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Abstract

An important issue in Detached Eddy Simulations (DES) of separated flow is the
capturing of free shear layers. Typically, free shear layers are present between the attached
boundary layers (computed with RANS) and the separated flow regions (computed with
LES). The turbulence in these shear layers may develop too slowly in DES, which may
influence the extent of the separated flow regions. In this paper, the capturing of free
shear layers in DES-type methods is substantially improved with two modifications: a
stochastic subgrid-scale model and a high-pass filtered subgrid-scale model. Furthermore,
it is shown that the numerical methods must be carefully designed in order to accurately
capture free shear layers without numerical errors overwhelming the subgrid stresses.

Nomenclature

DES Detached Eddy Simulation
DDES Delayed Detached Eddy Simulation
DRP Dispersion-Relation Preserving
HPF High-Pass Filter
RANS Reynolds-Averaged Navier–Stokes (equations)
SGS Sub-Grid Stress
X-LES Extra-Large Eddy Simulation

1 Introduction

Stall is a prime example of massively separated flow. Detached Eddy Simulation (DES) [18]
has been specifically designed to improve the simulation of separated flow compared to RANS.
In DES, attached boundary layers are modelled with RANS, while massively separated flow is
modelled with LES. Despite considerable success an important drawback of the method is the
so-called ‘grey area’ issue: the transition from RANS to LES may lead to non-physical solutions
as the turbulent content in the LES region requires time to develop. This phenomenon occurs in
particular for free shear layers, resulting in the delay of the inherent instabilities. The resulting
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shear layer will exhibit laminar characteristics, even for turbulent conditions. Note that shear
layers are abundant in separated flow and that the nature of the shear layer determines the
extent of the separated region for many applications.

The grey area issue has been identified early in the development of DES methods (see e.g.
Spalart [17]). Specifically for the non-physical stability of the shear layer, four possible causes
can be identified:

• Cause 1: The turbulence model remains in RANS mode.

• Cause 2: The unstable modes in the shear layer are not triggered, due to lack of turbulent
content.

• Cause 3: The subgrid stresses (SGS) are too high.

• Cause 4: Numerical errors are too high, numerical dissipation in particular.

Several solution strategies have been proposed in the literature, each addressing one of the
possible causes listed above:

• Cause 1: Zonal methods, such as proposed by Deck [2], explicitly assign domains to be
solved in LES mode and hence avoid the first cause.

• Cause 2: Moreover, when using fixed interfaces between RANS and LES zones, the use of
synthetic turbulence (e.g., [2, 7]) at the interface will add turbulent content to the shear
layer and speed up the instabilities. Kok et al. [10] introduced a stochastic SGS model
in their non-zonal DES-type X-LES method [9] with the specific aim of triggering the
instabilities by stochastic excitation.

• Cause 3: For LES computations of jet noise, Shur et al. [15] have switched off the SGS
model entirely to speed up the formation of instabilities. In his zonal method, Deck
significantly reduced the subgrid stresses in the initial shear layer by using an alternative
definition for the length scale used in the subgrid eddy viscosity.

• Cause 4: Shur et al. [16] have introduced a hybrid numerical scheme which switches to
a central, non-dissipative, high-order scheme in the LES zones. Kok [8] has developed a
central, fourth-order, symmetry-preserving finite-volume scheme with low dispersion and
dissipation aimed at the LES regions of DES-type computations.

Zonal methods and the addition of synthetic turbulence typically require knowing a priori the
location where the shear layer separates. In contrast, solution strategies are considered in the
current paper that do not require this a priori knowledge, maintaining the original non-zonal
spirit of the DES idea.

In the opinion of the authors, triggering the instabilities with a stochastic SGS model in
combination with a reduction of the subgrid stresses using a high-pass filtered (HPF) SGS model
is an effective way to speed up the development of free shear layers towards full 3D turbulence,
provided carefully designed numerical methods with low dispersion and dissipation are used.
This will be demonstrated in the remainder of this paper. In Section 2 the stochastic and
HPF SGS models are described that improve the prediction of free shear layers. In Section 3
important aspects of the numerics for hybrid RANS–LES simulations are discussed. In Section 4
the effects of both numerics and modelling are demonstrated for two test cases: the plane free
shear layer and a delta wing in vortex breakdown conditions.
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2 Improvements of the X-LES method

In DES-type methods such as X-LES [9], a single set of turbulence-model equations is used to
model both the Reynolds stresses in RANS zones and the subgrid stresses in LES zones. The
X-LES method in particular is based on the TNT k–ω model. The method switches to LES
when the RANS length scale (l =

√
k/ω) exceeds the LES length scale (C1∆, with ∆ the filter

width and C1 = 0.05). The RANS length scale is then replaced by the LES length scale in the
expression for the eddy viscosity as well as in the expression for the dissipation of turbulent
kinetic energy. The filter width ∆ is defined at each grid point as the maximum of the mesh
size in all directions.

To improve the capturing of free shear layers, two modifications have been added to the
X-LES method. The first modification consists of a stochastic SGS model [10], in which a
stochastic variable ξ = N(0, 1) is introduced in the expression for the eddy viscosity in LES
mode. For the X-LES method, the expression for the eddy viscosity then becomes:

νt =

{
k/ω , if l ≤ C1∆,

ξ2C1∆
√

k , if l > C1∆.
(1)

At each time step, a new value of ξ is drawn for every grid cell. The stochastic term is not
included in the turbulent dissipation, which is given by

ε =
βk3/2

min{l, C1∆}
(2)

with β = 0.09. Note that effectively a k-equation SGS model is used in LES zones (where
l > C1∆), as ω drops out of the expressions for νt and ε.

The second modification consists of a high-pass filtered (HPF) SGS model. A possible
source of dissipation hampering the shear-layer development is a high level of subgrid stresses
in the initial shear layer. These high stresses are caused by a high gradient of the mean velocity
field due to the initial shear layer being very thin. However, there is no apparent reason why
the subgrid stresses should be related to this mean flow gradient. Therefore, a modification of
the SGS model is also considered in which the SGS stresses are computed from the velocity
fluctuations instead of the instantaneous velocity,

τij = µt

(
∂u′

i

∂xj

+
∂u′

j

∂xi

− 2

3

∂u′
k

∂xk

δij

)
− 2

3
ρkδij. (3)

The velocity fluctuations u′ are obtained by applying a temporal high-pass filter to the velocity
field. This high-pass filter consists of subtracting the running time average of the velocity from
the instantaneous velocity:

u′(x, t) = u(x, t)− 1

t

∫ t

0

u(x, s)ds . (4)

A similar approach has been followed by Stolz [19] and by Lévêque et al. [14] using a spatial
filter instead of a temporal filter in order to improve the Smagorinsky model for LES of wall-
bounded flows. High-pass filters have also been used in the context of the structure-function
model [13].

The HPF SGS model has two additional advantages:

Third Symposium “Simulation of Wing and Nacelle Stall”, 21st - 22nd June 2012, Braunschweig, Germany 3



• In case of a steady, laminar flow (e.g., a laminar boundary layer), the subgrid stresses are
zero, as they should be.

• At the start of a computation (t = 0) the velocity fluctuations as defined above are set to
zero, so that the subgrid stresses are initially equal to zero. Thus, instabilities are initially
not damped at all by the SGS model, allowing a shorter transient of the computations.

Note that both the stochastic SGS model and the HPF SGS model can also be employed
in other DES-type methods.

3 Numerical method

3.1 A low-dispersion symmetry-preserving finite-volume method

For large eddy simulations, the spatial and temporal discretization methods must be chosen
with care. For example, if the convection terms are discretized with standard second-order
schemes (as commonly used for RANS), the resulting numerical errors can be of the same
order of magnitude as the subgrid stresses (see Kravchenko and Moin [11]). In that case, the
computational results are determined as much by the numerical errors as by the SGS model.

To minimize the interference of numerical errors with the SGS model, the numerical accuracy
of the scheme should be high at wave lengths close to the filter width. These wave lengths are
represented by only a few mesh widths. Thus, what is important is the numerical error at a
fixed, relatively large mesh width compared to the wave length, and not the formal order of
accuracy of the scheme as the mesh width goes to zero. Numerical schemes optimized in that
sense are, for example, the DRP scheme of Tam and Webb [20] and the compact schemes of
Lele [12].

In this paper, a fourth-order, symmetry-preserving, low-dispersion finite-volume scheme as
described by Kok [8] is used to discretize convection. A central (instead of upwind) discretiza-
tion is used, so that the method contains no numerical dissipation. The finite-volume method
maintains its properties (fourth-order accurate, low numerical dispersion, no numerical dissi-
pation) on non-uniform, curvilinear grids. On uniform, Cartesian grids, it is equivalent to the
DRP scheme.

The superiority of the current, low-dispersion finite-volume scheme in terms of numerical
dispersion, compared to basic fourth-order and second-order central schemes (see [8] for their
definition), is shown in Figure 1(a). This figure shows the dispersion error for the spatial
discretization of a linear, first-order transport equation using Fourier analysis. The error in
the phase of a single Fourier mode after one time period is plotted versus the number of grid
cells per wave length of the mode. With eight cells per wave length, the low-dispersion (DRP)
scheme has a phase error of only 0.4◦, whereas the standard fourth-order scheme has a phase
error of 9◦ and the standard second-order scheme as large as 36◦.

3.2 Artificial diffusion

As the present finite-volume method contains no numerical dissipation, a question that re-
mains is whether any artificial diffusion is needed for stability. An important property of the
symmetry-preserving finite-volume method is that it ensures that kinetic energy is conserved by
convection (see e.g. Verstappen and Veldman [22]). Thus, kinetic energy is only dissipated by
the subgrid (and viscous) stresses and not by numerical errors. Furthermore, this implies that
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(a) dispersion (b) dissipation

Figure 1: Dispersion (phase lag) and dissipation (amplitude) for a single Fourier mode using
different spatial discretizations and exact time integration

the numerical method is unconditionally stable for incompressible flow, without any artificial
diffusion. For compressible flow, unconditional stability cannot be proven, but still stability is
significantly enhanced, requiring only a very low level of artificial diffusion, if any. For com-
pressible flow, sixth-order artificial diffusion is added to the equations (see [8]), maintaining the
fourth-order accuracy.

How much artificial diffusion is appropriate? This depends on the zone in a hybrid RANS–
LES computation. In the RANS zones, very small mesh sizes are used to capture the boundary
layers. Therefore, a second-order implicit time-integration method is typically used to avoid
the strict stability limits of explicit schemes. The set of implicit equations per time step is
solved with a multigrid scheme, requiring artificial diffusion for fast convergence. In the LES
zones, however, such small mesh sizes are not present and artificial diffusion is not needed for
rapid convergence.

An appropriate level of artificial diffusion for the LES zones was determined by considering
the convection of an isentropic vortex on a strongly non-uniform grid (see [8] for the definition).
Figure 2 shows the numerical error for three different levels of artificial diffusion, ranging from
the ‘standard’ level used in RANS zones (k(6) = 2) to the value found suitable for LES zones
(k(6) = 1/8), which is 16 times smaller. With the latter value, the error is not significantly in-
creased compared to a computation without any artificial diffusion. Note that the computation
is stable with such a low level of artificial diffusion (or even completely without it), thanks to
the symmetry-preserving discretization.

Finally, the dissipation error can also be illustrated for the discretization of a linear, first-
order transport equation using Fourier analysis, as shown in Figure 1(b). In this figure, the
low-dispersion (DRP) scheme uses the LES-level of sixth-order artificial diffusion (k(6) = 1/8),
the basic fourth-order scheme uses the RANS-level of sixth-order artificial diffusion (k(6) = 2),
and finally the second-order scheme uses the RANS-level of fourth-order artificial diffusion
(JST scheme [6] with κ(4) = 1/32). For the basic fourth-order and second-order schemes, point-
to-point oscillations are damped by the same amount. With eight cells per wave length, the
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(a) Velocity component u (b) Entropy

Figure 2: Convection of isentropic vortex on strongly non-uniform grid: grid dependence of RMS
value of difference with analytical solution of fourth-order low-dispersion symmetry-preserving
scheme with and without sixth-order artificial diffusion

amplitude has decreased by only 0.1% for the low-dispersion (DRP) scheme, whereas it has
decreased by 1% and 8% for the standard fourth-order and second-order schemes, respectively
(factors 10 and 80 higher).

3.3 Time integration

The dissipation and dispersion errors due to the temporal discretization are often underesti-
mated. The common practice is to determine the time step by the condition that the CFL
number is one. In this section, we will show that with the standard time integration scheme
used for DES computations (second-order implicit) the resulting time step is too large and the
temporal error swamps any good properties the spatial discretization may have.

Figure 3 shows the combined numerical errors of the low-dispersion finite-volume scheme
of the previous section and two time integration schemes: the explicit Runge-Kutta 4 (RK4)
method with CFL = 1 and the standard implicit two-point backward (B2) scheme with CFL = 1
or CFL = 1/8. The B2 scheme introduces significant numerical dispersion and dissipation if
CFL = 1 is used, even more than the basic second-order spatial discretization (compare to
Figure 1). With eight cells per wave length, it introduces an additional phase error of 46◦ and
amplitude error of 26%. With CFL = 1/8, the error levels have become acceptable compared
to the error of the spatial discretization: only 0.3◦ additional phase error and 0.1% additional
amplitude error.

4 Results

4.1 Plane free shear layer

As a basic test case for investigating the stability issue, the experiment of Delville [3] for a
plane free shear layer is considered. The free shear layer starts from the trailing edge of a flat
plate with free-stream velocities u1 = 41.54 m/s and u2 = 22.40 m/s at the different sides of
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(a) dispersion (b) dissipation

Figure 3: Dispersion (phase lag) and dissipation (amplitude) for a single Fourier mode using
the low-dispersion (DRP) scheme and different temporal discretizations

the flat plate and with fully developed turbulent boundary layers at the trailing edge. The
Reynolds number based on the momentum thickness at the high-speed side is Reθ = 2900 at
the trailing edge. The shear layer develops in a 0.3 m × 0.3 m square test section of length 1.2
m. A self-similar flow with fully developed turbulence is reached well within the test section.

A computational domain is used with a length of 2.5 m (x-direction), a width of 0.15 m (z-
direction) and a height of 0.3 m (y-direction). A computational ‘test section’ is defined with a
length of L = 1 m after the trailing edge and with a uniform grid in the x- and z-directions. The
grid has 1.29 million cells, with a mesh size h = 3.125 mm in the test section. The fourth-order,
low-dispersion, symmetry-preserving finite-volume method is used with the levels of artificial
diffusion set to k(6) = 2 in the RANS zone and to k(6) = 1/8 in the LES zone. Time steps
are taken of size δt = 9.6 · 10−6 s, implying a convective CFL number, based on the maximum
velocity u1, equal to CFL = u1δt/h = 1/8.

For an original X-LES computation (standard SGS model and numerics), the development
of the shear layer is strongly delayed and the solution even remains 2D (Figure 4(a)). The
solution essentially displays the behaviour of an initially laminar shear layer: growth of a 2D
Kelvin–Helmholtz instability followed by vortex pairing.

Using the stochastic SGS model in X-LES, results in a dramatic improvement (Figure 4(b)).
The initial, spanwise vortices appear much closer to the trailing edge and already show 3D
disturbances. The flow then rapidly develops fully 3D turbulence. Comparison with experiment,
however, is not fully satisfactory. In the experiment, the initial shear layer thickens much more
rapidly and the growth rate is significantly lower further downstream (Figure 5(a)). Also the
level of resolved Reynolds shear stresses is overpredicted (Figure 5(c)).

Further improvement is obtained with the HPF SGS model. The initial disturbances start
even closer to the trailing edge and finer turbulent structures are captured further downstream
(Figure 4(c)). Furthermore, the shear layer now displays the correct growth rate compared
to the experiment and also the level of resolved Reynolds shear stresses compare well to the
experiment (Figure 5).
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(a) Standard SGS model (b) Stochastic SGS model

(c) Stochastic HPF SGS model (d) Stochastic HPF SGS model (k(6) = 2,
CFL = 1)

Figure 4: Instantaneous isosurfaces of Q = Ω2 − S2, coloured with vorticity magnitude Ω, for
X-LES computations of plane free shear layer

The importance of accurate numerical schemes for capturing free shear layers is shown in
Figure 4(d) and Figure 6. Additional computations with the stochastic HPF X-LES method
have been performed with an increased level of artificial diffusion in the LES zones (k(6) = 2)
and/or an increased time step (CFL = 1). Clearly, the fine-scale turbulent structures are
completely dissipated by the higher levels of numerical dissipation. As a consequence, the shear
layer no longer exhibits the correct growth rate. The energy spectrum rapidly starts to decay
(and deviate from the experiment) at much lower frequencies, showing that the dissipation of
kinetic energy is determined by the numerics instead of the SGS model. Using a convective CFL
= 1, as is commonly done in DES-type computations, introduces more numerical dissipation
than using the RANS-level of artificial diffusion (which was also shown by Figures 1 and 3).
Note that the LES-level of artificial diffusion can only be used thanks to the enhanced stability
of the symmetry-preserving discretization; a non-symmetry-preserving scheme would require a
significantly higher level of artificial diffusion to remain stable.

4.2 Delta wing with sharp leading edge

As a more challenging application, the flow around a delta wing with a sharp leading edge at
high angle of attack and high Reynolds number is considered. This flow is characterized by
the main vortex developing above the wing. The vortex is formed as the shear layer emanating
from the leading edge rolls up, starting immediately at the apex. At high Reynolds numbers,
the shear layer rapidly becomes unstable and a turbulent vortex is formed. At a sufficiently
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(a) Momentum thickness

(b) Mean velocity profile (c) Resolved Reynolds shear stress

Figure 5: Time-averaged solution for X-LES computations of plane free shear layer

high angle of attack, the vortex breaks down: the high axial velocity in the vortex core drops
rapidly to a value close to zero. To properly capture this flow, it is essential to capture the
shear layer separating from the leading edge. In particular, the instability of this shear layer
must be captured.

The NASA delta wing geometry of Chu and Luckring [1] is considered, for which experi-
ments that include measurements of velocity fluctuations have been performed by Furman and
Breitsamter [4, 5]. Vortex breakdown occurs at the flow conditions M = 0.07, Remac = 1 · 106,
and α = 23◦ (with the Reynolds number based on the mean aerodynamic chord cmac).

A multi-block structured grid has been generated, consisting of 22 blocks and 6.3 million
grid cells. The grid has a conical structure over a large part of the wing: the grid covering
the main vortex is essentially isotropic at each chordwise station (outside the boundary layer)
and the mesh width grows in all directions (including the streamwise direction) together with
the main vortex, going from approximately 0.003cmac to 0.011cmac. In other words, the grid
resolution relative to the main vortex is kept constant. Only in a small region near the apex,
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(a) Momentum thickness (b) Temporal energy spectrum at x/L = 0.8

Figure 6: Stochastic HPF X-LES computations of plane free shear layer with different levels of
artificial diffusion (k(6)) and different convective CFL numbers

the conical structure is not fully maintained, avoiding a grid singularity. The far-field boundary
is located at three root chord lengths from the wing. To study grid sensitivity, also a finer grid
with the mesh width reduced by a factor 2/3 in all directions (21.4 million grid cells) has been
generated.

Computations have been performed with stochastic HPF X-LES and delayed HPF X-LES,
as well as with standard SST-DDES as reference, all using the same optimized numerical method
and the same time step (again corresponding to a convective CFL = 1/8). The delayed HPF
X-LES method does not include the stochastic SGS model, but it does include the shielding
function of DDES [21] that protects attached boundary layers from inadvertently switching
to LES mode. An impression of the instantaneous results is given in Figure 7. Including the
delayed approach in X-LES leads to the suppression of the LES mode in a weakly separated
region in the wing/sting corner; otherwise, the solutions of the two HPF X-LES computations
are the same. Compared to SST-DDES, HPF X-LES is able to capture significantly finer
turbulent structures. Furthermore the primary vortex and the shear layers remain stable over
a large part of the wing for SST-DDES, in contrast to HPF X-LES. This difference between
X-LES and SST-DDES is most likely attributable to the HPF SGS model (and not to the
stochastic SGS model, which is not included in delayed HPF X-LES).

Figure 8 compares the level of resolved turbulent kinetic energy of the computations to the
experiment at a constant plane x/cr = 0.4 (with cr the root chord). Clearly, the SST-DDES
computation strongly underpredicts the level of turbulent kinetic energy, as the solution is
practically steady in this region. In contrast, the delayed HPF X-LES computation shows a
level of turbulent kinetic energy that is comparable to the experimental result. On the fine grid,
practically the same result is obtained, showing the weak dependence of the X-LES solution on
the grid resolution.
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(a) Stochastic HPF X-LES (b) Delayed HPF-XLES

(c) SST-DDES

Figure 7: Instantaneous isosurfaces of Q = Ω2 − S2, coloured with vorticity magnitude Ω, for
DES-type computations of flow around a delta wing with sharp leading edge

5 Conclusions

Capturing free shear layers in DES-type computations can be substantially improved using
modifications of the SGS model. These modifications are non-zonal and do not require know-
ing the separation location a priori. Shear-layer instabilities can be triggered by including a
stochastic SGS model. A correct growth rate of the shear layer can be obtained by using a
high-pass filtered (HPF) SGS model that reduces the level of subgrid stresses at the onset of
the free shear layer.

Numerical methods must be carefully designed in order to accurately capture free shear
layers without numerical errors overwhelming the subgrid stresses. In particular, a fourth-order,
low-dispersion, symmetry-preserving finite-volume method has been used. The symmetry-
preserving discretization ensures that computations are stable without any artificial diffusion
for incompressible flow and with only a low level of artificial diffusion for compressible flow.
Thus, kinetic energy is dissipated by the subgrid stresses and not by numerical errors.

Finally, one needs to be careful with the second-order implicit time integration commonly
used for DES computations. With a time step corresponding to a convective CFL number
equal to one, the time integration is much too dissipative and the temporal discretization
error swamps any good properties the spatial discretization may have. With a convective CFL
number equal to 1/8, the spatial and temporal discretization errors are balanced.
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(a) Experiment (b) Delayed HPF-XLES

(c) Delayed HPF-XLES (fine grid) (d) SST-DDES

Figure 8: Resolved turbulent kinetic energy at plane x/cr = 0.4 for the experiment and for
DES-type computations of flow around a delta wing with sharp leading edge
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