

Description of the degree program

Quantum Technologies in Electrical and Computer Engineering (Master) PO 1

Date: 16.10.2025

Table of contents

Master Quantum Technologies in Electrical and Computer Engineering	
Compulsory Module Fundamentals	_
Electromagnetic field theory: classical and quantum mechanical applications	
Ambits of Electromagnetic Field Theory	
Advanced Quantum Technology for Engineers	
Introduction to Quantum Information Technology and Quantum Computing	8
Optional Required Subjects: Quantum Structure Devices	4.4
Nonlinear Photonics	
Fundamentals of Nano Optics	
Semiconductor Technology	
Molecular Electronics	
Nanoelectronics	
Quantum Structure Devices	
Measurement Electronics with Experiments	
Statistics, Design of Experiments, Optimization	
Electromagnetic Compatibility with Seminar	
Analog Integrated Circuits with Lab	
Applied Quantum Computing: Basics and Devices	
Experimental Aspects of Quantum Computing	
Magnetic Quantum Systems	
Gallium Nitride Technology	
Semiconductor Optics	
Nanostructures on Surfaces	
Optional Required Subjects: Quantum Information Processing and Quantum Co	mpu-
ting	
Information Theory	
Network Information Theory	45
Coding Theory	
Entanglement as a resource for quantum computation and quantum information	49
Topological quantum computing	
Quantum Communication Networks	53
Online Algorithms	55
Approximation Algorithms	57
Mathematical Foundations of Information Theory and Coding Theory	59
Introduction to Quantum Information Theory	
Phase-Locked Loops and Frequency Synthesis	63
Interdisciplinary Qualification	
Industrial Internship	65
Professionalisation	
Master's Team Project	
Completion Module	
Master's Thesis	70

Compulsory Module Fundamentals

15 ECTS

Title	Electromagnetic field theory: class	Electromagnetic field theory: classical and quantum mechanical applications		
Number	2413000020	Module version		
Shorttext		Language	english	
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik	
Module duration	1	Institution	Institut für Halbleiter- technik	
Hours per Week / ECTS	4 / 5,0	Module owner	Prof. Dr. Tobias Voß	
Workload (h)	150			
Class attendance (h)	56	Self studying (h)	94	
Compulsory requirements				
Expected performance/ Type of examination	Written exam (120 min) or oral exam (30 min)			
Course achievement				

Contents

- · vector analysis: repetition and summary
- Potential formalism: scalar potential and vector potential
- Energy considerations, Poynting theorem
- Potentials for the dynamic case, Hertzian dipole
- Field theory in quantum mechanics: electromagnetic interactions in the Schrödinger theory

Objective qualification

After completing the module, students will be able to explain the structure of Maxwell's equations in differential formulation. They will be able to apply the general potential formalism (scalar potential and vector potential) to selected problems in electrostatics. They will be able to describe and analyze the energy flow in dynamic electromagnetic fields. They will be able to justify the Poynting theorem on the basis of Maxwell's theory. They will be able to describe the radiation of electromagnetic fields using the Hertzian dipole model. They can integrate electromagnetic interactions into the Schrödinger equation of quantum mechanics and solve elementary problems in this context.

Literature

D. J. Griffiths: Electrodynamics

J. D. Jackson: Classical Electrodynamics

A. Enders: Electromagnetic Fields (TU Braunschweig)

 \uparrow

Related courses	,		
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language
Electromagnetic field theory: classical and quantum mechanical applications	2,0	Lecture	english
Electromagnetic field theory: classical and quantum mechanical applications	2,0	Exercise	english

Title	Ambits of Electromagnetic Field Th	Ambits of Electromagnetic Field Theory		
Number	2419110	Module version		
Shorttext	ET-IEMV-11	Language	english	
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik	
Module duration	1	Institution	Institut für Elektroma- gnetische Verträglichkeit	
Hours per Week / ECTS	4 / 5,0	Module owner		
Workload (h)	150			
Class attendance (h)	56	Self studying (h)	94	
Compulsory requirements				
Expected performance/ Type of examination	Written exam (120 min) or oral exa	am (30 min)		
Course achievement				

Contents

- Energetic considerations, Poynting theorem, equivalent circuit
- Potentials in the dynamic case, Hertzian dipole and radiation, approximations for the field descriptions
- Analytical calculation methods and examples, numerical field calculation

Objective qualification

The students can explain the structure of the Maxwell equations in differential form, herefrom derive the fully dynamic field solution of the Hertzian dipole and, depending on the special case, give reasons for idealized approximate solutions. By this they can analyze fundamental electrotechnical configurations and abstract to the essential details. They can choose and apply appropriate solution methods for example for energetic problems, Poynting theorem and temporal and spatial variable fields.

Literature

 \uparrow

Related courses			
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language
	2,0	Lecture	german

2,0	Exercise	german
		١٣

Title	Advanced Quantum Technology fo	Advanced Quantum Technology for Engineers		
Number	2413000000	Module version		
Shorttext	ET-IHT-0000	Language	english	
Frequency of offer	only in the winter term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik	
Module duration	1	Institution	Institut für Halbleiter- technik	
Hours per Week / ECTS	4 / 5,0	Module owner	Prof. Dr. Andreas Waag	
Workload (h)	150			
Class attendance (h)	56	Self studying (h)	94	
Compulsory requirements				
Expected performance/ Type of examination	Written exam (120 min) or oral exam (30 min)			
Course achievement	Presentation (§ 9 APO)			

Contents

- Quantum mechanical wavefunctions and the Schrödinger equation
- Bra- and ket vectors, observables and hermitian operators
- Free particles, "particle in a box", harmonic oscillator, hydrogen atom
- Second quantization, creation and annihilation operators
- Single- and many-particle systems: bosons and fermions, exchange interaction
- Fundamentals of macroscopic quantum phenomena (ferromagnetism, superconductivity)
- Distributions function in quantum statistical descriptions
- Entanglement

Objective qualification

The students can apply the concept of the Schrödinger equation and the corresponding formalism of wave mechanics to derive the energy levels and the quantum mechanical states of free particles, the "particle in a box", the quantum mechanical harmonic oscillator and the hydrogen atom. They can apply the "bra – ket" formalism to describe and analyze the quantum mechanical states of single- and many-particle systems. They can set-up new and interpret given Hamiltonians in the formalism of the "second quantization" and understand the concept of creation and annihilation operators. They understand the concept of entanglement and can use it to describe basic concepts of quantum cryptography and quantum computing. They can apply the basic concepts of quantum statistics to describe bosonic and fermionic many-particle systems including exchange interaction and interpret given quantum statistical distribution functions. The students can present their work to a non-professional audience.

Literature

Cohen-Tannoudji, Diu, Laloe 2020, Quantum Mechanics Vol. 1-3, Wiley VCH Leon van Dommelen: Quantum Mechanics for Engineers (2018), pdf available online

↑

Related courses			
Rules for the choice of courses			
All courses have to be attended			
Compulsory attendance			
		_	
Name of the course	sws	Eventtype	Language
Advanced Quantum Technology for Engineers	2,0	Lecture	english ger- man
Literature			
Cohen-Tannoudji, Diu, Laloe 2020, Quantum Mechanics Vol. 1-3, Leon van Dommelen: Quantum Mechanics for Engineers (2018), p			
Advanced Quantum Technology for Engineers	2,0	Exercise	english
Literature	•		
Cohen-Tannoudji, Diu, Laloe 2020, Quantum Mechanics Vol. 1-3, Wiley VCH Leon van Dommelen: Quantum Mechanics for Engineers (2018), pdf available online			
Advanced Quantum Technology for Engineers	2,0	Seminar	english
Literature	•		
Cohen-Tannoudji, Diu, Laloe 2020, Quantum Mechanics Vol. 1-3, Leon van Dommelen: Quantum Mechanics for Engineers (2018), p	-		

Title	Introduction to Quantum Information	Introduction to Quantum Information Technology and Quantum Computing		
Number	2413000010	Module version		
Shorttext	ET-IHT-0010	Language	english	
Frequency of offer	only in the winter term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik	
Module duration	1	Institution	Institut für Halbleiter- technik	
Hours per Week / ECTS	4 / 5,0	Module owner	Prof. Dr. Tobias Voß	
Workload (h)	150			
Class attendance (h)	56	Self studying (h)	94	
Compulsory requirements				
Expected performance/ Type of examination	Written exam (120 min) or oral exam (45 min)			
Course achievement	Presentation (§ 9 APO)			

Contents

- QBits: concept and different realizations
- Bloch-Sphere and Q-Sphere
- Basic quantum logic gates: CNOT, Hadamard, ...
- Combinations of quantum logic gates and their applications
- Quantum Information and Quantum Communications
- Quantum Cryptography and Quantum Key Distribution
- Quantum Walks and Search Algorithms
- Quantum Simulation
- Quantum Error Correction

Objective qualification

The students can describe different realizations of qbits and can visualize them using the Bloch sphere or the Q-Sphere, respectively. They can apply basic quantum logic gates to form basic applications of qbits (Bell states and others). They can describe basic and advanced models of quantum information processing, transmission, and computing systems. They know the important quantum effects including teleportation, super-dense coding, and no-cloning theorem and can relate them to the quantum algorithms.

From quantum communications, the students know the fundamental results on capacities of quantum-assisted classical, classical-quantum, and pure quantum channels. The students know the current state of the art of multi-user quantum channels and the available rate characterizations.

From quantum computing, the students learn about circuits and operations on qubits and the elements of quantum algorithms, such as Shor's algorithm, Grover's algorithm, and quantum random walks. They also understand the corresponding aspects of runtime (lower and upper bounds) and the relation to classical algorithms. The students can present their work to a non-professional audience.

Literature

- 1. Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press.
- 2. Cariolaro, Gianfranco. 2015. Quantum Communications. Springer, Cham.
- 3. Holevo, Alexander S. 2019. Quantum Systems, Channels, Information. De Gruyter.
- 4. Cohen-Tannoudji, Diu, Laloe 2020, Quantum Mechanics Vol. 1-3, Wiley VCH

 \uparrow

Related courses

Rules for the choice of courses

All courses have to be attended

Compulsory attendance

Name of the course	sws	Eventtype	Language
Introduction to Quantum Information Technology and Quantum Computing	4,0	Lecture	english

Literature

- 1. Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press.
- 2. Cariolaro, Gianfranco. 2015. Quantum Communications. Springer, Cham.
- 3. Holevo, Alexander S. 2019. Quantum Systems, Channels, Information. De Gruyter.
- 4. Cohen-Tannoudji, Diu, Laloe 2020, Quantum Mechanics Vol. 1-3, Wiley VCH

Literature

- 1. Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press.
- 2. Cariolaro, Gianfranco. 2015. Quantum Communications. Springer, Cham.
- 3. Holevo, Alexander S. 2019. Quantum Systems, Channels, Information. De Gruyter.
- 4. Cohen-Tannoudji, Diu, Laloe 2020, Quantum Mechanics Vol. 1-3, Wiley VCH

Introduction to Quantum Information Technology and Quantum Computing	4,0	Seminar	english
--	-----	---------	---------

Literature

- 1. Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press.
- 2. Cariolaro, Gianfranco. 2015. Quantum Communications. Springer, Cham.
- 3. Holevo, Alexander S. 2019. Quantum Systems, Channels, Information. De Gruyter.
- 4. Cohen-Tannoudji, Diu, Laloe 2020, Quantum Mechanics Vol. 1-3, Wiley VCH

Optional Required Subjects: Quantum Structure Devices 20 ECTS

Title	Nonlinear Photonics		
Number	2415470	Module version	
Shorttext	ET-IHF-47	Language	english
Frequency of offer	only in the winter term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Hochfrequenztechnik
Hours per Week / ECTS	4 / 5,0	Module owner	Prof. Dr. Thomas Schneider
Workload (h)	150		
Class attendance (h)	56	Self studying (h)	94
Compulsory requirements			
Expected performance/ Type of examination	Written exam, 90 minutes, or oral exam, 30 minutes		
Course achievement			

Contents

- Basics of linear optics
- 2nd order nonlinear optical effects
- 3rd order nonlinear optical effects
- Nonlinear scattering
- Optical telecommunications
- Nonlinear effects in optical fibers
- Suppression of nonlinear effects
- Applications of nonlinear effects

Objective qualification

After a successful participation, the students know the main basics of nonlinear photonics and will be able to use them for the evaluation of optical systems and optical data transmission systems.

Literature

T. Schneider "#Nonlinear Optics in Telecommunications#", Springer Verlag

Related courses	'		,
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language
Nonlinear Photonics	2,0	Lecture	english
Nonlinear Photonics	2,0	Exercise	english

Title	Fundamentals of Nano Optics		
Number	1520430	Module version	
Shorttext	PHY-AP-43	Language	english
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Halbleiter- technik
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Stefanie Kroker
Workload (h)	150		
Class attendance (h)	42	Self studying (h)	108
Compulsory requirements			
Expected performance/ Type of examination	Written exam (120 min) or oral exam (30 min)		
Course achievement			

Contents

- 1. Basic concepts (photonic cristals, plasmonics)
- 2. Production and characterisation (metrology) of nano structures
- 3. Photonic nano materials / meta materials / meta surfaces
- 4. Optic nano emitters and nano antennae
- 5. Active photonic elements

Objective qualification

The participants can describe basic phenomena of light propagation (reflection, scattering, absorption, transmission) at interfaces and in homogeneous media qualitatively and quantitatively.

Participants can name important basic elements of nanooptics, such as waveguides, optical gratings, photonic crystals or metamaterials, discuss their properties qualitatively and name fields of application.

Participants are able to identify the basic elements in complex optical systems and describe their respective functions.

The participants can name important processes of micro- and nanostructuring and explain how they work. The participants can solve the wave equation in simple dielectric, metallic and hybrid nanooptical systems analytically and semi-analytically and interpret the solutions.

Participants can classify optical resonance phenomena in nanooptical systems and name their essential properties.

Literature

Novotny, Hecht: Principles of nano-optics, Cambridge University Press 2016

Prasad: Nanophotonics, John Wiley & Sons 2004

Jahns, Helfert: Introduction to Micro- and Nanooptics, Wiley VCH 2012

Related courses			
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language
Fundamentals of Nano Optics	2,0	Lecture	english
Fundamentals of Nano Optics	1,0	Exercise	english

Title	Semiconductor Technology		
Number	2413420	Module version	
Shorttext	ET-IHT-42	Language	english
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Halbleiter- technik
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Andreas Waag
Workload (h)	150		
Class attendance (h)	42	Self studying (h)	108
Compulsory requirements		`	
Expected performance/ Type of examination	Oral exam 30 min		
Course achievement			

Contents

- physical and chemical basics
- manufacturing of single crystals and wafers
- epitaxial crystal growth processes and crystal defects
- doping processes
- semiconductor measurement technology
- planar technology
- basics of photolithography, deposition processes for dielectrics and etching processes

Objective qualification

After completing the semiconductor technology module, students have:

- an understanding of the basic manufacturing technologies of semiconductors as well as components and integrated circuits made from them.
- the ability to recognize the principles of the most modern manufacturing processes in semiconductor technology and their modes of operation
- the ability to analyze and extrapolate trends in semiconductor technology developments

Literature

- Lecture transparencies
- Script in Englisch (H.-H. Wehmann and A. Schlachetzki)
- Waldemar von Münch: Einführung in die Halbleitertechnologie; Teubner(Stuttgart, 1998) ISBN: 3-519-06167-8
- Ingolf Ruge, Hermann Mader: Halbleiter-Technologie Springer (Berlin, 1991) ISBN: 3-540-53873-9
- Werner Prost: Technologie der III/V-Halbleiter, Springer (Berlin, 1997) ISBN. 3-540-62804-5
- Ulrich Hilleringmann: Silizium-Halbleitertechnologie, Teubner (Stuttgart, 2004) ISBN: 3-519-30149-0

Remark

Language German or English

Related courses				
Rules for the choice of courses				
Compulsory attendance				
Name of the course	S	SWS	Eventtype	Language
Semiconductor Technology	2	2,0	Lecture	english
Literature				
Waldemar von Münch: Einführung in die Halbleitertechn Mader: Halbleiter-Technologie Springer (1991) Werner F (1997) Ulrich Hilleringmann: Silizium-Halbleitertechnolog Vorlesungsfolien	Prost: Techno	ologie de	er III/V-Halbleiter, S	Springer
Semiconductor Technology	1	1,0	Exercise	english
Literature	•			
Übungsmaterial wird verteilt.				

Title	Molecular Electronics		
Number	2413600	Module version	
Shorttext	ET-IHT-60	Language	english
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Halbleiter- technik
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Tobias Voß
Workload (h)	150		
Class attendance (h)	42	Self studying (h)	108
Compulsory requirements			
Expected performance/ Type of examina- tion	Oral exam (30 min)		
Course achievement	Presentation		

Contents

Introduction to molecular electronics

basic considerations (molecular orbitals, conjugated systems)

characterisation tools

transport mechanisms

conductive polymers

optoelectronic applications of molecular systems

Objective qualification

Students are familiar with the fundamentals of organic chemistry. They can explain the structure of molecular orbitals and describe the different hybridization states of carbon atoms in the context of LCAO. They analyze the electron transfer between different molecules in the framework of the Marcus theory and can describe the essential aspects of electronic tunneling processes. They understand the content of current research publications and present them in short presentations. They can describe the structure of conductive polymers, their doping and electronic transport. They analyze the optoelectronic properties of polymers and organic dyes and can classify and explain the relevant electronic excitations and processes.

Literature

Introduction to Nanoscience, S.M. Lindsay, Oxford Polymer Electronics, M. Geoghegan, G. Hadziioannou, Oxford

1

Related courses	,		
Rules for the choice of courses			
Compulsory attendance			
Name of the course	SWS	Eventtype	Language
Molecular Electronics	2,0	Lecture	english
Literature			
"Molecular Nanoelectronics", M. A. Reed, T. Lee (Eds.), American Molecular Electronics", Cuniberti et al. (Eds.), Springer (2005)	Scientific	Publishers (2003) "	Introducing
	1,0	Exercise	english
Literature			
lecture slides, exercise materials			

Title	Nanoelectronics		
Number	2411200	Module version	
Shorttext	ET-EMG-20	Language	
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Elektrische Messtechnik und Grund- lagen der Elektrotechnik
Hours per Week / ECTS	4 / 5,0	Module owner	Prof. Dr. Oleksandr Dobrovolskiy
Workload (h)	150		
Class attendance (h)	56	Self studying (h)	94
Compulsory requirements			
Expected performance/ Type of examination	Oral exam (30 min), written exam	(120 min) only for a high r	number of participants
Course achievement			

Contents

- Quantum mechanics Wave function, potentials, interaction
- Magnetism
- Superconductivity
- Manufacturing processes
- Josephson junctions
- SET components
- Data memory
- THz transistors
- Quantum computing

Objective qualification

After completing the module 'Nanoelectronics', students will have an overview of the fundamentals of quantum mechanics and its application to metallic, magnetic and superconducting components with nanometre dimensions.

Literature

A multi-media CD ROM with script and exercises is availabe for the lecture

- R. Waser, #Nanoelectronics and Information Technology#, Wiley-VCH, 2003, ISBN 978-3527403639
- M. Köhler, #Nanotechnologie#, Wiley-VCH, 2007, ISBN 978-3527318711
- Jasprit Singh, #Modern Physics for Engineers#, Wiley, 1999, ISBN 978-0471330448
- N. Ashcroft, N. Mermin, #Solid State Physics#, Cengage Learning Services, 1976, ISBN 978-0030839931
- S. Flügge, #Rechenmethoden der Quantentheorie#, Springer Verlag 1993, ISBN 978-3540567769
- W. Nolting, #Quantenmechanik#, Band 5 aus #Grundkurs: Theoretische Physik#, Springer-Verlag, 2007, ISBN 978-3540688686

个

Rules for the choice of courses Compulsory attendance Name of the course SWS Eventtype Language Nanoelectronics 2,0 Lecture german

Literature

- R. Waser, Nanoelectronics and Information Technology, Wiley-VCH
- M. Köhler, Nanotechnologie, Wiley-VCH
- Jasprit Singh, Modern Physics for Engineers, Wiley
- N. Ashcroft, N. Mermin, Solid State Physics
- S. Flügge, Rechenmethoden der Quantentheorie
- W. Nolting, Quantenmechanik, Band 5 aus Grundkurs: Theoretische Physik

		 I	
Nanoelectronics	1,0	Exercise	german
Literature			
R. Waser, Nanoelectronics and Information Technology, Wiley-	VCH		

- M. Köhler, Nanotechnologie, Wiley-VCH
- Jasprit Singh, Modern Physics for Engineers, WileyN. Ashcroft, N. Mermin, Solid State Physics
- S. Flügge, Rechenmethoden der Quantentheorie
- W. Nolting, Quantenmechanik, Band 5 aus Grundkurs: Theoretische Physik

Title	Quantum Structure Devices		
Number	2415310	Module version	
Shorttext	ET-IHF-31	Language	english
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Hochfrequenztechnik
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Wolfgang Kowalsky
Workload (h)	150		
Class attendance (h)	42	Self studying (h)	108
Compulsory requirements			
Expected performance/ Type of examination	Written exam (120 min) or oral exam (30 min) or presentation		
Course achievement			

Contents

- Schroedinger wave equation
- Potential wells
- Semicondustor materials for quantum structure devices
- Electronical quantum well devices
- Emission and absorption (Einstein relations, Fermi's golden rule, electron photon interaction)
- Excitons
- Photonic quantum well devices
- Quantum wire and quantum box, one and zero dimensional electronic structures
- Semiconductor devices based on one and zero dimensional quantum strutures
- Tunneling, tunnel diode, resonant tunnel diode

Objective qualification

After completion of the module students have deeper understanding of quantummechanical phenomena in semiconductor devices. They have the ability to design and dimension quantum structures.

Literature

Schiff, Quantum Mechanics, McGraw Hill, ISBN 0070552878

Related courses			
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language

Quantum Structure Devices 2,0 Lecture			english	
Literature				
- Skript zur Vorlesung - L. I. Schiff, Quantum Mechanics, McGraw Hill				
Quantum Structure Devices	1,0	Exercise	english	

Title	Measurement Electronics with Experiments			
Number	2411330	Module version		
Shorttext	ET-EMG-33	Language	english	
Frequency of offer	only in the winter term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik	
Module duration	1	Institution	Institut für Elektrische Messtechnik und Grund- lagen der Elektrotechnik	
Hours per Week / ECTS	6 / 8,0	Module owner	Prof. Dr. Meinhard Schilling	
Workload (h)	240			
Class attendance (h)	84	Self studying (h)	156	
Compulsory requirements				
Expected performance/ Type of examina- tion	Oral exam (30 min), written exam (120 min) only for a high number of participants			
Course achievement	Successful participation in lab wor	k		

Contents

Measuring amplifiers with transistors and OPVs

- Electronic switches
- Source circuits
- Measuring transducers
- Analogue filter circuits
- Treatment of interference signals and noise
- Correlation analysis
- Measurement converters (A/D and D/A)
- Measuring device buses
- Time measurement
- Oscilloscopes and trigger circuits and

carrying out experiments in the following areas

- Electronically controllable switches
- Reference sources for voltages and currents
- Measuring amplifiers
- Analogue-to-digital/digital-to-analogue converters
- Time and frequency measurement
- Oscilloscope
- Correlator

Objective qualification

After completing the module 'Measurement Electronics with Practice', students will have an overview of the circuit technology and measurement methods of measurement electronics. The practical knowledge they have acquired enables them to set up circuits for measurement applications. In-depth practical experience with measurement methods that are dealt with in the measurement electronics lecture is taught in the laboratory. In accordance with the didactic concept of the course and the design of the individual components,

interdisciplinary skills are taught and practised. In the context of papers, colloquia and final presentations, these include scientific writing and documentation

Literature

A multi-media CD ROM with script and exercises is availabe for the lecture

- Allan R. Hambley #Electronics#, Prentice Hall, ISBN 978-0136919827
- U. Tietze, Ch. Schenk #Halbleiter-Schaltungstechnik#, Springer-Verlag, 2002, ISBN 978-3540641926
- Dieter Nührmann #Das komplette Werkbuch Elektronik#, Franzis-Verlag, ISBN 978-3772365263
- P. Horowitz #The Art of Electronics#, Cambridge Univ. Press, ISBN 978-0521689175
- Rupert Patzelt, Herbert Schweinzer, #Elektrische Messtechnik#, Springer Verlag 1996, ISBN 978-3211828731

Related courses

	Rules for the choice of courses				
Compulsory attendance					
Name of the course	sws	Eventtype	Language		
Measurement Electronics	2,0	Lecture	german		
Literature					
 Allan R. Hambley #Electronics#, Prentice Hall U. Tietze, Ch. Schenk #Halbleiter-Schaltungstechnil Dieter Nührmann #Das komplette Werkbuch Elektro P. Horowitz #The Art of Electronics#, Cambridge Ur Rupert Patzelt, Herbert Schweinzer, #Elektrische Me 	onik#, Franzis-Verla niv. Press esstechnik#, Sprin	g			
Measurement Electronics	11.0	I EXCIDISE	l derman		
Literature	1,0	Exercise	german		
	k#, Springer-Verlag onik#, Franzis-Verla niv. Press	i, 2002 g	german		
 Allan R. Hambley #Electronics#, Prentice Hall U. Tietze, Ch. Schenk #Halbleiter-Schaltungstechnil Dieter Nührmann #Das komplette Werkbuch Elektro P. Horowitz #The Art of Electronics#, Cambridge United School 	k#, Springer-Verlag onik#, Franzis-Verla niv. Press	i, 2002 g	german		
 Allan R. Hambley #Electronics#, Prentice Hall U. Tietze, Ch. Schenk #Halbleiter-Schaltungstechnil Dieter Nührmann #Das komplette Werkbuch Elektro P. Horowitz #The Art of Electronics#, Cambridge Ur Rupert Patzelt, Herbert Schweinzer, #Elektrische Me 	k#, Springer-Verlag onik#, Franzis-Verla niv. Press esstechnik#, Sprin	ger Verlag 1996			

Title	Statistics, Design of Experiments, Optimization		
Number	2415480	Module version	
Shorttext	ET-IHF-48	Language	english
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Hochfrequenztechnik
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Wolfgang Kowalsky
Workload (h)	150		
Class attendance (h)	54	Self studying (h)	96
Compulsory requirements			
Expected performance/ Type of examination	Homework		
Course achievement			

Contents

Descriptive and comparative statistics, significance tests, outlier tests, application of important probability distributions (normal distribution, Student#s t-distribution, F distribution). Fundamentals of design of experiments and analysis, statistical analysis of obtained factors and models. Introduction to the matrix version of least squares. System optimization with respect to simple and multiple targets. For all modules (I # III): use of free (for academic purposes) state-of-the-art statistical software R and associated integrated programming environment RStudio.

Objective qualification

Overarching target is to familiarize participants with statistical principles of data analysis, comparison of and inference from experimental data (part I - Statistics), the optimal design of experiments (part II - Design of Experiments), and system optimization (part III - Optimization). Participants will learn to use the state-of-the-art statistical software R and apply the content of the lecture to optimize multi-parameter problems typically encountered in an industrial setting. After attending the course participants will be able to analyze experimental data according to established statistical procedures (test for outliers, confidence intervals for a single response and differences between observations of pairs of responses, evaluation and planning of sample sizes). Part II # Design of Experiments # enables the participants to plan experiments for maximal efficiency and analyze the reliability of the parameters extracted from the data (determination and understanding of the relevance of process variances, confidence intervals and significance of extracted process parameters). Participants furthermore will be skilled in using least-squares methods applied to data analysis and model building. During part III # Optimization # participants will learn to optimize multidimensional systems which include interaction between the controlling factors and multiple, possibly conflicting targets.

Literature

Note: even former editions of the following monographs are well suited for preparation, studies besides, and after the

lecture:

Box, Hunter, Hunter, Statistics for Experimenters: Design, Innovation, and Discovery (Wiley Series in Probability and Statistics)

Myers, Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments

(Wiley Series in Probability and Statistics)

Montgomery, Design and Analysis of Experiments (Wiley)

As introduction to R the following free source is recommended as introduction:

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

Related courses			
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language
Statistics, Design of Experiments, Optimization	2,0	Lecture	english
Statistics, Design of Experiments, Optimization	1,0	Exercise, small group	english

Title	Electromagnetic Compatibility with Seminar		
Number	2419130	Module version	
Shorttext	ET-IEMV-13	Language	english
Frequency of offer	only in the winter term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Elektroma- gnetische Verträglichkeit
Hours per Week / ECTS	5 / 6,0	Module owner	
Workload (h)	180		
Class attendance (h)	70	Self studying (h)	110
Compulsory requirements			
Expected performance/ Type of examination	Written exam (60 min) or oral exam, presentation of seminar topic		
Course achievement			

Contents

- Terms and definitions of EMC
- Sources of interference and disturbance variables, immunity of susceptible devices
- Coupling mechanisms: galvanic, capacitive, inductive coupling, wave and radiation interference
- Establishing of EMC by measures at the sources of interference, at the coupling paths and at the susceptible devices; shielding, overvoltage and overcurrent protection
- Legal basis, product liability, standardization
- EMC test engineering
- Electromagnetic compatibility of biological systems
- Current EMC issues presented in seminar talks

Objective qualification

The students are able to analyze mutual interference and interaction scenarios for electrotechnical and electronic systems and components by emitted interference levels and susceptibilities. The students are able to choose appropriate protection and compatibility measures. The students are able to predict EMC-aspects for the design of facilities and systems at an early stage, as well as to decide on cost-efficient solutions. The students are able to describe the responsibilities for the EMC product safety by the state of standards. The students are able to assess the EMC product safety by failure mechanisms. The students are able to investigate current EMC issues autonomously, structure and present them to an audience.

Literature

- continuously updated script handout
- Joachim Franz, EMV Störungssicherer Aufbau elektronischer Schaltungen, Teubner, 2002, ISBN 3-519-00397-X
- Clayton R. Paul, Introduction to Electromagnetic Compatibility, Wiley, 2006, ISBN 0-471-75500-1
- Kenneth L. Kaiser, Electromagnetic Compatibility Handbook, CRC Press, 2005, ISBN 0-8493-2087-9

 \uparrow

Related courses

Rules for the choice of courses

You can either choose Electromagnetic Compatibility with Seminar **or** Electromagnetic Compatibility (without seminar). The seminar can also be attened in the summer semester after having attended the EMC lecture.

Compulsory attendance

Name of the course	sws	Eventtype	Language
Electromagnetic Compatibility	2,0	Lecture	german
Teacher training college EMC	2,0	Seminar	english
Electromagnetic Compatibility	1,0	Exercise	german

Title	Analog Integrated Circuits with Lab		
Number	2420140	Module version	
Shorttext	ET-BST-14	Language	english
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik
Module duration	1	Institution	Institut für CMOS Design
Hours per Week / ECTS	6 / 8,0	Module owner	Prof. Dr. Vadim Issakov
Workload (h)	240		
Class attendance (h)	84	Self studying (h)	156
Compulsory requirements			
Expected performance/ Type of examination	Oral exam (30 min)		
Course achievement			

Contents

All modern mobile communications applications (e.g., GSM, WLAN, GPS, Bluetooth, DECT, etc.) use analog receiver and transmitter circuits that are composed of a few elementary circuit blocks. For cost reasons, these are increasingly being integrated into low-cost CMOS technology, resulting in significant differences from the classic design of high-frequency circuits based on discrete components. The lecture provides an introduction to the design of analog, integrated CMOS mobile communications receiver circuits.

The lecture is divided into the following chapters:

- High-frequency amplifier circuits
- Simulation of electronic noise
- Low-noise input amplifiers in CMOS
- Mixer circuits
- HPhase-locked loops (PLLs)
- Voltage-controlled oscillators

Objective qualification

After completing the module, students will have acquired knowledge of analog receiver and transmitter circuits in CMOS technology and have an advanced understanding of the design and function of modern analog integrated circuits for mobile radio applications (e.g. high-frequency amplifier circuits and simulation of electronic noise). After completing the module, students will have acquired knowledge of analog receiver and transmitter circuits in CMOS technology and have an advanced understanding of the design and function of modern analog integrated circuits for mobile radio applications (e.g. high-frequency amplifier circuits and simulation of electronic noise).

They will acquire fundamental knowledge in the use of the Spectre-RF design tool, which is widely used in industry for the design of analog integrated circuits.

In accordance with the didactic concept of the course and the structure of the individual components, interdisciplinary skills are taught and practiced. These include scientific writing and documentation, conversation

and presentation techniques, and teamwork in the laboratory or on projects, which are covered in assignments, colloquia, and final presentations.

Literature

Thomas H. Lee " The Design of CMOS Radio-Frequency Integrated Circuits", Cambridge University Press

Remark

For the Master's degree programs in Electrical Engineering, Industrial Engineering Electrical Engineering, and Information Systems Engineering

Related courses				
Rules for the choice of courses				
Requirements for this module: circuit technology (Schaltung	gstechnik, ST)			
Compulsory attendance				
Name of the course	sws	Eventtype	Language	
Analog Integrated Circuits (2013)	1,0	Exercise	english	
Analog Integrated Circuits (2013)	1,0	Internship	english	
Analog Integrated Circuits (2013)	2,0	Lecture	english	

Title	Applied Quantum Computing: Basics and Devices		
Number	2413620	Module version	
Shorttext	ET-IHT-62	Language	english
Frequency of offer	only in the winter term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Halbleiter- technik
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Stefanie Kroker
Workload (h)	150		
Class attendance (h)	42	Self studying (h)	108
Compulsory requirements			
Expected performance/ Type of examination	Written exam (120 min) or oral exam (30 min), alternativ: homework with final presentation		
Course achievement			

Contents

- Basics of Quantum Mechanics
- From Bit to Qubit
- Quantum Circuits I
- Quantum Circuits II
- Entanglement and Teleportation
- Algorithms of Quantum Computing
- Quantum Hardware I
- Quantum Hardware II

Objective qualification

- The students can name the prerequisites for the realization of qubits as well as typical platforms and explain their significance.
- Students will be able to name the strengths and weaknesses of different hardware platforms in common application scenarios and weigh them against each other.
- The students can name the essential process steps for the realization of different quantum computer platforms and to explain challenges that may arise in the manufacturing process.
- Students will be able to use an exemplary platform to explain how selected quantum gates can be realized.

Literature

- [1] C. Bernhardt: Quantum Computing for everyone (The MIT Press) 2019
- [2] M. A. Nielsen & I. L. Chuang: Quantum Computation and Quantum Information (Cambridge University Press) 2010
- [3] J. D. Hidary: QuantumComputing: An Applied Approach (Springer) 2019
- [4] M. Homeister: Quantum Computing verstehen (Springer Vieweg) 2018
- [5] W. Scherer: Mathematics of Quantum Computing (Springer) 2019

Related courses				
Rules for the choice of courses				
Compulsory attendance				
Name of the course	sws	Eventtype	Language	
Applied Quantum Computing: Basics and Devices	2,0	Lecture	german	
Literature	•			
 [1] C. Bernhardt: Quantum Computing for everyone (The MIT Press) 2019 [2] M. A. Nielsen & I. L. Chuang: Quantum Computation and Quantum Information (Cambridge University Press) 2010 [3] J. D. Hidary: QuantumComputing: An Applied Approach (Springer) 2019 [4] M. Homeister: Quantum Computing verstehen (Springer Vieweg) 2018 [5] W. Scherer: Mathematics of Quantum Computing (Springer) 2019 				
Applied Quantum Computing: Basics and Devices	1,0	Exercise	german	

Title	Experimental Aspects of Quantum Computing			
Number	1511000000	Module version		
Shorttext	PHY-IPKM-0000	Language	english	
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik	
Module duration	1	Institution	Institut für Physik der Kondensierten Materie	
Hours per Week / ECTS	4 / 5,0	Module owner	Prof. Dr. Dirk Menzel Prof. Dr. Stefan Süllow	
Workload (h)	180			
Class attendance (h)	60	Self studying (h)	120	
Compulsory requirements		`		
Expected performance/ Type of examination	Oral exam (45 min)			
Course achievement				

Contents

- superconductivity
- spintronics
- low temperature
- realization of qubits
- charge and spin transport

Objective qualification

The students learn and know the fundamentals in quantum physics for the realization of qubits. They transfer the physical

concepts of superconductivity and spintronics into the context of 'quantum computing'. They learn possible structuration

methods to represent qubits in real systems and can implement experimental techniques, e. g., charge and spin transport

at low temperature.

Literature

Remark

Students either have to choose "Superconductivity" or "Physical Fundamentals of Spintronics" (lecture + exercise).

1

Related courses			-			
Rules for the choice of courses						
Compulsory attendance						
Name of the course	SWS	Eventtype	Language			
Experimental Aspects of Quantum Computing		Lecture	german			
Physical Fundamentals of Spintronics	2,0	Lecture	english ger- man			
Physical Fundamentals of Spintronics	1,0	Exercise	english ger- man			
Superconductivity	2,0	Lecture	english ger- man			
Superconductivity	1,0	Exercise	english ger- man			

Title	Magnetic Quantum Systems			
Number	1520000000	Module version		
Shorttext	PHY-AP-0000	Language	english	
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik	
Module duration	1	Institution	Institut für Angewandte Physik	
Hours per Week / ECTS	3 / 5,0	Module owner	Dr. Markus Etzkorn	
Workload (h)	150			
Class attendance (h)	42	Self studying (h)	108	
Compulsory requirements				
Expected performance/ Type of examina- tion	Oral exam (30 min) or written exam (120 min) (based on number of participants)			
Course achievement	Presentation			

Contents

Foundations of magnetism

Foundations of magnetic quantum systems

Experimental methods to characterize magnetic quantum systems

Isolated quantum systems and the influence of the environment

Experimental realizations of magnetic quantum systems

Optimization of the properties of magnetic quantum systems

Applications of magnetic quantum systems

Objective qualification

The students comprehend the quantum mechanical foundations of magnetism. They know the theoretical models to describe them and can calculate their static and dynamic properties. The students know the experimental methods to study the properties of magnetic quantum systems as well as the fundamental prerequisites for such studies. They can theoretically describe the fundamental influence of the environment on the properties of magnetic quantum systems. They also know how this can be used to tailor their properties in the desired manner. The students are aware of the most important realizations of magnetic quantum systems, like molecular magnets and defect centers in diamond and have first insights into the current state of research in those areas. They also know some of the applications that magnetic quantum systems are used for. For specific topics on current research they will elaborate seminar presentations with literature research that they will present in a short talk.

Literature

 \uparrow

Related courses	'					
Rules for the choice of courses						
Compulsory attendance						
Name of the course	sws	Eventtype	Language			
Magnetic Quantum Systems		Lecture	english			
Magnetic Quantum Systems		Seminar	english			

Title	Gallium Nitride Technology		
Number	2413000030	Module version	
Shorttext		Language	english german
Frequency of offer	only in the winter term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Halbleiter- technik
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Andreas Waag
Workload (h)	150		
Class attendance (h)	42	Self studying (h)	108
Compulsory requirements			
Expected performance/ Type of examination	Written exam (90 min) or oral exam (30 min)		
Course achievement			

Contents

The course builds on 'Lighting Technology I'. While Lighting Technology I focusses on general questions of lighting and lighting technology, this course discusses LED technology and gallium nitride technology in particular:

- Physical principles of LEDs. Band gap engineering in LEDs.
- · Semiconductor materials for optoelectronics
- Relationship between material properties and LED properties
- Manufacturing processes
- Efficiency considerations
- · Front-end and back-end processing
- Application examples in general lighting, automotive technology, sensor technology
- Infrared LEDs, visible light, UV LEDs

Objective qualification

After completing the module, students will have an overview of the current state of LED technology and the development opportunities that solid state lighting will offer in the future. In addition, they will have a basic understanding of the physical processes within LEDs.

Literature	

 \uparrow

Related courses	'		
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language
Gallium Nitride Technology	2,0	Lecture	german
Gallium Nitride Technology	1,0	Exercise	german

Title	Semiconductor Optics			
Number	1511000010	Module version		
Shorttext		Language	english	
Frequency of offer	irregular	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik	
Module duration	1	Institution	Institut für Physik der Kondensierten Materie	
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Farsane Tabataba-Vakili	
Workload (h)	150			
Class attendance (h)	42	Self studying (h)	108	
Compulsory requirements				
Recommended requirements	Fundamentals of solid state physics, quantum mechanics, optics/electrodynamics from Bachelor's degree in physics or equivalent.			
Expected performance/ Type of examination	Oral exam (20 min)			
Course achievement	Presentation			

Contents

Phonons, semiconductor band structure, bulk semiconductors, heterostructures and quantum wells, macroscopic optical properties, interband absorption, excitons, luminescence, cavity exciton-polaritons, 2D materials, excitons in 2D semiconductors, heterostructures of 2D semiconductors

Objective qualification

The students are able to explain the physical fundamentals of crystalline solids relevant to semiconductor optics. They acquire a detailed understanding of the interaction between light and matter, with a focus on the optical properties of semiconductors. The students gain an overview of exciton physics, particularly in 2D semiconductors, including discussions of current research topics.

Literature

- · Fox: Optical Properties of Solids,
- · Davies: The Physics of low-dimensional semiconductors,
- · Yu and Cardona: Fundamentals of Semiconductors,
- Kalt and Klingshirn: Semiconductor Optics 1,
- · Grundmann: The Physics of Semiconductors,
- · Marx und Gross: Festkörperphysik,
- Hungklinger: Festkörperphysik

 \uparrow

Related courses Rules for the choice of courses **Compulsory attendance** Name of the course **SWS Eventtype** Language Semiconductor Optics 2,0 english Lecture

Literature

- · Fox: Optical Properties of Solids,
- Davies: The Physics of low-dimensional semiconductors,
- Yu and Cardona: Fundamentals of Semiconductors,
- · Kalt and Klingshirn: Semiconductor Optics 1,
- · Grundmann: The Physics of Semiconductors,
- Marx und Gross: Festkörperphysik,
- Hungklinger: Festkörperphysik

Semiconductor Optics	1,0	Exercise	english
Literature			
Fox: Ontical Properties of Solids			

- · Davies: The Physics of low-dimensional semiconductors,
- Yu and Cardona: Fundamentals of Semiconductors,
- · Kalt and Klingshirn: Semiconductor Optics 1,
- Grundmann: The Physics of Semiconductors,
- Marx und Gross: Festkörperphysik,
- Hungklinger: Festkörperphysik

Title	Nanostructures on Surfaces		
Number	1520000010	Module version	
Shorttext		Language	german
Frequency of offer	irregular	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Angewandte Physik
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Uta Schlickum
Workload (h)	150		
Class attendance (h)	42	Self studying (h)	108
Compulsory requirements			
Expected performance/ Type of examination	Oral exam (30 min) or written exar	m (120 min)	
Course achievement			

Contents

Objective qualification

Literature

- 1. Physics at Surfaces, A. Zangwill, Cambridge University Press, 1988
- 2. Oberflächenphysik des Festkörpers, M. Henzler und W. Göpel, Teubner Studienbücher, 1994
- 3. Oberflächenphysik, Grundlagen und Methoden, T. Fauster, L. Hammer, K. Heinz, und M.A. Schneider, Oldenbourg Verlag München, 2013
- 4. Scanning Probe Microscopy and Spectroscopy, R. Wiesendanger, Cambridge University Press, 1994
- 5. Applied Scanning Probe Methods, B. Bhushan, H. Fuchs, und S. Hosaka, Springer Berlin Heidelberg, 2004

1

Related courses			,
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language

Nanostructures on Surfaces	3,0	Lecture/Exercise	german		
Literature					
1. Physics at Surfaces, A. Zangwill, Cambridge University Press, 1988					
2. Oberflächenphysik des Festkörpers, M. Henzler und W. Göpel, Teubner Studienbücher, 1994					
3. Oberflächenphysik, Grundlagen und Methoden, T. Fauster, L. Hammer, K. Heinz, und M.A. Schneider,					

Oldenbourg Verlag München, 2013

4. Aktuelle Publikationen

Optional Required Subjects: Quantum Information Processing and Quantum Com-	20 ECTS
puting	20 EC13

Title	Information Theory			
Number	2424720	Module version		
Shorttext	ET-NT-72	Language	english	
Frequency of offer	only in the winter term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik	
Module duration	1	Institution	Institut für Nachrichten- technik	
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Eduard Jors- wieck	
Workload (h)	150			
Class attendance (h)	42	Self studying (h)	108	
Compulsory requirements				
Expected performance/ Type of examination	Written exam (90 min) or oral exam (30 min)			
Course achievement				

Contents

- Basics from probability theory
 - Event, probability, random variable, random vector, stochastic process, convergence of random series, convergence theorems
- Basics from information theory
 - Measures for discrete random varaibles: entropy, conditional entropy, relativ entropy, mutual information, conditional mutual information, inequalities
 - Measures for continous random variables: differential entropy, conditional differential entropy, relative entropy, mutual information, inequalities
 - Measure for random series
 - Typical sequences and asymptotic equipartition property
- Source and source coding
 - Definition and properties
 - Source coding for discrete memoryless sources (fixed and variable-length)
 - Selected source codes: Morse, Huffman, Shannon-Fano-Elias
- Data transmission and channel capacity
 - Discrete memoryless channel: channel coding theorem
 - Discrete memoryless channel with state: channel capacities
 - Gaussian channel: model and channel coding theorem
 - Bandlimited Gaussian channel, vector valued channels

Objective qualification

The lecture provides an introduction to the fundamentals of Shannon information theory. The goal is that students can derive the main information theoretic results on maximal achievable lossless (source coding) and lossy (rate distortion theory) compression of data and on maximum data rates for reliable data transmission (channel coding). The methods and tools required, e.g., information measures (entropy, mutual infor-

mation, capacity etc.) and their properties (typical sequences) will be covered as well as practical applicable simple codes (block, turbo and polar codes).

Literature

#R.W. Yeung: Information Theory and Network Coding, Part I, Springer, 2008.

R.W. Yeung: A First Course in Information Theory, Springer, 2002.

- T.M. Cover und J.A. Thomas: Elements of Information Theory, Wiley-Interscience, 2006.
- R.G. Gallager: Information Theory and Reliable Communication, Wiley, 1968.
- R.G. Gallager: Principles of Digital Communication, Cambridge University Press, 2008.
- S. Moser: S. Moser: Information Theory, https://moser-isi.ethz.ch/scripts.html#it

Related courses				
Rules for the choice of courses				
Compulsory attendance				
Name of the course		sws	Eventtype	Language
Information Theory		2,0	Lecture	german
Literature	,		•	•

- R.W. Yeung: Information Theory and Network Coding, Part I, Springer, 2008. - R.W. Yeung: A First Course in Information Theory, Springer, 2002. - T.M. Cover und J.A. Thomas: Elements of Information Theory, Wiley-Interscience, 2006. - R.G. Gallager: Information Theory and Reliable Communication, Wiley, 1968. - R.G. Gallager: Principles of Digital Communication, Cambridge University Press, 2008. - S. Moser: S. Moser: Information Theory, https://moser-isi.ethz.ch/scripts.html#it

Information Theory	1,0	Exercise	german
--------------------	-----	----------	--------

Literature

- R.W. Yeung: Information Theory and Network Coding, Part I, Springer, 2008. - R.W. Yeung: A First Course in Information Theory, Springer, 2002. - T.M. Cover und J.A. Thomas: Elements of Information Theory, Wiley-Interscience, 2006. - R.G. Gallager: Information Theory and Reliable Communication, Wiley, 1968. - R.G. Gallager: Principles of Digital Communication, Cambridge University Press, 2008. - S. Moser: S. Moser: Information Theory, https://moser-isi.ethz.ch/scripts.html#it

Title	Network Information Theory		
Number	2424650	Module version	
Shorttext	ET-NT-65	Language	english
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Nachrichtentechnik
Hours per Week / ECTS	4 / 6,0	Module owner	Prof. Dr. Eduard Jors- wieck
Workload (h)	180		
Class attendance (h)	56	Self studying (h)	124
Compulsory requirements			
Expected performance/ Type of examination	Written exam (90 min) or oral exam (30 min)		
Course achievement			

Contents

- Review point-to-point channel capacity and coding theorem
- Strong typical sequences and their properties
- Multiple-Access Channel: Capacity region compared to TDMA/FDMA/SDMA/NOMA
- #Broadcast Channel: degraded BC capacity region, non-degraded BC achievable rate region and converse
- Interference Channel: very strong, strong, weak interference capacity region, medium interference achievable rate region and converse
- #Relay Channel: achievable schemes amplify-and-forward, decode-and-forward, compress-and-forward, estimate-and-forward #Generalization and application of elements to complex networks

Objective qualification

After completing the lecture, the students will know the building blocks of complex communications networks, i.e., the multiple-access channel, the broadcast channel, the relay channel and the interference channel, their achievable rates and capacity regions including coding and decoding schemes. In addition, the students obtain knowledge to design future wireless and multi-hop as well as ad-hoc networks. They master information-theoretic and mathematical tools to prove coding theorems. They know the state of the art as well as open problems in network information theory.

Literature

- #A. El Gamal and Y.-H. Kim: Network Information Theory, Cambridge University Press, 2011.
- D. Tse and P. Viswanath: Fundamentals of Wireless Communications, Cambridge University Press, 2007.
- T. M. Cover and J. A. Thomas: Elements of Information Theory, 2nd ed., New York: Wiley-Interscience, Juli 2006.
- S. Boyd and L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004.
- R. W. Yeung: Information Theory and Network Coding, Part I, Springer, 2008.

 \uparrow

Rules for the choice of courses Compulsory attendance Name of the course Network Information Theory 2,0 Lecture english

Literature

- A. El Gamal and Y.-H. Kim: Network Information Theory, Cambridge University Press, 2011
- D. Tse and P. Viswanath: Fundamentals of Wireless Communications, Cambridge University Press, 2007
- T. M. Cover and J. A. Thomas: Elements of Information Theory, 2nd ed., New York: Wiley-Interscience, Juli 2006
- S. Boyd and L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004
- R. W. Yeung: Information Theory and Network Coding, Part I, Springer, 2008

Network Information Theory		Exercise	english
Literature			
- A. El Gamal and YH. Kim: Network Information Theory, Cambrid and P. Viswanath: Fundamentals of Wireless Communications, Ca	•		

- A. El Gamal and Y.-H. Kim: Network Information Theory, Cambridge University Press, 2011. - D. Tse and P. Viswanath: Fundamentals of Wireless Communications, Cambridge University Press, 2007. - T.? M. Cover and J.?A. Thomas: Elements of Information Theory, 2nd ed., New York: Wiley-Interscience, Juli 2006. - S. Boyd and L. Vandenberghe: Convex Optimization, Cambridge University Press, 2004. - R.?W. Yeung: Information Theory and Network Coding, Part I, Springer, 2008.

Title	Coding Theory		
Number	2424420	Module version	
Shorttext	ET-NT-42	Language	english german
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Nachrichtentechnik
Hours per Week / ECTS	4 / 5,0	Module owner	Prof. Dr. Thomas Kürner
Workload (h)	150		
Class attendance (h)	56	Self studying (h)	94
Compulsory requirements			
Expected performance/ Type of examination	Oral exam (20 min) or written exam (120 min)		
Course achievement	Colloquium or lab journal		

Contents

- Introduction
- Fundamentals of information theory
- Basics of channel coding
- Single-error-correcting block codes
- Block codes for correcting burst errors
- Convolutional codes
- Special coding techniques

Objective qualification

Upon completion of the module, students will have an understanding of the information-theoretical limits of data transmission and will have acquired knowledge of source and channel coding methods in theory and application. Students will be able to assess the performance of source and channel coding methods and construct simple codes.

Literature

Lecture notes

H.Rohling: Einführung in die Informations- und Codierungstheorie, Teubner

R.Togneri, C.J.S. deSilva: Fundamentals of Information Theory and Coding Design, Chapman&Hall/CRC

H.Schneider-Obermann: Kanalcodierung, Vieweg

 \uparrow

Related courses					
Rules for the choice of courses					
Compulsory attendance					
Name of the course	SWS	Eventtype	Language		
Coding Theory	2,0	Lecture	english ger- man		
Literature					
Vorlesungsskript H. Rohling: Einführung in die Informations- und Codierungstheorie R. Togneri, C. J. S. de Silva: Fundamentals of Information Theory H. Schneider-Obermann: Kanalcodierung, Vieweg			an&Hall/CRC		
Coding Theory	1,0	Exercise	english ger- man		
Literature					
siehe Vorlesung					
Computer exercise on Coding Theory	1,0	Laboratory	english ger- man		

Title	Entanglement as a resource for quantum computation and quantum information		
Number	1513000000	Module version	
Shorttext	PHY-IMAPH-0000	Language	english
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Mathematische Physik
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Christoph Kar- rasch Prof. Dr. Patrik Recher Prof. Dr. Andrey Surzhy- kov
Workload (h)	150		
Class attendance (h)	42	Self studying (h)	108
Compulsory requirements			
Expected performance/ Type of examination	Oral exam (30 min)		
Course achievement	Active participation in tutorial		

Contents

Axioms of quantum mechanics, Hilbert space, quantum states

Quantum logic gates and their mathematical representations

Indistinguishable particles, bosons and fermions

Concept of quantum entanglement, EPR paradox, Schmidt decomposition

Bell inequalities: What they are, what they are for and experimental violations

Measurements of entanglement: entropy, concurrence for pure and mixed-states

Quantum teleportation, The no cloning theorem

Shannon's information theory

Super dense coding and its protocols, Quantum error corrections

Basics of topological quantum

Objective qualification

The students will learn the basics and mathematical descriptions of quantum entanglement both for pure and mixed quantum mechanical states. They will investigate the measures of entanglement and will apply them to particular (twoand many-particle) examples. By making use of the concept of entanglement and of quantum logical gates, the students will learn how to develop and apply quantum teleportation, cryptography and computation protocols.

Literature

Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press (2010)

John Preskill, Quantum Computation and Information (lecture notes Caltech)

Murali Kota, Quantum Entanglement as a resource for Quantum Communication (MIT)

Related courses					
Rules for the choice of courses					
Compulsory attendance					
		_			
Name of the course	sws	Eventtype	Language		
		Lecture	english		
Literature		•			
Michael A. Nielsen and Isaac L. Chuang, Quantum Computation a Univ. Press (2010) John Preskill, Quantum Computation and Information (lecture note: Murali Kota, Quantum Entanglement as a resource for Quantum Computation)	s Caltech))	mbridge		
Entanglement as a resource for quantum computation and quantum information					
Literature					
Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press (2010) John Preskill, Quantum Computation and Information (lecture notes Caltech) Murali Kota, Quantum Entanglement as a resource for Quantum Communication (MIT)					

Title	Topological quantum computing		
Number	1513000010	Module version	
Shorttext	PHY-IMAPH-0010	Language	english
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Mathemati- sche Physik
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Christoph Kar- rasch Prof. Dr. Patrik Recher Prof. Dr. Andrey Surzhy- kov
Workload (h)	150		
Class attendance (h)	42	Self studying (h)	108
Compulsory requirements			
Expected performance/ Type of examination	Oral exam (30 min)		
Course achievement	Active participation in tutorial		

Contents

Topology in physics (Chern number, its connection to conductivity, bulk boundary correspondence) SPT and intrinsic topology: topological models (Su-Schrieffer-Heeger model, toric code, Kitaev (spin) model)

Abelian and non-abelian anyons: what they are and where to find.

Braiding and fusion rules for non-abelian anyons

Quantum circuits and quantum gates

Use of non-abelian anyons for fault-tolerant quantum computing: Ising anyons as an example, parafermions for universal quantum computation

Objective qualification

Understanding exchange statistics (fermions, bosons, anyons), knowledge of topological concepts in condensed matter, being able to apply braiding and fusion rules for non-abelian anyons, get to know topological models, application of concepts of toological quantum computing

Literature

Jiannis K. Pachos "Introduction to Toplogical Quantum Computing", Cambridge Univ. Press (2012); Tudor D. Stanescu "Introduction to Topological Quantum Matter & Quantum Computation", CRC Press

Related courses		,	'		
Rules for the choice of courses					
Compulsory attendance					
Name of the course	sws	Eventtype	Language		
Topological quantum computing		Lecture	english		
Literature					
Jiannis K. Pachos "Introduction to Toplogical Quantum Computing", Cambridge Univ. Press (2012) Tudor D. Stanescu "Introduction to Topological Quantum Matter & Quantum Computation", CRC Press					
Topological quantum computing Tutorial english					
Literature					
Jiannis K. Pachos "Introduction to Toplogical Quantum Computing", Cambridge Univ. Press (2012) Tudor D. Stanescu "Introduction to Topological Quantum Matter & Quantum Computation", CRC Press					

Title	Quantum Communication Networks		
Number	2424000030	Module version	
Shorttext		Language	english
Frequency of offer	only in the summer term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	Institut für Nachrichtentechnik
Hours per Week / ECTS	3 / 6,0	Module owner	Dr. Christian Deppe
Workload (h)	180		
Class attendance (h)	42	Self studying (h)	138
Compulsory requirements			
Expected performance/ Type of examination	Written exam (60 min) or oral exam (30 min)		
Course achievement			

Contents

- Introduction to the basic concepts of quantum mechanics and quantum systems
- Introduction to quantum information theory
- Protocols for quantum computation and programming
- Introduction to quantum communication networks
- Capacity calculations for entanglement-assisted communication
- Introduction to communication with the help of quantum repeaters

Objective qualification

The students

- know the basics of quantum communication networks
- understand quantum information theory models
- can calculate rate limits of quantum information-theoretical networks
- understand simple protocols for quantum communication networks
- can simulate simple protocols for quantum communication networks
- can independently develop their own protocols for new models

Literature

Bassoli, R., Boche, H., Deppe, C., Ferrara, R., Fitzek, F. H., Janssen, G., & Saeedinaeeni, S. (2021). Quantum communication networks (Vol. 23, pp. 1-213). Berlin/Heidelberg, Germany: Springer.

Bassoli, R., Boche, H., Deppe, C., Ferrara, R., Fitzek, F. H., Janssen, G., & Saeedinaeeni, S. (2023). *Quantenkommunikationsnetze*, Berlin/Heidelberg, Germany: Springer (2023).

Related courses	'		,
Rules for the choice of courses			
			_
Compulsory attendance			
Name of the course	sws	Eventtype	Language
Quantum Communication Networks	2,0	Lecture	english
Quantum Communication Networks	1,0	Exercise	english

Title	Online Algorithms		
Number	4227260	Module version	V2
Shorttext	INF-ALG-26	Language	english german
Frequency of offer	every 2 years in the summer term	Teaching unit	Carl-Friedrich-Gauß- Fakultät
Module duration	1	Institution	Institut für Betriebssysteme und Rechnerverbund
Hours per Week / ECTS	4 / 5,0	Module owner	Prof. Dr. Sandor Fekete
Workload (h)	150		
Class attendance (h)	56	Self studying (h)	94
Compulsory requirements			
Expected performance/ Type of examination	graded work: written exam (120 minutes) or oral exam (30 minutes) or Take-Home-Exam. The form of the examination depends on the number of participants and will be announced at the beginning of the lecture.		
Course achievement	non-graded work: 50% of the exercises must be passed		

Contents

- Competitive Analysis
- Self-Organizing Data Structures
- Distributed Paging
- Online Scheduling
- Robot Motion Planning (Exploration, Search)
- Online Packing

Objective qualification

Participants know the necessity and role of algorithms with incomplete information. They can master the most important techniques for analysis and complexity of online algorithms, in particular how to establish upper and lower bounds for competitive factors.

Literature

- Allan Borodin und Ran El-Yaniv. Online Computation and Competitive Analysis. Reissue edition. Cambridge University Press, 2005.
- Amos Fiat und Gerhard Woeginger. Online Algorithms. Springer Verlag, 1998.

1

Related courses			
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language

2,0	Lecture	english
1,0	Exercise	english
1,0	Exercise, small group	english

Title	Approximation Algorithms		
Number	4227270	Module version	
Shorttext	INF-ALG-27	Language	english german
Frequency of offer	every 2 years in the summer term	Teaching unit	Carl-Friedrich-Gauß- Fakultät
Module duration	1	Institution	Institut für Betriebssysteme und Rechnerverbund
Hours per Week / ECTS	4 / 5,0	Module owner	Prof. Dr. Sandor Fekete
Workload (h)	150		
Class attendance (h)	56	Self studying (h)	94
Compulsory requirements			
Expected performance/ Type of examina- tion	graded work: written exam (120 minutes) or oral exam (30 minutes) minutes) or Take-Home-Exam. The form of the examination depends on the number of participants and will be announced at the beginning of the lecture.		
Course achievement	non-graded work: 50% of the exercises must be passed		

Contents

- A basic introduction to NP-completeness and approximation
- Approximation for vertex and set cover
- Packing problems
- Tour problems and variations
- Current research problems

In the context of various problems, a wide spectrum of techniques and concepts will be provided.

Objective qualification

Participants know the necessity and role of approximation algorithms. They can master the most important techniques for analysis and complexity of approximation algorithms for designing, including the validity of upper and lower bounds.

Literature

- Vijay V. Vazirani: Approximation Algorithms. 1st edition. Springer Verlag, 2001.
- Dorit Hochbaum: Approximation Algorithms for NP-hard Problems. Course Technology Inc, 1996.

1

Related courses			
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language

Technische Universität Braunschweig Module Guide: Quantum Technologies in Electrical and Computer Engineering (Master)			

Title	Mathematical Foundations of Information Theory and Coding Theory			
Number	1294600	Module version	V3	
Shorttext	MathFoundInfThCodTh	Language		
Frequency of offer	only in the winter term	Teaching unit	Carl-Friedrich-Gauß- Fakultät	
Module duration	1 Semester	Institution		
Hours per Week / ECTS	3 / 5,0	Module owner		
Workload (h)	150			
Class attendance (h)	42 Self studying (h) 108			
Compulsory requirements				
Expected performance/ Type of examina- tion	1 oral exam (20-30 minutes) according to examiner's specifications. The exact examination specifications will be announced at the beginning of the course.			
Course achievement	Non-graded coursework (Studienleistung): Homework or presentation according to examiner's specifications. The exact examination specifications will be announced at the beginning of the course.			

Contents

- Kraft Inequality and McMillan's Theorem
- Huffman Codes
- Stochastic Processes
- Entropy and Entropy Rates
- The Shannon-McMillan-Breiman Theorem
- Universal Codes and the Lempel-Ziv Code
- Rate Allocation

Objective qualification

Technical/methodological skills

Students understand the interconnections and complex relationships between their own mathematical knowledge and the content of the course. They understand the theory of the course as a whole and have mastered the associated methods. Students can apply and analyse the methods taught in the course and have mastered the essential fundamentals of the field. They can place individual methods in a larger context.

Social skills

Social skills are strengthened in particular through professional exchange among students, for example when working together to develop solution strategies, discussing mathematical concepts or cooperatively dealing with complex problems.

Personal skills

Students independently acquire new knowledge and perspectives and discuss mathematical content with others; they develop solutions in a focused, precise and goal-oriented manner. Students can train and improve their teamwork skills in homework assignments, compare the requirements of the module with their own prior knowledge and independently close any gaps in their knowledge, as well as reflect on their learning progress and adjust their learning behaviour if necessary.

Literature

- Cover & Thomas "Elements of Information Theory" (Wiley)

Related courses

Rules for the choice of courses

The module 'Mathematical Foundations of Information Theory and Coding Theory' consists of a lecture and a tutorial.

Compulsory attendance

Name of the course	sws	Eventtype	Language
Mathematical Foundations of Information Theory and Coding Theory	3,0	Lecture/Exercise	english ger- man

Title	Introduction to Quantum Information Theory		
Number	1294540	Module version	V3
Shorttext	IntrQuantInfTH	Language	german
Frequency of offer	only in the summer term	Teaching unit	Carl-Friedrich-Gauß- Fakultät
Module duration	1	Institution	
Hours per Week / ECTS	4 / 6,0	Module owner	Studiendekan der Mathematik
Workload (h)	180		
Class attendance (h)	56	Self studying (h)	124
Compulsory requirements			
Recommended requirements	A basic knowledge of classical information theory is recommended		
Expected performance/ Type of examination	graded examination (Prüfungsleistung): 1 written exam (90 minutes) or 1 oral exam (20-30 minutes) according to examiner's specifications. After approval by the examination board mathematics (Prüfungsausschuss Mathematik), the examiner can also choose the take-home exam as the form of examination. The exact examination specifications will be announced at the beginning of the course.		
Course achievement	Non-graded coursework (Studienleistung): Homework according to examiner's specifications. The exact examination specifications will be announced at the beginning of the course.		

Contents

- Vectors and Operators,
- States, Observables, Statistics,
- Composite Systems and Entanglement,
- Classical Entropy and Information,
- The Classical-Quantum Channel,
- Quantum Evolutions and Channels,
- Quantum Entropy and Information Quantities

Objective qualification

The students

- understand the of the complex links between their previous mathematical knowledge and the contents of the lecture
- understand the theoretical body of the lecture as a whole and master the corresponding methods
- are able to analyze and apply the methods of the lecture
- acquainted with the basic objects, constructions, and mathematical theorems and their proofs of quantum information theory
- obtain an understanding of the similarities of, and the fundamental differences between, classical information theory and quantum information theory
- learn about applications of quantum information theory in quantum computing and communication.

Literature

A. Holevo: Quantum Systems, Channels, Information, De Gruyter

Related courses			
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language
Name of the course Introduction to Quantum Information Theory	SWS 3,0	Eventtype Lecture/Exercise	Language english ger-

Title	Phase-Locked Loops and Frequency Synthesis		
Number	2420000020	Module version	
Shorttext		Language	english
Frequency of offer	only in the winter term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	Institut für CMOS Design
Hours per Week / ECTS	3 / 5,0	Module owner	Prof. Dr. Vadim Issakov
Workload (h)	150		
Class attendance (h)	42	Self studying (h)	108
Compulsory requirements			
Recommended requirements	Basic knowledge in analogue circuits		
Expected performance/ Type of examination	oral exam (30 min) or written exam (60 min)		
Course achievement			

Contents

- System overview
- Jitter and phase noise
- Basic PLL architectures
- Analog integer PLL
- Digital integer PLL
- Fractional PLL
- Clock data recovery
- Delay locked loop
- Numerically controlled oscillator
- Software PLL

Objective qualification

Upon completion of the module, students will have a comprehensive understanding of the fundamentals and advanced concepts of phase-locked loops (PLLs) and frequency synthesis. They will be familiar with the systematic architecture of various PLL types, including analog and digital integer PLLs as well as fractional PLLs. Students will understand the causes and effects of jitter and phase noise, and will be able to evaluate and minimize them. They will be acquainted with specialized circuits such as Costas loops, delay locked loops (DLL), numerically controlled oscillators (NCOs), and software-based PLL implementations. The knowledge they acquire enables students to independently research related topics and apply theory to practice. This allows them to analyze and solve practical problems independently.

Literature

Best, Roland E., Phase-Locked Loops: Design, Simulation, and Applications. 6. Auflage, McGraw-Hill Education, 2007

Behzad Razavi "Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Level", Cambridge University Press, 2020

Related courses

Rules for the choice of courses

Compulsory attendance

Name of the course	sws	Eventtype	Language
Phase-Locked Loops and Frequency Synthesis	2,0	Lecture	english

Literature

Best, Roland E., Phase-Locked Loops: Design, Simulation, and Applications. 6. Auflage, McGraw-Hill Education, 2007.

Behzad Razavi "Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Level", Cambridge University Press, 2020

Phase-Locked Loops and Frequency Synthesis	1,0	Exercise	english
--	-----	----------	---------

Literature

Best, Roland E., Phase-Locked Loops: Design, Simulation, and Applications. 6. Auflage, McGraw-Hill Education, 2007.

Behzad Razavi "Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Level", Cambridge University Press, 2020

Interdisciplinary Qualification	25 ECTS
---------------------------------	---------

Title	Industrial Internship		
Number	2499040	Module version	
Shorttext	ET-STDE-04	Language	english german
Frequency of offer	every term	Teaching unit	Fakultät für Elektrotechnik, Informationstechnik, Physik
Module duration	1	Institution	
Hours per Week / ECTS	8 / 12,0	Module owner	
Workload (h)	360		
Class attendance (h)		Self studying (h)	
Compulsory requirements			
Expected performance/ Type of examination			
Course achievement	Final presentation in accordance with the separate regulations "Internship guidelines of the Faculty of Electrical Engineering, Information Technology, Physics" in the version valid at the beginning of the course.		

Contents

individual; requirements according to internship guidelines

Objective qualification

The industrial internship provides in-depth preparation for professional life by working directly in an industrial company for at least 10 weeks. Students gain insight into organisational and operational processes and structures as well as into the work methods of engineering activities in industrial companies. Within the wide variety and breadth of structural areas (e.g. research, development, production, sales,...) and fields of activity (e.g. hardware or software development, production planning, quality assurance, sales, (project) management,...) in an industrial company, an exemplary selection with in-depth familiarisation with one or a few of these areas or fields is expected.

The aim of the module is the further development of action patterns and techniques appropriate to the situation and task as well as the further development and adaptation of the methodological skills taught during the course in the engineering solution of technical problems. In addition, students deepen their interdisciplinary knowledge and skills (e.g. discussion and negotiation skills, presentation techniques, documentation, etc.), for example by participating in meetings or by being involved in conceptual, planning or management tasks. They also carry out their own engineering activities (e.g. in conceptual planning, development or quality assurance) independently and represent their own interests. In doing so, they apply the technical knowledge and skills acquired during their studies to practical tasks in an industrial environment.

The activities carried out as part of the industrial internship must be presented in an ungraded presentation. The presentation, including preparation and follow-up work, is worth 3 credits within the 12 credits of this module.

The activities carried out as part of the industrial internship must be presented in an ungraded presentation. The presentation, including preparation and follow-up work, is worth 3 credits within the 12 credits of this module. The workload is exclusively at the location of the industrial partner, usually outside the university.

Related courses			
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language

Title	Professionalisation			
Number	2499560	Module version		
Shorttext		Language	english	
Frequency of offer	every term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik	
Module duration	2	Institution		
Hours per Week / ECTS	0 / 14,0	Module owner		
Workload (h)	420			
Class attendance (h)		Self studying (h)		
Compulsory requirements				
Expected performance/ Type of examination	according to the requirements of the course taken from the pool selection			
Course achievement	according to the requirements of the course taken from the pool selection; seminar presentation: presentation according to § 9 APO			

Contents

individual

Objective qualification

Key qualifications will be achieved in the following fields:

- Action-oriented courses, scientific cultures

For this purpose, courses from the overall program (pool) of interdisciplinary courses at the Technische Universität Braunschweig are to be selected. The type of examination or coursework and the number of credit points will be announced individually for each module.

https://www.tu-braunschweig.de/studium-lehre/im-studium/lehrveranstaltungen

The Dean of Studies ensures that a list of available courses is published each semester, in which recommendations for particularly practice-oriented courses are given.

- Seminar lecture

Seminar presentation at one of the institutes of the EITP faculty involved in the degree program. An independent examination of a topic with the inclusion and evaluation of relevant literature as well as the presentation and communication of the results in an oral presentation and in a subsequent discussion.

Literature			

 \uparrow

Related courses				
Rules for the choice of courses				
A total of 13-17 credits has to be achieved. The seminar presentation of 3 credits is compulsory.				
Compulsory attendance				
Name of the course	sws	Eventtype	Language	

Title	Master's Team Project			
Number	2499520	Module version		
Shorttext	ET-STDE-52	Language	english	
Frequency of offer	every term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik	
Module duration	1	Institution		
Hours per Week / ECTS	0 / 8,0	Module owner		
Workload (h)	240			
Class attendance (h)	160	Self studying (h)	80	
Compulsory requirements				
Expected performance/ Type of examination				
Course achievement	I rison between initial planning and actual progress must be presented and justified			
Contents				
individual				
Objective qualification				
The Master's team project is generally completed in groups of at least three students who carry out the design, analysis, construction or simulation of an electrical or information technology system using an overarching topic as an example.				
Literature				

 \uparrow

Related courses			
Rules for the choice of courses			
The Master's team project can replace the industrial internship.			
Compulsory attendance			
Name of the course	sws	Eventtype	Language

Title	Master's Thesis		
Number	2499510	Module version	
Shorttext	ET-STDE-51	Language	english
Frequency of offer	every term	Teaching unit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Module duration	1	Institution	
Hours per Week / ECTS	0 / 30,0	Module owner	
Workload (h)	900		
Class attendance (h)		Self studying (h)	
Compulsory requirements			
Expected performance/ Type of examination	 Preparation of the Master's the Presentation (according to § 4 The assessment of the presentation module with double weighting. 	para. 14 BPO) (2 credits)	ll grade of the final
Course achievement			

Contents

individual

Objective qualification

With the successful completion of the final thesis (§ 14 APO) and the presentation, the student demonstrates that he/she is able to work independently on a problem from the chosen subject area using scientific methods within a specified period of time. The qualification objectives of the degree program (Annex 1, § 2 APO) are reflected in the implementation and results of the final thesis with regard to the following components:

- Independent familiarisation with and scientific methodical processing of a topic fundamentally relevant to further development and research in the field of electrical engineering
- · Literature research and presentation of the state of the art
- Development of new solution approaches for a scientific problem
- Presentation of the approach and results in the form of a paper
- Presentation of the main results in a comprehensible form
- Consolidation and refinement of key qualifications: management of an own project, presentation techniques and rhetorical skills

Literature

Remark

The Master's thesis is credited with 28 credits and the presentation with 2 credits; the assessment of the presentation is included in the overall grade of the final module with double weighting.

1

Related courses			
Rules for the choice of courses			
Compulsory attendance			
Name of the course	sws	Eventtype	Language

Technische Universität Braunschweig Module Guide: Quantum Technologies in Electrical and Computer Engineering (Master)