Anlage 1 zum Besonderen Teil der Prüfungsordnung für den Masterstudiengang "Nachhaltige Energietechnik"

A – Pflichtbereich Grundlagen (15 LP)

Modulbezeichnung	LP
Life Cycle Assessment for sustainable engineering	5
Regenerative Energietechnik	5
Simulation technischer Systeme mit Python	5

B - Pflichtbereich Fachkomplementäre Qualifikationen (15 LP, festgelegt durch Auswahlkomm.)

Modulbezeichnung	LP
Chemie für die Verfahrenstechnik und Materialwissenschaften	5
Einführung in die Chemie der Werkstoffe	5
Electrochemical Energy Engineering	5
Elektrotechnische Grundlagen der Technischen Informatik	5
Elektrische Grundlagen der Energietechnik	5
Grundlagen der Elektrischen Energietechnik	5
Grundlagen der Elektrochemie	5
Grundlagen der Strömungsmechanik	5
Thermodynamik 2	5

C – Wahlpflichtbereich mit den Vertiefungsrichtungen (22LP mit 1 Labor und 1 Simulation)

Vertiefungsrichtung (Elektro-)Chemische Energietechnik

Modulbezeichnung	LP
Elektrokatalyse mit Labor	7 (Labor)
Molekulare Simulation mit Labor	7 (Labor)
PEM Brennstoffzellentechnologie I mit Labor	7 (Labor)
Methoden der Prozessmodellierung und -optimierung	5 (Simulation)
Molekulare Simulation	5 (Simulation)
Alternativ-, Elektro- und Hybridantriebe	5
Arbeitsprozess der Verbrennungskraftmaschine	5
Aufbau und Funktion von Speichersystemen	5
Elektroden- und Zellfertigung	5
Elektrokatalyse	5
Fuel Cell Systems	5
Hydrogen as Energy Carrier	5
Methoden der Prozessmodellierung und -optimierung	5
Methoden und Systeme der Elektrochemie	5
Moderne Batterien: Von elektrochemischen Grundlagen über Materialien zu Charakterisierungsmethoden	5
Molekulare Simulation	5
PEM Brennstoffzellentechnologie I	5
Physikalisch-chemische Grundlagen der erneuerbaren Energien: Schwerpunkt Wasserstoffwirtschaft	5
Technologien zur Herstellung von Wasserstoff (H2)	5
Thermische Energieanlagen	5
Verbrennung und Emission der Verbrennungskraftmaschine	5

Vertiefungsrichtung Physikalische Energietechnik

Modulbezeichnung	LP
Drehstromantriebe, deren Simulation und laborpraktische Versuche	7 (Labor)
Hydraulische Strömungsmaschinen mit Labor	7 (Labor)
Technologien der Verteilungsnetze mit Praktikum	7 (Labor)
Finite Elemente Methoden I	5 (Simulation)
Numerische Simulation (CFD)	5 (Simulation)
Drehstromantriebe und deren Simulation	5
Finite Elemente Methoden 1	5
Halbleitertechnologie	5
Hochspannungstechnik 1 / Übertragungssysteme	5
Hydraulische Strömungsmaschinen	5
Natürliche und Künstliche Lichtsammelsysteme	5
Numerische Berechnungsverfahren	5
Numerische Simulation (CFD)	5
Solarzellen	5
Systeme der Windenergieanlagen	5
Systemtechnik in der Photovoltaik	5
Technologie der Blätter von Windturbinen	5
Technologien der Verteilungsnetze	5
Technologien der Übertragungsnetze	5
Wasserkraftanlagen - Technologien und Modellierung	5

Vertiefungsrichtung Energie- und ressourceneffiziente Prozesse

Modulbezeichnung	LP
Energy Efficiency in Production Engineering with Laboratory	7 (Labor)
Ganzheitliches Life Cycle Management mit Labor	7 (Labor)
Gestaltung nachhaltiger Prozesse der Energie- und Verfahrenstechnik	5 (Simulation)
Modellierung thermischer Systeme in Modelica	5 (Simulation)
Energieeffiziente Maschinen der mechanischen Verfahrenstechnik	5
Energy Efficiency in Production Engineering	5
Environmental and Sustainability Management in Industrial Application	5
Ganzheitliches Life Cycle Management	5
Gestaltung nachhaltiger Prozesse der Energie- und Verfahrenstechnik	5
Indo-German Challenge for Sustainable Production	5
Industrielle Umweltchemie	5
Lichttechnik	5
Material Resources Efficiency in Engineering	5
Methods of Uncertainty Analysis and Quantification	5
Modellierung thermischer Systeme in Modelica	5
Nachhaltige Chemie	5
Nachhaltige (Ab-)Wärmenutzung	5
Orientierung Produktion und Logistik	5

D – Wahlbereich Fachliche Qualifikationen (15 LP)

Alle Module mit 5 LP aus dem Vertiefungsteil wählbar, sowohl aus der eigenen als auch aus der nicht gewählten Vertiefung. Weitere wählbare Module:

Modulbezeichnung	LP
Chemie der Verbrennung	5
Computer Aided Process Engineering I (Introduction)	5
Elektrische Energieanlagen I / Netzberechnung	5
Elektrische Energieanlagen II / Betriebsmittel	5
Energiewirtschaft und Marktintegration erneuerbarer Energien	5
Innovative Energiesysteme	5
Lichttechnik 2	5
Simulation und Optimierung thermischer Energieanlagen	5
Spezialisierung Recht	5
Wärmetechnik der Heizung und Klimatisierung	5

E – Überfachliche Profilbildung

Modulbezeichnung	LP
Überfachliche Profilbildung: • Umweltrecht (3 LP)	8
Freie Wahl (5 LP)	

F – Interdisziplinäre Studienarbeit

Modulbezeichnung	LP
Interdisziplinäre Studienarbeit	15

G – Abschlussmodul

Modulbezeichnung	LP
Abschlussmodul Nachhaltige Energietechnik	30