

Paul Tucker, Simon Eastwood, Christian Klostermeier Hao Xia, Prasun Ray, James Tyacke and William Dawes

Whittle Laboratory, University of Cambridge

- LES computational cost discussed
- LES hierarchy is proposed → LES model last !!
- Practical hybrid LES approach is proposed
- Applied to predict canonical flows: HDT, free shear flow, wall shear flows (+TS), ribbed passage; convex surface impingement
- Consider turbine and compressor endwall flows; fan blade section; jets; cutback trailing edge; idealized high pressure compressor drum cavity
- Encouraging results. Challenges remain for complex BL physics
- Need for best practices, better validation data discussed

LES = Resolve all large eddies

10% modelling

RANS = Resolve time average of flow, all modelling

KEY LES PROBLEM

- •Resolving streaks $\Delta z^+ \approx 100$
- •Trent 1000 fan at cruise 107
- •LES Cost α Re^{2.5*}
- •Hybrid LES-RANS Cost α Re^{0.5}

*Piomelli, AIAA-2008-396

LES Resolution Requirements

UNIVERSITY OF

Range of Solvers

Code	Description	$\frac{\text{Order}}{\text{of }\Phi_{\text{ctr}}}$	Smoothing
HYDRA	Cell Vertex	2	4th order
BOFFS	Curvilinear	2-6	3-7th order
FluxP	Cell Centered	2	4th order
TBLOCK	Cell Vertex	2	4th order
CHYDRA	Cell Vertex	2	f(wiggles)
Vu40	Staggered Grid	2-8	Smag. Model

Range of LES Models

Model	Components		
Smagorinsky	L		
Yoshizawa	L		
Clark	L+NL		
Kosovic	L+NL		
LANS-a	L+NL		
Leray	L+NL		
VMS	Uses Smag. Model		

Liu, Y., Tucker, P. and Kerr, R. Linear and nonlinear model large-eddy simulations of a plane jet. *Computers and Fluids*, 37(4): 439-449, 2008

Shear Layers – significant numerical influence

 Average predicted shear stress error for five LES models, five numerical schemes and 10% Ti delt inflow

Numerical scheme

Inflow (Ti = 10%)

19 %

-

For NLES N/Re^{0.4} - 3.5 time higher i.e. better resolved

14%

4 %

Shear Flow - Significant Numerical Influence

UNIVERSITY OF CAMBRIDGE

Chow and Moin JCP (2003) - numerical error

LES Model Validity? Omit?

- Smagorinsky model erroneously drains energy from all scales (AIAA ban)
- It provides no backscatter
- Eddy viscosity alters the effective Reynolds number and so alters the fine scales (non-linear LES models OK?)
- Existence of Kolmogorov -5/3 region in turbomachinery? If not new LES model needed

UNIVERSITY OF

ENGINEERING MODELLING APPROACH – RANS-NLES Blending

Ribbed channel (Re = 14,000)

UNIVERSITY OF CAMBRIDGE

Impinging Jet Flow – Re = 23000

UNIVERSITY OF CAMBRIDGE

Re ≈0.25 million, N = 5 million

HJ Equation Distance Function

Statistics

Grid Sensitivity

Shear stress, u'v'

UNIVERSITY OF CAMBRIDGE

SENSITIVITY TO REAL INFLOW/ GEOMETRY

UNIVERSITY OF CAMBRIDGE

Pylon Geometry

Instantaneous Streamwise Velocity

Time Averaged Streamwise Velocity

Chevron Nozzle

UNIVERSITY OF CAMBRIDGE

Statistics

RANS-LES + FWH

UNIVERSITY OF CAMBRIDGE

CAA Overview

High pressure compressor drum

UNIVERSITY OF CAMBRIDGE

(a)

(c)

Experimental data & Best Practices

- To correctly validate/exploit detailed comparisons with u'u' and E(k) data is desirable
- Lacking in many turbomachinery studies
- More importantly LES can need inflow (U, I & Ti) and careful definition of general BCs
- · Frequently missing from experimental studies
- To advance LES, both numerical practitioners and experimentalists need to move forward together
- Formal framework for recording simulations and what to record

Conclusions

- High cost of testing and low fidelity of RANS makes the development of LES attractive
- Considered field of 'practical LES', where dissipative RANS based solvers are frequently used
- LES model omission is an attractive option with near wall RANS model hybrid RANS-NLES
- Combined with suitable grid topologies (hexahedral meshes seem highly preferable) method gives useful results
- For industrial LES hierarchy is: problem definition, wall modeling and grid-solver compatibility with, last of all, the much debated LES model
- Better defined and more detailed validation data and best practice
- Caution must be exercised still needs user expertise and best practices should be developed

