feeder fuel burn could be reduced by 55 % in the Asia Scenario and 58 % in the
Transatlantic Scenario. When considering the two scenarios as a whole, we should of course take the
cruisers’ fuel consumption into account as well. In the Asia Scenario, the cruisers burn 50 543 902 kg of
fuel, whereas in the Transatlantic Scenario that value is 56 655 982 kg. The improvement in feeder fuel
consumption translates into combined savings of 2.12 % and 3.23 % of the total fuel consumption for the
respective scnearios.

The state-of-the-art heuristic assigned feeders in an online fashion while favoring the assignment of
airborne feeders over the feeders located at the feeder base. The exact solutions for the fleet size were
able to save one or two feeders at smaller feeder bases, but due to the relatively simple scenarios the
original distribution worked quite well. Conversely, larger instances could profit from the new solutions:
The number of necessary feeders at CYQX could be reduced from 59 to 49 and the numbers at CYYR could
be reduced from 27 to 22. Apparently the simple distribution mechanic is unable to scale up to more
complex scenarios.

Regarding fuel consumption, we see several reasons for the larger improvements: Due to the fact that
the original distribution mechanic assigned feeders using an online approach, the feeders were scheduled
to take off with full tanks and return to the base once unable to satisfy further demands. In contrast,
planning entire tours ahead of time makes it possible to determine the amount of fuel required in order to
satisfy all requests exactly. Specifically, during low traffic feeders only need an amount of fuel sufficient
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Table 5: Exact vs. state-of-the-art heuristic solution values across all instances. State-of-the-art
solutions are due to [34, Fig. 11, “sim Feeder”]

Instance
Exact solution State-of-the-art

# Feeders Fuel burn (kg) # Feeders Fuel burn (kg)

Asia

UBBB 18 149 878 20 314 696
UTDD 9 47 190 11 92 276
UAAH 9 60 343 9 122 061
USNN 5 38 352 6 85 155
UNNT 12 164 496 15 353 037
UWPS 17 132 237 18 314 244
UKFF 20 248 145 22 583 643
UOOO 11 87 915 11 180 365

Atlantic

EINN 18 156 632 18 364 027
BIRK 8 64 466 9 144 334
BGSF 10 113 210 11 222 811
CYQX 49 636 261 59 1 537 251
LPLA 9 78 202 9 173 388
CYYR 22 272 846 27 643 749
CYYQ 5 39 164 6 160 562
LUKK 7 36 900 9 90 335

for the refueling of one or two cruisers, resulting in lower fuel consumption of the feeder itself. During
high traffic times, the feeders take off with almost full tanks, reducing the benefits of planning entire
tours ahead of time. However, the original heuristic restricted feeders to three consecutive refueling
maneuvers before returning back to the base. Conversely, the exact solutions do not depict this behavior
of the feeders. The removal of this restriction both saves fuel and reduces the number of feeders in the
high traffic instances.

Of course, apart from these shortcomings of the simple distribution mechanic, it is (unsurprisingly)
the case that the mechanic, as a heuristic algorithm, fails to deliver exact solutions to the underlying
NP-hard problem.

Lastly, regarding the trade-off between number of tankers and fuel consumption, Figure 6 shows the
Pareto front with respect to both objectives in the case of the feeder base at Shannon Airport (EINN).
We see that the addition of a single feeder substantially decreases fuel consumption, whereas further
increases in fleet size yield marginal improvements in fuel consumption.

5. Conclusion and Future Work

In this paper, we introduced the air-to-air refueling problem as a variant of a vehicle routing problem.
We established a simplified, sufficiently accurate physical model of the fuel consumption during refueling
operations, which we then used to derive a Branch-and-Price framework incorporating an adapted label-
ing algorithm to solve the pricing subproblem. We used the concept of fundamental path and conflict
intervals in order to derive a different formulation.

We compared both formulations with respect to their running times across several instances and found
that the reformulation performs significantly better than the original one, bringing the computation time
down to less than half an hour even for the largest instances.

From the airtraffic perspective, the exact solutions more than halved the fuel consumption of the
feeders across the different instances, resulting in significant savings in terms of operating costs. Similarly,
we were able to obtain solutions with a significantly reduced number of feeders.

The practical tractability of the air-to-air refueling problem suggests that it is possible to incorporate
the refueling problem into the scheduling of routes for the cruisers along the different bases. Furthermore,
it may be worth investigating how the solutions can be made robust against uncertainties regarding the
refueling times and locations. Finally, any improvement of the design of both the cruiser and the feeder
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Figure 6: The Pareto front of the solutions with respect to the number of feeders and the fuel
consumption in the case of the base at EINN.

aircrafts with respect to fuel consumption may yield additional benefits to the overall operating costs.
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[17] Gerald Gamrath and Marco Lübbecke. “Experiments with a generic Dantzig-Wolfe decom-
position for integer programs”. In: International Symposium on Experimental Algorithms.
Springer. 2010, pp. 239–252. doi: 10.1007/978-3-642-13193-6_21.

[18] Michael R Garey and David S Johnson. Computers and Intractability. W.H. Freeman and
Company, San Francisco, 1979.

[19] Bruce L Golden, Subramanian Raghavan, and Edward A Wasil. The vehicle routing prob-
lem: latest advances and new challenges. Vol. 43. Springer Science & Business Media, 2008.
doi: 10.1007/978-0-387-77778-8.

[20] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2018. url: http://www.
gurobi.com.

[21] Ernst Hairer, Syvert Nørsett, and Gerhard Wanner. Solving Ordinary Differential Equa-
tions I: Nonstiff Problems. 1993. doi: 10.1007/978-3-540-78862-1.

[22] Gabriel Y Handler and Israel Zang. “A dual algorithm for the constrained shortest path
problem”. In: Networks 10.4 (1980), pp. 293–309. doi: 10.1002/net.3230100403.

[23] Gerhard Hiermann et al. “The Electric Fleet Size and Mix Vehicle Routing Problem with
Time Windows and Recharging Stations”. In: European Journal of Operational Research
252.3 (2016), pp. 995–1018. doi: 10.1016/j.ejor.2016.01.038.

[24] ICAO. Long-Term Traffic Forecasts. Passenger and Cargo. Accessed April 16, 2019. Apr.
2018. url: https : / / www . icao . int / sustainability / Pages / eap - fp - forecast -

scheduled-passenger-traffic.aspx.

[25] David S. Johnson. “Approximation algorithms for combinatorial problems”. In: Journal
of Computer and System Sciences 9.3 (1974), pp. 256–278. issn: 0022-0000. doi: https:
//doi.org/10.1016/S0022-0000(74)80044-9. url: http://www.sciencedirect.com/
science/article/pii/S0022000074800449.
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A. Formal Definitions

A.1. Definition of the Initial Fuel Functions

In the following, we give the formal definitions of the function µ : R≥0 × R≥0 → R≥0 describing the
initial fuel mass, depending on the final fuel mass Mfinal and the duration ∆θ of the corresponding phase.

Free flight

Recall that in the free flight phase the fuel mass is according to (2). Thus, the initial fuel is given by

µflight(Mfinal,∆θ) :=
(
Mfinal +Mac

)
· exp

(
v ·∆θ
X

)
−Mac +Mfinal.

Advance

Recall that the advance phase requires an initial climb with a minimum duration of ∆θclimb, which is
conducted with a reduced efficiency Xclimb. We first consider the case where ∆θ = ∆θclimb, in which
the initial fuel is given as

µclimb(Mfinal,∆θ) :=
(
Mfinal +Mac

)
· exp

(
v ·∆θ
Xclimb

)
−Mac +Mfinal.

Recall that the climb of a feeder is always conducted in order to advance to the origin of some request.
The case where ∆θ = ∆θclimb corresponds to a situation where the initial request is within a range of
dclimb of the base. However, if the origin of the request is further from the origin, the duration of the
advance is ∆θ > ∆θclimb. In this case, the advance includes another free flight phase of a duration of
∆θ −∆θclimb. The initial fuel of the advance is therefore given as

µadvance(Mfinal,∆θ) :=

{
µclimb(Mfinal,∆θclimb) if ∆θ = ∆θclimb,

µflight(µclimb(Mfinal,∆θclimb),∆θ −∆θclimb) otherwise,

where we understand that ∆θ ≥ ∆θclimb must hold.

Descent

Recall that the final part of the descent is conducted while gliding, in which case fuel is consumed at a
fixed rate of ρgliding. The gliding distance dgliding determines the maximum gliding duration ∆θgliding :=
dgliding/v, and the corresponding fuel consumption is given by

µdescent(Mfinal,∆θ) :=

{
µflight(Mfinal + ρgliding∆θgliding∆θ −∆θgliding) if ∆θ > ∆θgliding,

Mfinal + ρgliding∆θ otherwise.

Refueling

Recall that during contact, the fuel mass is given by (3). Therefore, the initial fuel is equal to

µcontact(Mfinal) :=
(
Mfinal +Mequiv(r)

)
· exp

(
v ·∆θcontact

X

)
−Mequiv(r) +Mfinal.

Since the approach / retreat is conducted in free flight, the initial fuel of a refueling operation is easily
calculated as

µrefuel(Mfinal) := µflight(µcontact(µflight(Mfinal,∆θretreat)),∆θapproach).

Base waiting / refueling

If a feeder is waiting at the base, then there is no change in fuel, i.e.,

µwait(Mfinal,∆θ) := Mfinal.

If a feeder is being refueled at the base, we assume w.l.o.g. that it must have arrived without any fuel
to spare:

µbase,refuel(Mfinal,∆θ) := 0.
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A.2. Definition of the Fuel Burn Functions

As mentioned above, the fuel burn function ∆µ : R≥0 ×R≥0 → R≥0 is defined in a fashion similar to
the initial fuel function µ. Specifically, we have that

∆µflight(Mfinal,∆θ) := µflight(Mfinal,∆θ)−Mfinal,

∆µclimb(Mfinal,∆θ) := µclimb(Mfinal,∆θ)−Mfinal,

∆µadvance(Mfinal,∆θ) := µadvance(Mfinal,∆θ)−Mfinal, and

∆µdescent(Mfinal,∆θ) := µdescent(Mfinal,∆θ)−Mfinal.

Furthermore, during base refueling / waiting, no fuel is burned, i.e.,

∆µwait ≡ ∆µbase,refuel ≡ 0.

Finally, when the feeder refuels a cruiser (serving a request r ∈ R), we have

∆µrefuel(Mfinal) := µrefuel(Mfinal)−M req(r)−Mfinal.

B. Artificial Instances

To obtain instances similar to the given 14, we generated the request set around some origin according
to the following rules:

– The requested fuel masses were sampled according to the (normal) distribution

N (10 000 kg, 3 000 kg).

– Regarding the time θ of the requests, we used a time horizon of 48 h peaking every 12 h, i.e., given
by the following distribution:

1

5

5∑
i=0

N (12i h, 3 h).

– We distributed the origins of the requests around the base using a radius chosen according to the
distribution

N (∆θrefuelv/2,∆θrefuelv/20).

For some angle α ∈ [0, 2π) and a given distance d, we chose the endpoints to be at the opposite
ends of the circle defined by d, the origin being at an angle of α.

– Regarding the choice of α, we sampled angles according to a narrow distribution N (0, π/8) and
a wide distribution of N (0, π/4) in the unidirectional case. In the bidirectional case, we used the
distributions 1/2 (N (0, π/8) +N (π, π/8)) and 1/2 (N (0, π/4) +N (π, π/4)), respectively.
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