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* LES computational cost discussed
* LES hierarchy is proposed — LES model last !!
» Practical hybrid LES approach is proposed

» Applied to predict canonical flows: HDT, free shear flow, wall shear flows
(+TS), ribbed passage; convex surface impingement

» Consider turbine and compressor endwall flows; fan blade section; jets;
cutback trailing edge; idealized high pressure compressor drum cavity

* Encouraging results. Challenges remain for complex BL physics .....

* Need for best practices, better validation data discussed
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What is LES, MILES, NLES ...?

RANS = Resolve time average of flow, LES = Resolve all large eddies
all modelling 10% modelling
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*Practical LES (DeBonis)
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KEY LES PROBLEM

*Resolving streaks Az* = 100
*Trent 1000 fan at cruise 107

L ES Cost a Re2>"

Hybrid LES-RANS Cost a Re%5 /
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Grid Requirements
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Range of Solvers Range of LES Models
Code Description  Order Smoothing Model Components
of @,

HYDRA Cell Vertex 2 4th order Smagorinsky L

BOFES Curvilinear 2-6 3-7th order Yoshizawa L

FluxP Cell Centered 2 4th order Clark L+NL

TBLOCK Cell Vertex 2 4th order Kosovic L+NL

CHYDRA Cell Vertex 2 f(wiggles) LANS-a L+NL

Vu40 Staggered Grid  2-8 Smag. Model Leray L+NL

VMS Uses Smag. Model

Liu, Y., Tucker, P. and Kerr, R. Linear and nonlinear model large-eddy
simulations of a plane jet. Computers and Fluids, 37(4): 439-449, 2008
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Homogenous decaying turbulence CAMBRIDGE
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1/ Numerical parameters Whittle
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Shear Layers — significant numerical
influence

»  Average predicted shear stress error for five LES
models, five numerical schemes and 10% Ti delt
inflow

0.8
Std. Dev. | Ave. error
- 0.6
&,
LES model 4 % 12 %
Numerical scheme |19 % 14% i _‘
Inflow (Ti = 10%) - 4 % °5 po‘?),lz‘ 54 : tm‘()?(;\A“M‘A()‘?:;‘ ‘ ?0'1
0.65 U] ) dt/’Dj
For NLES N/Re%4 - 3.5 time higher i.e. better resolved O\ Whittle
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Chow and Moin JCP (2003) — numerical error
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TS Wave in Shear Flow - Grid-Solver
Compatibility/Sensitivity
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LES Model Validity? Omit?

* SmagorinSky model erroneous|y 1:" LR B

drains energy from all scales (AIAA 01F @ law
ban) 0.01?— \A//< N ]
. ___0.0001:— X 4
» It provides no backscatter W o '
-|e-05;— R -1000 (Re- 10000) "" "\_ _
« Eddy viscosity alters the effective s el N v
Reynolds number and so alters the o Vi3
fine scales (non-linear LES models o B e el o ot VB
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in turbomachinery? If not new LES
model needed
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‘Law of the wall’ for under-resolved
LES grids
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Industrial Turbomachinery LES
Hierarchy

q%

PROBLEM DEFINITION:
/"| Boundary conditions; real
geometry influences

v

WALL MODELLING:
separation; transition

BEST PRACTICES <

A

GRID-SOLVER
COMPATABILITY

A 4

SGS MODEL:
k; LES, MILES

.\ Whittle

Laboratory

Second Symposium "Simulation of Wing and Nacelle Stall", June 22nd - 23rd, Braunschweig, Germany




ENGINEERING MODELLING
APPROACH — RANS-NLES Blending
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Impinging Jet Flow — Re = 23000
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Compressor Blade
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Re =0.25 million, N = 5 million
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Streamlines at Endwall - Compressor % CAMBRIDGE

Trailing edge]
saddle point

Hybrid NLES-RANS
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Averaged Total Pressure Loss Coefficient

m Re = 0.6 million, N > 5 million
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Streamlines at Endwall - Turbine

Experiment

Leading edge
saddle point

A

Hybrid NLES-RANS Excessive separation
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Coaxial Nozzle

Re = 300,000, 5<N< 50 (million)
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Vorticity Contours
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Statistics
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Time averaged
streamwise velocity.

Normal stress, u'u’

Shear stress, u'v’
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SENSITIVITY TO REAL INFLOW/
GEOMETRY
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Geometry and
Blocking Structure Vorticity Contours

Axial
velocity
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Turbulence profiles for pylon
and nozzle with internal geometry
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Pylon — circumferentially averaged Internal geometry — on blade trailing edge
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Pylon Geometry

Instantaneous Streamwise Velocity Time Averaged Streamwise Velocity
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Chevron Nozzle 4% CAMBRIDGE
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‘Numerical Schlieren’
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Flow Visualisation

Vorticity iso-surface
coloured by streamwise
velocity magnitude.
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Statistics
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Fan Blade Section (Re = 3 x 10°) 49 CAMBRIDGE

M=1 isosurface

Instantaneous vorticity magnitude

Blade surface pressure spectra -89 .-
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Cut back trailing edge 4% CAMBRIDGE

‘Martini & Schultz’ (2004) type case, Kacker and Whitelaw (1969)
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High pressure compressor drum

Compressor  drum Shroud
cavity

Axial through-

flow of cooling air
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PROBLEM AEROSPACE FLOWS
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Open rotor engines
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Experimental data & Best Practices

» To correctly validate/exploit detailed comparisons with u'u’ and E(k)
data is desirable

» Lacking in many turbomachinery studies

* More importantly LES can need inflow (U, | & Ti) and careful
definition of general BCs

* Frequently missing from experimental studies

» To advance LES, both numerical practitioners and experimentalists
need to move forward together

» Formal framework for recording simulations and what to record

~ ) Whittle
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Conclusions

» High cost of testing and low fidelity of RANS makes the development of LES
attractive

« Considered field of ‘practical LES’, where dissipative RANS based solvers are
frequently used

¢ LES model omission is an attractive option with near wall RANS model — hybrid
RANS-NLES

» Combined with suitable grid topologies (hexahedral meshes seem highly preferable)
method gives useful results

e Forindustrial LES hierarchy is: problem definition, wall modeling and grid-solver
compatibility with, last of all, the much debated LES model

« Better defined and more detailed validation data and best practice

e Caution must be exercised — still needs user expertise and best practices should be
developed
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