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Abstract

Loads Analysis is an important discipline in the course of aircraft certifi-
cation. The loads produced are used to size the structure and have therefore
a major impact on the weight of the aircraft. The maximum loads, the so
called loads envelope, has to be comprehensive, i.e. all possible scenarios an
aircraft can encounter in service life have to be covered. Therefore an im-
mense amount of simulations, so called load cases, is necessary to produce
such an envelope. An overview of the load cases defined in the certification
specifications CS-25 will be provided. The construction of a simulation model,
with its major components, structural dynamics, equations of motion, flight
control system and aerodynamics is discussed.

Because of the number of simulations, fast aerodynamic methods need to
be employed. The derivation of these methods, along with the simplifying
assumptions is outlined. The important concept of Aerodynamic Influence
Coefficient (AIC) matrices, which contain gradient information due to a local
change in angle of attack is introduced. Two example load cases, a dynamic
yawing manoeuvre and a discrete gust encounter are simulated.

Because of the simplifying assumptions, corrections of the AIC matrices
with high order methods need to employed. The objective is to use the emerg-
ing capabilities of the CFD community to provide aerodynamic data in the
high angle of attack regime, and to establish a link and exchange of ideas
between the loads and CFD community.

1 Introduction

Loads analysis is an important discipline in the design of an aircraft. For the certification of
large airplanes according to CS 25, it has to be demonstrated that the airframe can withstand
the loads acting on it within a given flight envelope. In order to size the structure accordingly,
a so called loads envelope has to be computed. This loads envelope is comprised of so called
load cases, i.e. critical combinations of flight points (viz. altitude, Mach number), mass config-
urations and specified excitations like design manoeuvres and gusts. The number of conditions
to be examined can easily exceed several 100.000s. Clearly such a large number of cases is,
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and probably will remain for a while, out side of the scope of high fidelity CFD computations,
despite the impressive advances in computing technology.

Therefore, usually much simpler aerodynamic methods based on potential flow theory are
employed. These methods are still in use today, because of the relatively cheap computational
cost and their ease of use. Further, they provide not only a pressure distribution for a given
flight condition, but also the gradient information in terms of so called Aerodynamic Influence
Coefficient (AIC) matrices for quasi-steady, as well as unsteady flow regimes. This allows
accounting for flexible deformations of the aircraft structure in a very convenient way. An
overview of the integration of loads analysis models, along with examples of applications for
dynamic manoeuvre and discrete gust calculations will be provided.

However, due to simplifying assumptions in the course of the derivation of the governing
equations of the potential theory, important features of the flow, like nonlinearities of control
surface efficiencies, transonic effects, or separation can not be captured. These are usually
accounted for, by corrections of the AIC matrices with CFD computations. The flight points
required for loads analysis are rather untypical for classical CFD computations, where the main
focus is on performance around the cruise condition. The capabilities to compute the flow in
the corners of the flight envelope, e.g. pulling 2.5 g at Mach numbers of 0.96, are currently
emerging and provide invaluable information for the loads community.

2 Loads Analysis

The structural weight of an aircraft is directly related to the loads it has to be designed for.
Therefore, loads analysis plays an important role in all design stages. From conceptual, over
preliminary, to detailed design for certification, loads have to be determined with an appro-
priate level of detail. Even past the design stage, loads have to be computed for incidence
investigations, e.g. when aircraft in service encounter severe turbulence.

Aeroelastic effects are important and need to be considered. Since the stiffness properties
change, when a structure is sized, an iterative process is established until convergence is reached.
These are the so called loads loops. This interdependence of several disciplines is characterized
by Collars triangle [1], with inertia, stiffness, aerodynamics as vertices, cf. [2]. The advent
of electronic fly-by-wire flight control systems (FCS) added an extra vertex, that extends the
aeroelastic triangle to a aeroservoelastic tetrahedron.

To determine the maximum loads that occur in the operation of the aircraft, the entire flight
envelope has to be covered. While for conventional aircraft the stiffness remains unchanged,
the number of investigated mass cases can easily exceed several hundreds, covering different
payloads, defuelling sequences with extreme fore and aft c.g. positions in order to represent
the operational limits of the aircraft. The aforementioned control laws might have different
modes of operation (e.g. normal law, alternate law, direct law, etc.) and loads relevant features
like α-protections, gust and manoeuvre load alleviation functions. Aerodynamic data has to be
calculated for all configurations, clean, several high lift configurations, each in combination with
deployed air-brakes. Further, this data needs to be available for all possible flight conditions in
the envelope, i.e. not only around the cruise point, but also for high CL at high speeds. Several
permutations of yaw, pitch, roll rates, angles of attack and separate control surface deflections
including spoilers need to be considered.

Further, loads analysis requires quasi-steady aerodynamics for slow manoeuvres, as well
as unsteady aerodynamics. Time accurate unsteadiness is of importance, either in simulation
of gusts or fast manoeuvres, to account for rapidly changing flow conditions to satisfy the
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Kelvin-Thompson Law dΓ
dt

= 0.
Design conditions are specified in CS-25 [3]. These conditions can be determined as static

trim cases and dynamic manoeuvres, simulated in the time domain, as well as gust and turbu-
lence encounters, usually computed in the frequency domain.

The simplest, and also one of the most important design conditions is the static symmetrical
balanced manoeuvres (CS 25.331(b)), where the load factors nz (positive 2.5g, negative 0g or -
1g) are determined according to flight manoeuvering envelope, the so called V-n diagram (figure
1). Important to note is that a vertical balanced manoeuvre results in a nonzero pitch rate, i.e.
there is a changing onset angle of attack along the body x-axis.

Figure 1: V-n diagram according to CS 25.333 (taken from ref. [3])

Further, there are checked and unchecked symmetrical manoeuvres (CS 25.331(c)), roll
manoeuvres (CS 25.349) initiated with positive (1.67g) and negative (0g) load factors with
a steady roll rate or a roll acceleration. Roll manoeuvres can be determined statically or
dynamically, depending if dynamic effects are present. Dynamic lateral manoeuvres such as
one-engine-out (CS 25.367) or yawing manoeuvres (CS 25.351) are significantly influenced by
the control laws (active yaw damper). Unsteady aerodynamics are required for discrete gust
and turbulence simulations. The discrete gust (CS 25.341(a)) is defined by a 1-cosine shape
with a gradient length between 30 and 350 ft. The process of finding the worst case gradient
length is referred to as gust tuning. Continuous turbulence (CS 25.341(b)) is defined by a
power spectral density [4], and therefore usually computed in the frequency domain if no major
nonlinearities are present.

Additional to the flight load conditions covered so far, there are ground load conditions,
which are equally important for the sizing of the structure. Those include several landing
conditions (also dynamic landing), taxiing, dynamic braking, turning, etc. These are not
covered here, since many of those cases do not require aerodynamics.

The number of load cases that need to be calculated to determine the loads envelope can be
enormous, since all important permutations of flight points, configurations, mass cases, control
laws and manoeuvre and gust conditions need to be considered. Hence, very fast models are a
fundamental requirement. The next sections will cover the basic build up of such loads analysis
models and the necessary simplifications. A process for building aircraft models for different
flight dynamics simulations, including loads analysis is presented in reference [5].
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3 Structural Dynamics and Equations of Motion

The starting point, when setting up the equations of motion for a loads analysis model of a
flexible aircraft is a Finite Element Model (FEM). This FEM usually consists of 100.000s of
degrees of freedom (DoFs), therefore the first step is to statically condense it to reduce the
problem size. The method employed is known as the Guyan reduction[6], where condensation
points (g − set) are placed along a loads reference axis. The mass distributions are prepared
for the corresponding payload/fuel cases and connected to the g − set. Subsequently, a modal
analysis is carried out and only part of the modal basis is retained to further reduce the
computational cost.

The eigenvalues and eigenvectors define the generalized coordinates of the h − set. The
zero eigenvalues represent the rigid body motion. In the case of a full model, the h − set can
be explicitly partitioned into six rigid body DoFs (b − set) and a flexible part (f − set). The
rigid body mode shapes Φgb and the retained modes of the eigenvector matrix Φgf are used
to generalize the mass and stiffness matrix. The equations of motion are then given in the
frequency domain by{

−ω2

[
Mbb 0
0 Mff

]
+ jω

[
0 0
0 Bff

]
+

[
0 0
0 Kff

]}[
ub
uf

]
=

[
ΦT
gb

ΦT
gf

]
Pext
g (ω), (1)

where u refers to the ”displacement” degrees of freedom and P to the ”load” degrees of freedom.
It is important to note that DoFs can contain not only the translational, but also the linearized
rotational degrees of freedom. The structural g− set for instance consists of six DoFs per grid
point, i.e. Pg is a vector with the three forces and three moments per grid point resulting in a
vector length of 6 times number of structural grid points.

A suitable set of equations of motion to account for large rigid body motions and linear
flexibility is derived in the references[7, 8, 9, 10]. The nonlinear equations of motion describe
the movement relative to a ”mean axes” body reference frame. Equations of motion for an
unrestrained flexible aircraft accounting for large rigid body motions are given by[

mb

(
V̇b + Ωb ×Vb −TbE gE

)
JbΩ̇b + Ωb × (JbΩb)

]
= ΦT

gbP
ext
g (t)

Mff üf + Bff u̇f + Kffuf = ΦT
gfP

ext
g (t),

(2)

where Φgb is the rigid body modal matrix about the center of gravity and in directions customary
in flight mechanics. Vb and Ωb are the velocity, respectively angular velocity in the body frame
of reference. The matrix TbE transforms the gravitational vector from an earth fixed E to the
body fixed coordinate frame b.

In [11] a discrete gust load calculation was carried out comparing a linear frequency domain
approach using equations (1), with a time domain computation using equations given in (2).
The results from the frequency domain calculations superimposed with the trim solution were
virtually identical to those of the integrated time domain model, proving the validity of the
approach. As expected, the nonlinearities in the equations of motion only play a subordinate
role for gust responses.

4 Aerodynamic Governing Equations

The derivation of the governing flow equations used in flight loads analysis, along with the
associated simplifying assumptions are briefly summarized. Many standard reference texts
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assume a steady flow condition early in the derivation of these governing equations. However,
since for gust loads time accurate unsteady results are essential, this assumption is imposed
last.

The Navier-Stokes equations are comprised of laws of conservation of mass, energy and
momentum. Since the momentum is a vector quantity in the spatial domain, this results in five
equations, and represent the most general set of equations in fluid dynamics. Unfortunately
closed form solutions for the Navier-Stokes equations exist only for very few special cases. The
flow around a aircraft geometry has to be solved numerically. Common numerical approaches
such as finite volume or finite differences schemes require a spatial mesh not only of the surface
but also the surrounding volume, leading to many quantities to be solved for. Not only the
solution of this set of equations is a enormous task but also the mesh generation is difficult to
automatize. These are the governing equations the CFD community is concerned with, either
trying to solve them directly with DNS, or with different levels of modelling the turbulence.

The first simplifying assumption is to cancel the viscous terms. The viscosity of air can
be considered small. Typical Reynolds numbers for the flow past aircraft wings are of the
order of 107 or more, depending on the size and speed of the aircraft. In this situation the
viscous effects are essentially confined to thin boundary layers covering the surface, therefore
neglecting the viscous terms of the Navier-Stokes-equations outside these boundary layers is
justified. However, boundary layers may nevertheless have a global impact on the flow by
causing separation [12]. These so called Euler equations can not capture separation and viscous
drag anymore.

Next irrotationality is assumed, i.e. no vorticity is generated. Vorticity is related to entropy
generation by Crocco’s Theorem, cf.[12], i.e. irrotationality equals isentropic flow conditions.
This allows the introduction of a velocity potential with the velocity vector v = ∇Φ. This
greatly simplifies the solution process. These so called Full-Potential equations are still nonlin-
ear, however no strong shocks can be captured, due to the isentropic assumption.

Assuming that the flow is dominated by one direction, i.e. Φy

U∞
� 1 Φz

U∞
� 1 as is usually the

case for a flying aircraft, results in the so called Transonic Small Disturbance (TSD) equation.
This step is accompanied by the introduction of the disturbance potential. The TSD equation
is still nonlinear and is able to capture local supersonic pockets in the flow. However, problems
arise near the stagnation point of bluff bodies, where the flow is significantly deflected from the
otherwise dominating direction and the aforementioned assumption is violated.

The TSD equation is now linearized. The resulting unsteady Prandtl-Glauert equation
(3) is valid only for purely subsonic or purely supersonic flows, i.e transonic effects can not
be captured anymore. This is the equation, most aerodynamic methods used in flight loads
analysis is based on.(

1−Ma2
∞
) ∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
−
(

2
Ma∞
a∞

)
∂2Φ

∂x∂t
−
(

1

a2
∞

)
∂2Φ

∂t2
= 0 (3)

This equation can be solved using a Boundary Element Method (BEM), which has the signif-
icant advantage that only the surface (boundary) needs to be discretized. This simplifies the
mesh generation process considerably.

Further assuming steadiness result in the Laplace equation.

∂2Φ

∂x′2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0, (4)

where x′ is obtained by a geometrical transformation, known as the Prandtl-Glauert Correction
x′ = x/β, where β2 = 1 − Ma2

∞ If the flow is incompressible, i.e. ρ = const , then β = 1.

Third Symposium ”Simulation of Wing and Nacelle Stall”, 21st - 22nd June 2012, Braunschweig, Germany 5



Hence, the flow is described by the Laplace equation without the need for an approximative
transformation. It is worth mentioning that the derivation of Laplace’s equation, in contrast to
the Prandtl-Glauert equation, does not require the assumption of small perturbations. It can
be derived by merely assuming incompressibility.

5 Aerodynamic Influence Coefficients

The major contribution to the excitation forces Pext
g , along with the loads from the propulsion,

stem from the aerodynamics. Classical aerodynamic methods based on potential theory are
still the workhorses in aeroelastic modelling. They conveniently provide Aerodynamic Influence
Coefficient (AIC) matrices, which can be easily integrated in a closed form with the equations
of motion (1) and (2).

The basic methods for determining the AICs for a lifting surface discretization are the Vortex
Lattice Method for steady and Doublet Lattice Method for unsteady flows. The methods
along with the boundary conditions are briefly summarized. The coupling to the structure,
respectively to the time and frequency domain equations of motion is discussed.

5.1 Vortex Lattice Method

The Vortex Lattice Method (VLM)[13] discretizes a lifting surface by trapezoidal shaped ele-
mentary wings, so called aerodynamic boxes. The aerodynamic lift is generated by placing a
vortex along the quarter chord line of such an aerodynamic box. According to the Helmholtz
theorems, vortices must either end at a solid surface, or extend to infinity. Hence, the bound
vortex is extended to infinity at both corner points, forming the well known horseshoe shape
with its legs pointing in free stream direction. The circulation strength Γj of the individual
horseshoe vortices is then determined using the Biot-Savart-Law by meeting the flow compat-
ibility condition, i.e. no perpendicular flow vj through the solid surface. Further, the Kutta
condition has to be met, stating that the flow has to leave the trailing edge smoothly. Ac-
cording to Pistolesi’s theorem [14] both conditions can be fulfilled simultaneously, if there is no
flow trough a collocation point located at mid span, 3/4 chord. The contributions of the three
segments of the horseshoe vortex can be calculated with the Biot-Savart Law. The induced

Figure 2: Biot-Savart-Law for a straight vortex filament

velocity for a straight vortex filament with the geometrical properties illustrated in figure 2 is
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given by

vt =
Γ

4π

d

d2 + r2
c

(cos θ1 − cos θ2) (5)

for the tangential component, respectively as

v =
Γ

4π

r1 × r2

|r1 × r2|2 + r2
c |r0|2

(
r0 ·
(

r1

|r1|
− r2

|r2|

))
(6)

for the vector quantity, where rc is the radius of a viscous core, in order to desingularize the
potential vortex for d = 0.

Calculating the influence of each horseshoe vortex on every collocation point results in a
matrix, which can be inverted to determine the circulations strength when satisfying the flow
tangency condition at the collocation points. Normalizing the velocities at the control point
with the free stream velocity wj =

vj

U∞
and using the Kutta-Joukowsky theorem (L = ρU∞Γb)

to compute pressures from circulation strengths, yields a matrix equation for the differential
pressure coefficients with the aerodynamic AIC matrix Qjj.

∆cpj = Qjj wj (7)

This is the common implementation for aeroelastic applications used in such codes as NAS-
TRAN [15]. An improved implementation of the VLM is presented in [11], where the Kutta-
Joukowsky theorem is calculated using a cross product instead of a scalar multiplication. This
method is able to capture additional effects such as induced drag, yaw-roll coupling, etc. which
are usually neglected in loads analysis models.

5.2 Doublet Lattice Method

The VLM covers steady aerodynamics at a given instance in time. However, when the normal
wash at the collocation points varies, the overall circulation changes. Kelvin’s theorem (8)
states that this overall circulation within a control volume must remain constant over time.

dΓ

dt
= 0 (8)

Therefore, when the circulation of the airfoil changes due to the kinematic boundary condition,
vorticity of equal strength but opposite sign has to be generated. For an attached flow, this
vorticity is shed at the trailing edge and subsequently convected downstream with U∞, forming
a wake vortex sheet with strength γw. For slow changes of the normal wash, the influence of shed
vorticity in the wake on the airfoil is negligible. If at each time step the normal wash is varied to
account for motion of the airfoil, but the effects of the shed vortices are neglected, this is the so
called quasi-steady approximation. For fast changing velocities which occur e.g. in gust loads
analysis this approximation no longer holds and the modelling of the unsteady aerodynamics
becomes necessary. The governing flow equation is the unsteady Prandtl-Glauert equation (3),
which differs from its steady counter part (4) by the presence of the partial derivatives wrt to
time.

The Doublet Lattice Method[16] (DLM) provides a harmonic solution for this equation.
Further, is uses the acceleration potential which is formally equivalent to the velocity potential
equation. Therefore, the same elementary solutions are valid, e.g. the source potential. Analo-
gous to acoustics, the harmonically oscillating source is moved wrt a resting fluid, followed by
a Gallilei transformation, which moves the observer with the source. Lift can not be generated
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by a source, hence the source potential is differentiated wrt the z-direction, yielding the doublet
potential. The acceleration potential directly yields the pressure difference between the upper
and lower surface, which makes additional steps, i.e. the use of the Kutta-Joukowsky Law,
in the load recovery process unnecessary. However, the acceleration potential of the doublet
still needs to be integrated to calculate the induced velocity, which is needed to meet the flow
tangency condition on the lifting surface. Contrary to the velocity potential of a free flying
wing, where there is a velocity jump across the wake surface, there is no such jump in the
pressure, hence the wake needs not to be modelled.

The DLM is the unsteady extension to the VLM, which similarly places the singularity
along the quarter chord and satisfies the flow tangency at the three quarter chord. The doublet
potential is evaluated at discrete points along the quarter chord line, which are used for a poly-
nomial fit and its subsequent analytical integration. The integration still can not be performed
in closed form and series approximations for parts of the kernel functions need to be employed.
The final result for the pressure coefficient

∆cpj(k) = Qjj(k)wj(k) (9)

has similar form to the conventional steady aerodynamics, where

k =
cref/2

U∞
ω (10)

is the reduced frequency. In fact, for k = 0 the DLM solution is replaced by the VLM results[17],
since for the steady case no approximations are required.

5.3 Aerodynamic boundary conditions

For the methods mentioned above, the lifting surface are modelled by a flat mean surface
approach, i.e. camber and incidence effects are handled purely by the boundary conditions.
To calculate the pressure difference, the geometry, motion or gust induced normal wash at
the three-quarter-chord point (j − set) needs to be determined. The reference point of an
aerodynamic box is its mid point and denoted by the k − set. The k − set has at least two
degrees of freedom, namely z and θ.

The lift acts in the local z-direction at the quarter chord location and therefore creates
a local pitching moment about the local y-axis. Multiplication of this transformation with a
diagonal matrix of the local box areas, yields the matrix Skj, which converts the pressures to
discrete loads at the mid chord location.

To calculate the normal wash at the three-quarter-chord, the rotation about the y-axis
(Dx

jk) and the heaving motion (Dt
jk) need to be considered, i.e. the differentiation wrt the

x-direction and wrt time.

wj(t) =

[0 1
]︸ ︷︷ ︸

Dx
jk

+
d

dt

(
cref/2

U∞

)
· 2
cref

[
−1 cj/4

]︸ ︷︷ ︸
Dt

jk

uk(t) (11)

The matrix Dt
jk is multiplied by 2/cref , in order to account for the reduced frequency of equation

(10). Hence, the flow conditions can be expressed as a function of reduced frequency, in terms
of the displacements of the k − set.

wj(k) =
(
Dx

jk + jk Dt
jk

)
uk(k) (12)
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If the the Kutta-Joukowsky theorem is applied as cross product, the k−set needs to be extended
to six DoFs and the introduction of a lift acting point becomes necessary. This methodology
is described in [11].

5.4 Fluid-Structural Coupling

The aerodynamic properties are given with respect to the aerodynamic grid. The matrix
connecting the displacements of the structural (g− set) to the aerodynamic degrees of freedom
(k − set) is called spline matrix Tkg.

uk = Tkgug (13)

The method employed to create this spline matrix is the commonly used Infinite Plate Spline
(IPS) [18], which uses the radial basis function φ(r) = ‖r‖2 ln(‖r‖), where r is the euclidian
distance between the structural (g-set) and the aerodynamic (k-set) grid. The aerodynamic
loads can be mapped back onto the structure with the transpose of the spline matrix.

Pg = TT
kgPk (14)

The modal matrix Φgf , respectively its transpose connects the flexible part of the EoM (1) and
(2) to the aerodynamic model.

Hence, the generalized aerodynamic forces due to flexibility are given as

Paero
f = ΦT

gfT
T
kgSkjQjj

(
Dx

jk +
d

dt

(
cref/2

U∞

)
· Dt

jk

)
TkgΦgf uf , (15)

where uf is the generalized modal deflections. Substituting (15) in the equations of motion (1)
or (2) allow for a closed formulation as a system of ODEs. Also note that the number of retained
modes is usually small compared to the structural and aerodynamic degrees of freedom. When
the matrix multiplications in eq. (15) are carried out in a preprocessing step, the resulting
matrix sizes are reduced tremendously.

In contrast to typical CFD-CSM coupling schemes, there is no need to pass the forces,
respectively displacements between two separate applications. This is possible as the AIC
matrix Qjj contains directly the gradient information, due to a local change in the flow tangency
boundary condition.

5.5 Time domain unsteady aerodynamics

Gust load calculations are usually computed in the frequency domain. One of the reasons, is
the availability of tabulated unsteady aerodynamic matrices as function of reduced frequency
through the DLM.

To make the frequency domain unsteady aerodynamics usable for time domain calculations,
provision need to be taken. One possibility is to fit the tabulated frequency data with a Rational
Function Approximation (RFA). The resulting form can be expressed in the Laplace domain and
thus be used for time domain simulations. For a shorter notation, it is convenient to introduce

an equivalent to the reduced frequency k in the Laplace domain denoted by ŝ = s
(
cref/2

U∞

)
.

The RFA captures the time dependent behavior of the unsteady flow by introducing of ad-
ditional aerodynamic lag states. Many flavors of this method have been published in literature
[19, 20, 21, 22]. Most of these publications concentrate on approximation of the generalized
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aerodynamic matrices Qhh, i.e. the AIC matrices are already multiplied with the differentia-
tion matrices (12) and the modal basis. While this approach reduces the computational cost
considerably due to a smaller problem size, it also has some significant disadvantages. One is
that the steady and unsteady aerodynamic contributions can not be discerned anymore. Fur-
ther, the approximation becomes tied to a mass case, whereas a physical approximation is only
dependent on the Mach number.

In [11] a scheme is proposed to approximate directly the physical AIC matrices Qjj(k),
using Roger’s method.

Qjj(ŝ) = Q0
jj + Q1

jj ŝ+

np∑
i=1

QLi
jj

ŝI

ŝ+ pi
(16)

The term Q0
jj represents the quasi-steady term, Q1

jj is the added mass, and the QLi
jj with

the predefined poles pi terms are responsible for the lagging behavior of the unsteady flow.
Interesting to note is the absence of the Q2

jj acceleration term in the physical approximation.
The reason for the presence of a second derivative in the classical RFA, is the additional time
derivative in the downwash equation (12).

The system (16) can be now used for the time domain simulation. Pre-multiplying equation
(16) with TT

kgSkj, the approximation can be expressed in the following form,

Qgj(ŝ) = Q0
gj + Q1

gj ŝ+ D (ŝI−R)−1 Eŝ (17)

and then be cast in the form of an ordinary differential equation (ODE) for the lag states,
with ẇj as input.

ẋL = R
(

U∞
cref/2

)
xL + E ẇj (18)

When using Roger’s method, the involved matrices R and E have a pronounced sparsity pattern,
such that the ODEs are fully decoupled. The resulting aerodynamic forces are then

Paero
g =

(
Q0

gj wj

)
︸ ︷︷ ︸
steady Ps

g(wj)

+
(
Q1

gj

(
cref/2

U∞

)
ẇj + D xL(ẇj)

)
︸ ︷︷ ︸

unsteady Pu
g(ẇj)

. (19)

The most significant advantage of this physical RFA over the traditional generalized approx-
imation is that equation (19) can be split explicitly into a steady part depending on wj and
an unsteady part solely depending on ẇj. For dynamic manoeuvre simulations the unsteady
contribution can be included, e.g. for gust computations or fast manoeuvres, or neglected if
deemed unnecessary.

6 Examples

6.1 Dynamic Yawing Manoeuvre

A critical load case for the vertical tailplane (VTP) is the yawing manoeuvre condition.
According to CS 25.351 the yawing manoeuvre can be described as follows:

1. at an unaccelerated trimmed horizontal flight, the rudder control is suddenly displaced
to maximum deflection.
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2. during the dynamic application of the rudder a overswing results, yielding a maximum
sideslip angle.

3. after a steady sideslip angle is reached,

4. the rudder control is returned to a neutral position.

1. Onset 2. Overswing Yaw

3. Equilibrium Yaw 4. Rudder Return

β = 0° β = βmax

β = βsteady β = βsteady

δr = 0°δr

δr

δr

Figure 3: Yawing Manoeuvre according to CS 25.351

When the rudder is deflected a force acting in the direction of yaw is applied. This force acts
due to the suction peak of the deflected control surface. Then, as a sideslip angle gradually
builds up, a counter force due to β is invoked. The force due to β is located forward compared
to the one induced by δr, hence a torsional moment is induced. The highest torsional loads
occur when the aircraft reaches a maximum sideslip angle β, reached by a dynamic overswing.
After a while, an equilibrium is reached and the rudder deflection is returned to zero. The
suddenly missing rudder force causes the maximum shear forces and bending moments at this
point. The loads are depicted in figure 4. [4]

6.2 Discrete Tuned Gust

Discrete tuned gusts are defined in CS 25.341(a). The velocity profile is defined as a 1-cos
shape.

vG =
1

2
Uds

(
1− cos

2πx(t)

2H

)
(20)

The gust gradient H is the distance parallel to the airplane’s flight path from the start of the
gust to its peak, the design gust velocity Uds. Hence, the total gust length is 2H. Several gust
gradient distances between 30ft and 350ft have to be calculated to find the critical response for
each load quantity. This process is called gust tuning.

The gust spectrum of a discrete tuned gust vG(ω) is available semi-analytically in the
frequency domain. When the aircraft is subjected to the gust, the penetration speed U∞ and
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Figure 4: forces and moments at VTP root caused by the different effects

location of the control points xj wrt the gust need to be considered. In the frequency domain
these time lags are expressed as phase shifts with an exponential function.

wG
j (ω) = nj · exp (−jω · xj/U∞) · vG(ω)/U∞ (21)

The generalized gust column for the frequency domain can then be set up.

QhG(k) = ΦT
ghQgj(k)wG

j (ω) (22)

For nonlinear time domain simulations, eq.(21) can simply be expressed as a function of time.
The relative location of the airframe wrt the gust is

xGj (t) = xj + 2H − U∞ · t. (23)

The normalized gust velocities are then given as,

wG
j (t) =

{
1

2U∞

(
1− cos

(
π · x

G
j (t)

H

))
· nj, for 0 < xGj < 2H

0 otherwise
(24)

Differentiation of the normalized gust velocity wrt time yields,

ẇG
j (t) =

{
− π

2H
· sin

(
π · x

G
j (t)

H

)
· nj, for 0 < xGj < 2H

0 otherwise
(25)

In the time domain simulation, the gust excitation becomes merely a function of time when
integrating the ODEs. If the velocity of the aircraft is assumed to be constant, the gust is
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independent of the aircraft simulation and can be pre-computed as a function of Ma, H and
U∞. Subsequently, the results are fed into the overall aircraft simulations. If the the position
relatively to the wind field changes, e.g. in the case of a wake vortex encounter, the influence
has to be computed online. Reference [23] shows that depending on the encounter angle, that a
mixture of two types of responses are possible. A large manoeuvre type response, where large
nonlinear roll angles occur and nonlinear equations of motion (2) are important, or a gust type
response, where unsteady aerodynamic effects are present.

Figure 5 shows a comparison of a time domain simulation and frequency domain solution
that is transformed to the time domain by an inverse Fourier transform.
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Figure 5: Loads for time and frequency domain solutions

The agreement between the time integration and frequency response calculation is excellent.

7 Corrections for Unmodelled Effects

So far only the theoretical results of the methods based on potential theory were discussed. As
already mentioned in the derivation of the governing equation, a lot of important features of
the flow can not be captured, such as viscous drag, separation, or shocks to name only a few.
Therefore, corrections of the AIC matrices have to be applied. There are numerous proposals
including diagonal correction [24] or fully populated matrices [25], which can be applied at
force level, by pre-multiplication or at downwash level, by post-multiplication. Corrections are
applied to steady, unsteady and/or modal quantities[26][27]. Also direct manipulation of the
AIC matrices was suggested [28]. An assessment of correction methods is available in reference
[29].

These corrections are applied at various points to cover nonlinearities. Usually, only the
angle of attack α as predominant source of the nonlinear behavior is considered. The nonlinear
effects associated with control surface effectivities are treated separately, assuming that a scaling
factor dependent on angle of attack and deflection is sufficient i.e. the pressure distribution due
to deflection remains the same. It should be noted that these corrections are applied about a
reference point or shape, around which the linearity assumption must be still valid. That might
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result in a large amount of data. Some work [30] commenced to apply reduced order modelling
techniques directly to AIC matrices instead of pressure distributions, which lead to promising
results.

The prime question is where the correction data is coming from. Typically, a 2.5g pull-
up with air-brakes deployed at the stall onset at the VD/MD point in the flight envelope is
where maximum loads occur. Incidently, this is also the hardest problem for CFD applications.
Another difficult problem is at slower speeds, when the local angles of attack induced by a gust
exceed the linear regime and dynamic stall effects need to be captured. Usually these issues
are tackled by relying on wind tunnel data and conservative assumptions.

At the same time, it needs to be recognized that loads analysis does not require the same
level of detail as aerodynamic design, e.g. the accuracy of drag forces are of minor importance,
unless they significantly change the overall pitching moment, local regions of back-flow are not
important if they only marginally change the sectional lift and moment. Also, while trying to
increase the accuracy, there is still need for a certain amount of conservatism in safety critical
applications.

CFD-CSM coupled solutions provide important test cases, with which the fast method can
be calibrated and validated. Also staggered multi-fidelity approaches are thinkable, were the
fast methods are used to scan the envelope and higher fidelity approaches are used to examine
the critical load cases in more detail.

8 Conclusions

An overview of the field of loads analysis was given. The construction of loads analysis models
was presented including structural dynamics, equations of motion and flight control systems.
The main focus was on the aerodynamic modelling and how fast methods are used to cope with
the enormous amount of load cases that need to be simulated. Two examples calculations are
presented. One dynamic yawing manoeuvre case were nonlinear and FCS effects are important,
and a discrete gust, where unsteady aerodynamics are essential.

It is hoped to foster some understanding of the motivations for modelling approaches and
requirements in the realm of loads analysis. Loads models have to be fast yet accurate enough to
address the needs in aircraft design. The goal is to make use of the emerging capabilities of the
CFD community to provide aerodynamic data in the high angle of attack regime by construction
of suitable Reduced Order Models or AIC corrections. The aspiration is to establish a link and
exchange of ideas between the loads and CFD community.
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