

Beschreibung des Studiengangs

Umweltingenieurwesen (Master) PO 3

Datum: 04.03.2024

Inhaltsverzeichnis

Master Umweltingenieurwesen	
Grundlagen- und Ergänzungsbereich	
Modellierung & numerische Simulation von Strömungen	
Grundlagen der Finite Elemente Methode	9
Ökologie und Naturschutz	11
Grundlagen in der Bauwerkserhaltung	
Schadstoffe in der Umwelt	15
Luftqualität und Luftreinhaltung	18
Finite Elemente Methode: Theorie und Anwendung	20
Multivariate statistische Verfahren	22
Öffentliches Baurecht	24
Advanced Structural Analysis	20
Orientierung Recht	28
Spezialisierung Recht	31
Vertiefungsfach Bodenschutz und Geotechnik	
Tiefenlagerung	36
Grundlagen der Geotechnik und Altlastenerkundung	38
Theoretische und experimentelle Boden- und Felsmechanik	
Bodenökologie und Nachhaltige Bodennutzung	42
Vertiefungsfach Energietechnik	
Thermische Gebäudesimulation	46
Energetisch Planen und Sanieren	48
Energiesysteme Biomassenutzung	
Wasserkraftanlagen - Technologien und Modellierung	
Regenerative Energietechnik	
Energiewirtschaft und Marktintegration erneuerbarer Energien	50
Innovative Energiesysteme	
Technologien der Verteilungsnetze	
Systeme der Windenergieanlagen	
Systemtechnik in der Photovoltaik	
Thermische Energieanlagen	
Vertiefungsfach Environmental Sustainability and Life Cycle Engineering	
Indo-German Challenge for Sustainable Production	6 <u>9</u>
Methods and Tools for Life Cycle oriented Vehicle Engineering	72
Life Cycle Assessment for sustainable engineering	
Life Cycle Assessment for sustainable engineering with Laboratory	
Environmental and Sustainability Management in Industrial Application	
Material Resources Efficiency in Engineering	
Energy Efficiency in Production Engineering.	
Energy Efficiency in Production Engineering with Laboratory	88
Vertiefungsfach Küsteningenieurwesen und Seebau	
Grundlagen des Küsteningenieurwesens	92
Dynamik und Entwurf im Küsteningenieurwesen	94
Spezialthemen des Küsteningenieurwesens 1	9
Spezialthemen des Küsteningenieurwesens 2	
Vertiefungsfach ÖPNV	
ÖPNV - Planung von Infrastruktur	105
ÖPNV - Betrieb und Fahrzeuge	
ÖPNV - Angebotsplanung	
Verkehrsplanung	
ÖPNV - Planung von Infrastruktur	113
Vertiefungsfach Umweltmonitoring	

Monitoring	118
Photogrammetrie	120
Ausgewählte Kapitel der Geodäsie und Geoinformatik	122
Environmental Transport: Grundlagen und Modellierung	
Environmental Fate: Inverse Modellierung	
Messung von Wasser und Stoffströmen im Boden-Pflanze-Atmosphäre-Kontinuum	
Vertiefungsfach Umwelt- und ressourcengerechtes Bauen	
Energie- und komfortgerechte Gebäudeplanung	132
Additive Fertigung im Bauwesen	
Verfahren zu Schutz und Sanierung	
Instandhaltung von Bauwerken aus mineralischen Baustoffen	
Energetisch Planen und Sanieren	
Organische Baustoffe	
Vertiefungsfach Verkehr und Infrastruktur	
Planungsmethodik und Planungsmodelle	146
Characterization and Modeling of Asphalt Materials	
Asphalttechnologie und weiterführende Straßenbautechnik	
Straßenbautechnik	
Planung und Entwurf von Straßen	
Verkehrsplanung	
Angebotsplanung und Transportstrategien im Schienenverkehr	
Umweltschutz in Verkehrs- und Stadtplanung	
Bahnbau im Konfliktfeld "Fahren und Bauen"	
Vertiefungsfach Ver- und Entsorgungswirtschaft	
Abfall- und Ressourcenwirtschaft.	166
Deponietechnik und Altlastensanierung	
Mechanische und thermische Abfallbehandlung und Luftreinhaltung	
Internationale Abwasser- und Abfallwirtschaft	
Abfallanalytisches Praktikum für das Umweltingenieurwesen	
Abwasser- und Klärschlammbehandlung.	
Trinkwasseraufbereitung und Siedlungsentwässerung	
Trinkwasseraufbereitung, Wasserchemie und Siedlungsentwässerung	
Laborpraktikum und Bemessung von Anlagen.	
Vertiefungsfach Wasserwesen	
Hydrologie und Wasserwirtschaft	188
Gewässerschutz - Modellierung	
Hydrogeologie und Grundwasserbewirtschaftung	
Flussgebietsmanagement	
Ecohydrological Modelling of Catchments	
Naturnaher Wasserbau	
Konstruktiver Wasserbau	
Urban Ecohydrology	
Projektmanagement im Verkehrswasserbau	
Gewässerschutz-Messtechnik und Datenanalyse	
Numerische Methoden im Grund- und Oberflächenwasser	
Vertiefungsfach Abfall- und Ressourcenwirtschaft	
Abfall- und Ressourcenwirtschaft.	213
Deponietechnik und Altlastensanierung	
Mechanische und thermische Abfallbehandlung und Luftreinhaltung	
Internationale Abwasser- und Abfallwirtschaft	
Abfallanalytisches Praktikum für das Umweltingenieurwesen	
Vertiefungsfach Siedlungswasserwirtschaft	
Abwasser- und Klärschlammbehandlung	22.
Trinkwasseraufbereitung und Siedlungsentwässerung	
Laborpraktikum und Bemessung von Anlagen	

Internationale Abwasser- und Abfallwirtschaft	232
Vertiefungsfach Hydrologie, Wasserwirtschaft und Gewässerschutz	
Hydrologie und Wasserwirtschaft	236
Hydrogeologie und Grundwasserbewirtschaftung	
Flussgebietsmanagement	
Gewässerschutz - Messtechnik und diffuser Stoffeintrag	
Gewässerschutz - Modellierung	
Ecohydrological Modelling of Catchments	
Urban Ecohydrology	
Gewässerschutz-Messtechnik und Datenanalyse	
Vertiefungsfach Wasserbau	
Naturnaher Wasserbau	253
Numerische Methoden im Grund- und Oberflächenwasser	255
Konstruktiver Wasserbau	258
Projektmanagement im Verkehrswasserbau	261
Schlüsselqualifikationen	
Schlüsselqualifikationen	264
Studienarbeit	
Studienarbeit	267
Masterarbeit	
Masterarbeit	269

$Technische\ Universit\"{a}t\ Braunschweig\ |\ Modulhandbuch:\ \underline{Umweltingenieurwesen\ (Master)}$

Master Umweltingenieurwesen	
ECTS	120

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Grundlagen- und Ergänzungsbereich	
ECTS	24

Modulname	Modellierung & numerische Simulation von Strömungen			
Nummer	4306850	Modulversion		
Kurzbezeichnung	BAU-STD3-8	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung	Institut für rechnerge- stützte Modellierung im Bauingenieurwesen	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Manfred Krafczyk	
Arbeitsaufwand (h)	180 h			
Präsenzstudium (h)	84	Selbststudium (h)	96	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) oder mündliche Prüfung (ca. 60 Min.)			
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Modellierung von Strömungen (VÜ)]

Reynolds-Transport-Theorem, Massen-, Impuls- und Energiesatz, Eulergleichung, Navier-Stokes-Gleichung (inkompressible und kompressibel), Advektions-Diffusionsgleichung, Grundlagen der Turbulenzmodellierung (LES, RANS), dimensionslose Kennzahlen

[Numerische Methoden für Strömungsprobleme (VÜ)]

Grundlegende Eigenschaften numerischer Verfahren: Konsistenz, Stabilität, Konvergenzordnung, Grundlage Finiter Differenzen, Zeitdiskretisierung, explizit & implizite Ansätze, Runge- Kutta-Verfahren, Gleichungslöser, Mehrgitterverfahren, Gitter-Boltzmann Verfahren, Einführung in die Problemlösung ingenieurrelevanter Beispielprobleme unter Verwendung eines kommerziellen CFD-Codes.

Qualifikationsziel

Modellierung von Strömungen :

Den Studierenden wird ein Überblick über wesentliche Kontinuumsmodelle der Strömungsmechanik und deren Beziehung untereinander vermittelt. Dabei wird insbesondere vermittelt, wo einfache Ansätze tragfähig und komplexe Modelle nötig sind.

Numerische Methoden für Strömungsprobleme:

Komplementär zur Qualifikation in der Modellierung von Transportproblemen werden in dieser Vorlesung Kompetenzen vermittelt, wesentliche Eigenschaften numerischer Methoden zu bewerten und sie zur Lösung von Strömungsproblemen einzusetzen. Zusätzlich wird unter Verwendung eines kommerziellen CFD-Codes das prinzipielle Vorgehen zur Lösung typischer strömungsmechanischer Probleme im Bauingenieurwesen vermittelt.

Literatur

- -H. Kuhlmann, Strömungsmechanik, Pearson-Verlag, 2007
- -J. D. Ramshaw, Elements of Computational Fluid Dynamics Vol. 2, Imperial College Press, 2011,
- -Skript, multimediale Demonstrationen im Virtual-Reality Labor

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion Bereich Pflichtform Sem. Auswal				ECTS
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich			

ZUGEHÖRIGE LEHRVERANS	STALTUNGEN				
Belegungslogik bei der Wahl vor	Lehrveranstaltungen				
Anwesenheitspflicht					
Titel der Veranstaltung					
Modellierung von Strömungen					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Manfred Krafczyk		3	Vorlesung/Übung	deutsch	
Titel der Veranstaltung	Titel der Veranstaltung				
Numerische Methoden für Strömungsprobleme					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Manfred Krafczyk		3	Vorlesung/Übung	deutsch	

Modulname	Grundlagen der Finite Elemente Methode		
Nummer	4312080	Modulversion	
Kurzbezeichnung	BAU-STD2-5	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	Institut für Statik und Dynamik
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Roland Wüchner
Arbeitsaufwand (h)	180 h		
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (60 Min.)		
Zu erbringende Studienleistung	Selbstständige Projektarbeit		
Zusammensetzung der Modulnote			

[Grundlagen FEM (VÜ)]

Wiederholung Vektor- und Matrizenrechnung, numerische Integration, Lösung von Gleichungssystemen; Grundgleichungen und Lösung von Differentialgleichungen, Prinzip der virtuellen Verschiebungen, Ansatzfunktionen, Konvergenzkriterien, Elementmatrizen für Stabtragwerke, Dreieckelemente und Rechteckelemente für Wärmeleitung, Potentialströmung, Sickerwasserströmung; Übungen anhand ausgewählter Beispiele zu den Lehrinhalten; Vergleich von Näherungslösungen anhand unterschiedlicher Modellierungen und Diskretisierungen; Einführung in Ansys.

Qualifikationsziel

Am Ende der Lehrveranstaltung sind die Studierenden in der Lage, für ein vorgegebenes Tragwerk die beschreibenden Arbeitsgleichungen zu diskretisieren, entsprechende Randbedingungen zu setzen, die Ergebnisse zu interpretieren und anhand von Konvergenzstudien zu bewerten.

Literatur

Es steht ein ausführliches Manuskript zur Verfügung.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der W	Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht					
Titel der Veranstaltung					
Grundlagen FEM					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Christian Flack Roland Wüchner		4	Vorlesung/Übung	deutsch	

26.11	ÖLLEN	-	
Modulname	Ökologie und Naturschutz		
Nummer	1199950	Modulversion	
Kurzbezeichnung	GEA-STD-95	Sprache	deutsch
Turnus		Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	
Arbeitsaufwand (h)			·
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
Literatur			
		·	

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				

Titel der Veranstaltung						
Biodiversity and Conserva	Biodiversity and Conservation Science					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Frank Suhling		1	Seminar	deutsch		
Titel der Veranstaltung						
Ökosysteme Geländeübung						
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		

4

Blockveranstaltung

deutsch

Frank Suhling

Modulname	Grundlagen in der Bauwerkserhaltung				
Nummer	4398220	Modulversion			
Kurzbezeichnung	BAU-STD3-84	Sprache	deutsch		
Turnus		Lehreinheit			
Moduldauer	1	Einrichtung	Institut für Bauwerkserhaltung und Tragwerk Institut für Stahlbau		
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Klaus Thiele		
Arbeitsaufwand (h)	180 h				
Präsenzstudium (h)	56	Selbststudium (h)	124		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (60 Min.)				
Zu erbringende Studienleistung Zusammensetzung	Referat Nähere Informationen zu Abgabefristen der Prüfungsvorleistung erhalten Sie in den Lehrveranstaltungen des Moduls.				
der Modulnote					

Darstellung der zunehmenden Bedeutung der Bauwerkserhaltung als verantwortungsvolles Aufgabenfeld im Bauwesen. Bauwerkserhaltung im Kontext der Baudenkmalpflege, Umgang mit hochwertigen Bauten. Bauanalysemethoden und Kenntnisse über historische Baumaterialien und Baukonstruktionen. Überblick über grundlegende Schadensmechanismen und Schadensursachen unterteilt in die Bereiche Stahl-, Massiv-, Mauerwerks- und Holzbau. Vorstellung der gängigen Prüfverfahren sowie Messinstrumente zur Schadenserfassung bzw. Zustandsbeurteilung (Anamnese und Diagnose). Aufzeigen von Methoden zur Schadensvermeidung, Ertüchtigung und Verstärkung von Tragwerken und Konstruktionen (Therapie). Historische, werkstoffkundliche, bauphysikalische und konstruktive Aspekte werden beleuchtet. Projektorientierte Übungen.

Qualifikationsziel

Die Studierenden besitzen nach Abschluss der Lehrveranstaltung Kenntnisse über die Grundlagen der Bauwerkshaltung.

Sie kennen das methodische Vorgehen bei der Zustandsbewertung eines bestehenden Bauwerks. Die hierfür notwendigen Kenntnisse der grundlegenden Schadensursachen und Schadensfolgen sind vorhanden. Sie haben einen Überblick über mögliche Strategien zur Instandsetzung und Erhaltung. Sie haben Einblicke in den Umgang mit hochwertigen Baudenkmalen erhalten. Die Studierenden werden befähigt, Problemstellungen beim Erhalt und/oder der Weiterentwicklung der Ressource Baubestand zu erkennen und geeignete Maßnahmen aus einem transdisziplinären Kontext auszuwählen und diese im Fachgespräch zu vertreten. Die vermittelten Grundlagen werden aus didaktischen Gründen selbstständig in Kleingruppen auf ein Übungsbeispiel angewendet und im Plenum vertreten.

Literatur

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Es besteht eine Anwesenheitspflicht im Planspiel, der Umfang der möglichen Fehlzeiten wird zu Beginn der Veranstaltung festgelegt.

Titel der Veranstaltung

Grundlagen in der Bauwerkserhaltung

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Martin Empelmann		4	Vorlesung/Übung	deutsch
Sebastian Hoyer				
Dirk Lowke				
Mike Sieder				
Klaus Thiele				
Michael Wistuba				
Antonia Zöllner				

Modulname	Schadstoffe in der Umwelt			
Nummer	1112120	Modulversion		
Kurzbezeichnung	GEA-STD2-1	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Harald Biester	
Arbeitsaufwand (h)				
Präsenzstudium (h)	60	Selbststudium (h)	120	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mündliche Pr	rüfung (60 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Anorganische Schadstoffe in der Umwelt (V)]

Im Mittelpunkt der VL Anorganische Schadstoffe in der Umwelt steht das Verhalten von toxischen Schwermetallen und Nährstoffen in der Umwelt. Neben der Vermittlung der wesentlichen physikalisch-chemischen Grundparameter dieser Schadstoffgruppe wird anhand von Fallbeispielen das Bindungs- und Transportverhalten verschiedener Schwermetalle in Böden, Gewässern und der Atmosphäre aufgezeigt. Schwerpunkt sind hier Industriestandorte, Lagerstätten und Erzaufbereitungsanlagen die Kontaminationen von Böden, Grundwasser Oberflächengewässern oder der Atmosphäre auf unterschiedlichen Skalen verursacht haben. Weitere Inhalte sind die Bewertung kontaminierter Areale auf Basis von Verwaltungsvorschriften und bestehender Grenzwerte, Betrachtungen zum natürlichen Hintergrund toxischer Schwermetalle sowie Strategien der Sanierung oder Risikobegrenzung kontaminierter Böden und Gewässer. Neben Schwermetallen wird auch auf die Belastung von Oberflächengewässern und Grundwasser durch Makronährstoffe, behandelt.

[Organische Schadstoffe in der Umwelt (V)]

Die Vorlesung Organische Schadstoffe in der Umwelt behandelt das Auftreten und Verhalten organischer Chemikalien in der Umwelt. Eingangs werden die Prinzipien des chemischen Pflanzenschutzes von der Synthese bis zur Anwendung vorgestellt. Grundvorraussetzung hierfür ist das gesetzlich geregelte Zulassungsverfahren, in dem u.a. Untersuchungsstrategien ausgehend von Labor- und Lysimeterexperimenten zu Freilandstudien eingehen, um das Rückstandsverhalten dieser organischen Chemikalien in den verschiedenen Umweltkompartimenten Luft, Boden und Wasser zu beurteilen. Dieses Zulassungsverfahren beruht auf Testmethoden, die auch als Grundlagen für Untersuchungen gemäß des Chemikaliengesetzes, der Biozidrichtlinie und der Zulassung von Human- und Veterinärpharmaka herangezogen werden. Neben der Vorstellung dieser Testsysteme wird auch die Anwendung der Rückstandsund Radiotraceranalytik erörtert. In diesem methodisch ausgelegten Konzept wird der unmittelbare Praxisbezug durch die Einbeziehung aktueller Ergebnisse aus Forschungsaktivitäten der einzelnen Teildisziplinen erzielt.

Qualifikationsziel

Kenntnis der wichtigsten anorganischen Schadstoffe und der Prozesse und Steuergrößen die deren Verhalten in der Umwelt auf verschiedenen Skalen (lokal, regional, global) steuern. Erlernen von Bewertungskriterien kontaminierter Standorte (Böden, Grundwasser und Gewässer).

Überblick über die wichtigsten Sanierungskonzepte kontaminierter Böden und Grundwässer. In der Vorlesung Organische Schadstoffe in der Umwelt werden die Studierenden befähigt, Untersuchungsstrategien zur prospektiven Beurteilung des Rückstandsverhaltens organischer Chemikalien in verschiedenen Umweltkompartimenten (Luft, Wasser,

Sediment, Boden, Pflanze, Abfälle) zu planen und anzuwenden, um Labor-, Lysimeter- und Freilandstudien unter Einbeziehung grundlegender Methoden der Rückstands- und Radiotraceranalytik durchzuführen und bewerten zu können.

Literatur

Merian, E. et al. (2004): Elements and their Compounds in the Environment. Vol. I-III. Wiley-VCH.

Appelo and Postma (2005), Geochemistry, Groundwater and Pollution

Van Loon and Duffy (2005), Environmental Chemistry, a global perspective.

Baird and Cann (2005), Environmental Chemistry.

Förstner (2004), Umweltschutztechnik.

Bahadir, M., Klein, W., Lay, J.P., Parlar, H. und Scheunert, I. (1992): Lehrbuch der Ökologischen Chemie. Georg Thieme Verlag, Stuttgart, New York.

Haider, I. und Schäffer, A. (2000): Umwandlung und Abbau von Pflanzenschutzmitteln in Böden. Enke im Georg Thieme Verlag, Stuttgart, New York.

Kreuzig, R. (1998): Entwicklung analytischer Methoden zur Differenzierung von Abbau und Sorption als konzentrationsbestimmenden Prozessen für Pflanzenschutzmittel-Wirkstoffe in Böden. Habilitati-onsschrift, TU Braunschweig, ISBN 3-89720-291.

Kümmerer, K. (2004): Pharmaceuticals in the Environment. Springer.

Merian, E. et al. (2004): Elements and their Compounds in the Environment. Vol. I-III. Wiley-VCH.

Appelo and Postma (2005). Geochemistry, Groundwater and Pollution

Van Loon and Duffy (2005), Environmental Chemistry, a global perspective.

Baird and Cann (2005), Environmental Chemistry.

Förstner (2004), Umweltschutztechnik.

Publikationen zur Vorlesung.

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung

Anorganische Schadstoffe in der Umwelt

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Harald Biester		2	Vorlesung	deutsch

Literaturhinweise

Merian, E. et al. (2004): Elements and their Compounds in the Environment. Vol. I-III. Wiley-VCH. Appelo and Postma (2005), Geochemistry, Groundwater and Pollution Van Loon and Duffy (2005), Environmental Chemistry, a global perspective. Baird and Cann (2005), Environmental Chemistry. Förstner (2004), Umweltschutztechnik. Publikationen und Folien zur Vorlesung.

Titel der Veranstaltung					
Organische Schadstoffe in der Umwelt					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
			Vorlesung	deutsch	

Modulname	Luftqualität und Luftreinhaltung			
Nummer	1112340	Modulversion		
Kurzbezeichnung	GEA-STD2-0	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Stephan Weber	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (max. 120 Min.) oder mündli	che Prüfung (30 Min.)		
Zu erbringende Studienleistung	Portfolio			
Zusammensetzung der Modulnote				

[Luftqualität in der bodennahen Grenzschicht (S)]

- -Grundlagen der atmosphärischen Chemie der bodennahen Grenzschicht
- -Grundlagen und Besonderheiten urbaner Luftqualität
- -Verfahren zur Messung und Charakterisierung von Aerosol -Analyse lufthygienischer Datensätze

[Luftqualität und Luftreinhaltung (V)]

- -Verständnis der Grundlagen der atmosphärischen Chemie der bodennahen Grenzschicht
- -Kenntnisse der wichtigsten Wirkungsketten troposphärischer Spurenstoffe
- -Gesetzliche Vorgaben zur Luftreinhaltung
- -Trends bodennaher Luftqualität im Klimawandel
- -Verständnis des Umgangs mit lufthygienischen Datensätzen

Qualifikationsziel

Die Studierenden erlangen ein grundlegendes Verständnis der Grundlagen der (urbanen) Luftqualität der bodennahen Grenzschicht sowie Kenntnisse der wichtigsten Wirkungsketten troposphärischer Spurenstoffe. Die Studierenden werden befähigt aktuelle Trends und Forschungsfelder atmopshärischer Luftqualität nachzuvollziehen. Sie werden im Umgang, in der Analyse sowie der Interpretation lufthygienischer Datensätze geschult.

Literatur

Finlayson-Pitts, B.J. and Pitts, J.N., 2000. Chemistry of the upper and lower atmosphere. Acamedic Press, San Diego, 969 pp.

Möller, D., 2003. Luft - Chemie, Physik, Biologie, Reinhaltung, Recht. de Gruyter, Berlin, New York, 750 pp. Hinds, W.C., 1999. Aerosol technology - Properties, Behavior and Measurement of Airborne Particles. Wiley Interscience, New York, 483 pp.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Es stehen maximal 25 Plätze zur Verfügung.

Anwesenheitspflicht

Titel der Veranstaltung

Luftqualität und Luftreinhaltung

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Lars Gerling Stephan Weber		2	Vorlesung	deutsch

Literaturhinweise

Finlayson-Pitts, B.J. and Pitts, J.N., 2000. Chemistry of the upper and lower atmosphere. Acamedic Press, San Diego, 969 pp. Möller, D., 2003. Luft - Chemie, Physik, Biologie, Reinhaltung, Recht. de Gruyter, Berlin, NewYork, 750 pp. Hinds, W.C., 1999. Aerosol technology - Properties, Behavior and Measurement of Airborne Particles. Wiley Interscience, New York, 483 pp.

Titel der Veranstaltung

Luftqualität in der bodennahen Grenzschicht

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Lars Gerling		2	Seminar	deutsch
Stephan Weber				

Modulname	Finite Elemente Methode: Theorie und Anwendung			
Nummer	4310590	Modulversion		
Kurzbezeichnung	BAU-STD4-59	Sprache	englisch	
Turnus	nur im Wintersemester	Lehreinheit		
Moduldauer	1	Einrichtung	Institut für Angewandte Mechanik	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Ralf Jänicke	
Arbeitsaufwand (h)	180 h			
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen		`		
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.)			
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

Die Finite-Elemente-Methode zur Lösung linearer und nichtlinearer Probleme der Festkörpermechanik: Wärmeleitung, nichtlineare Elastizität. Variationelle Darstellung, Methode der gewichteten Residuen. Numerische Implementierung in einer Finite Elemente Toolbox.

Course contents: The Finite Element Method for linear and nonlinear problems in solid mechanics: Heat equation, nonlinear elasticity. Variational format, weighted residuals. Numerical implementation in a Finite Element Toolbox.

Qualifikationsziel

Die Studierenden erwerben ein grundlegendes Verständnis der Finite-Elemente-Methode zur Lösung von Randwertproblemen. Sie können die Methode auf lineare Probleme (Wärmeleitung, Diffusion, Elektrostatik, Aerodynamik, Elastizität) anwenden. Sie sind mit der prinzipiellen Vorgehensweise bei Nutzung von FE-Software vertraut.

Literatur

- (1) TJR. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
- (2) C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method
- (3) DV. Hutton, Fundamentals of Finite Element Analysis
- (4) M. Fagan, Finite Element Analysis Theory and Practice
- (5) P. Steinke, Finite-Elemente-Methode Rechnergestützte Einführung

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN						
Belegungslogik bei der Wahl von Lehrveranstaltungen						
Anwesenheitspflicht	Anwesenheitspflicht					
Titel der Veranstaltung						
Finite Element Method: T	heory and Application					
Dozent/in Mitwirkende SWS Art LVA Sprache						
Ralf Jänicke Roland Kruse		4	Vorlesung/Übung	englisch		

Modulname	Multivariate statistische Verfahren			
Nummer	1116120	Modulversion		
Kurzbezeichnung	GEA-UA-12	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Boris Schröder-Esselbach	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Hausarbeit, Referat oder Klausur (90	Min.)		
Zu erbringende Studienleistung	Hausübung			
Zusammensetzung der Modulnote				

Einführung: Motivation, Darstellungen, mehrdimensionale Verteilungen

Ähnlichkeit, Unähnlichkeit

Ordination: Hauptkomponenten, Korrespondenzanalyse, Multidimensionale Skalierung, Sammons Mapping

Kanonische Ordination: Kanonische Korrespondenzanalyse, Redundanzanalyse

Klassifikation: Hierarchische Clusteranalysen, k-Means, Affinity Propagation, Vergleich von Clusterungen,

Indikatorarten Mantel-Tests

Qualifikationsziel

In diesem Modul werden multivariate statistische Methoden vermittelt, die bei ökologischen Untersuchungen häufig angewendet werden. In der Vorlesung werden die theoretischen Grundlagen sowie die Vor- und Nachteile der einzelnen Verfahren behandelt, während in der Übung die Verfahren auf konkrete Beispiele und Fragestellungen aus der ökologischen Forschung angewendet werden. Dabei wird das frei verfügbare Programm R eingesetzt (cran.r-project.org).

Die Studierenden lernen

- 1. ökologische Fragestellungen in statistische Modelle bzw. Hypothesen umzusetzen,
- 2. für diese Modelle bzw. Hypothesen geeignete Verfahren auszuwählen,
- 3. die Verfahren auf vorliegende Daten anzuwenden und
- 4. die Ergebnisse wissenschaftlich darzustellen und zu interpretieren.

Literatur

Leyer & K. Wesche (2007): Multivariate Statistik in der Ökologie. Springer Verlag

Borcard, Gillet, Legendre (2011): Numerical Ecology with R. Use R! Springer Verlag

Legendre & Legendre (2012) Numerical ecology. Developments in Environmental Modelling. Elsevier

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Die Studierenden sollten die statistischen Grundlagen (z.B. Verteilungen, Dichtefunktion, Erwartungswert, Varianz, Korrelation, Quantile, Konfidenzintervalle, Hypothesentests) kennen.

Anwesenheitspflicht

Titel der Veranstaltung			
Multivariate statistische Verfahren	in der Ökologie		

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Michael Strohbach		4	Vorlesung/Übung	deutsch

Modulname	Öffentliches Baurecht			
Nummer	4318260	Modulversion		
Kurzbezeichnung	BAU-STD3-12	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	2	Einrichtung	Institut für Verkehr und Stadtbauwesen	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Bernhard Friedrich	
Arbeitsaufwand (h)	180 h			
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) oder mdl. Prüfung	(ca. 30 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Bauplanungsrecht(VÜ)]

- Grundlagen und Ziele des Bauplanungsrechts
- Rechtsgrundlagen: BauGB, BauNVO, BauPlZVO
- Bauleitplanung: Stufen und Aufstellungsverfahren
- Privatisierung und Sicherungsinstrumente in der Bauleitplanung
- Zulässigkeit von Vorhaben
- Rücksichtnahmegebot und Nachbarschutz
- gesicherte Erschließung

[Bauordnungsrecht(VÜ)]

- Grundlagen und Ziele des Bauordnungsrechts
- Rechtsgrundlagen
- Landesbauordnung
- Musterbauordnung
- Durchführungsverordnung
- Sonderbauvorschriften
- baunebenrechtliche Vorschriften
- Verfahrens- und Genehmigungsarten
- Bauvorlagen und Zuständigkeiten
- materielle Anforderungen im Bauordnungrecht
- Regelungsgehalt der Baugenehmigung
- Nachbarschutz
- Baunebenrecht
- Denkmalschutzrecht
- Immissionsschutzrecht
- Versammlungsstättenrecht
- Arbeitsstättenrecht

Qualifikationsziel

Die Studierenden erhalten Grundkenntnisse im öffentlichen Baurecht. Hierzu gehört die Vermittlung von Grundkenntnissen des Bauplanungsrechts sowie des Bauordnungs- und Baunebenrechts (einschließlich Sondervorschriften). Das

übergeordnete Ziel ist die Vermittlung der entsprechenden Rechtsquellen und die Anwendung der Rechtsquellen auf ausgewählte Beispiele. Die Studierenden erlangen somit die Kompetenz zum Nachvollziehen und Verstehen grundlegender rechtssystematische Zusammenhänge in Bezug auf das öffentliche Bauwesen.

Literatur

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion Bereich Pflichtform Sem. Auswahl ECT				
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich			

Harald Toppe

ZUGEHÖRIGE LEHRVERANSTALTUNGEN						
Belegungslogik bei der Wahl vor	Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht						
Titel der Veranstaltung						
Bauplanungsrecht						
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		
Harald Toppe		2	Vorlesung/Übung	deutsch		
Titel der Veranstaltung	Titel der Veranstaltung					
Bauordnungsrecht						
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		

2

Vorlesung/Übung

deutsch

Modulname	Advanced Structural Analysis	Advanced Structural Analysis			
Nummer	4398770	Modulversion			
Kurzbezeichnung		Sprache			
Turnus	nur im Wintersemester	Lehreinheit			
Moduldauer	1	Einrichtung	Institut für Statik und Dynamik		
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Roland Wüchner		
Arbeitsaufwand (h)					
Präsenzstudium (h)	56	Selbststudium (h)	124		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen	Es werden Kenntnisse aus dem Modu setzt.	Es werden Kenntnisse aus dem Modul "Grundlagen der Finite Elemente Methode" vorausgesetzt.			
Zu erbringende Prüfungsleistung/ Prüfungsform	2 Prüfungsleistungen: 2 Portfolios (Wichtung jeweils 50%)				
Zu erbringende Studienleistung					
Zusammensetzung der Modulnote					
Inhalte					

Qualifikationsziel

Mit Abschluss des Moduls sind die Studierenden in der Lage komplexe strukturmechanische Modelle zu entwickeln, entsprechende numerische Analysen durchzuführen und die Ergebnisse zu bewerten.

Literatur

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Es müssen zwei der vier Lehrveranstaltungen ausgewählt werden.	
Anwesenheitspflicht	

Titel der Veranstaltung				
Advanced FEM				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Roland Wüchner Roland Wüchner		2	Vorlesung/Übung	englisch
Titel der Veranstaltung				
Membrane Structures				
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Roland Wüchner		2	Vorlesung/Übung	englisch
Titel der Veranstaltung				
Fluid-Structure Interaction				
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Roland Wüchner Roland Wüchner		2	Vorlesung/Übung	englisch
Titel der Veranstaltung				
Particle Methods				
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Roland Wüchner		2	Vorlesung/Übung	englisch

Modulname	Orientierung Recht	Orientierung Recht			
Nummer	2216350	Modulversion	V3		
Kurzbezeichnung	WW-RW-35	Sprache			
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät		
Moduldauer	1	Einrichtung			
SWS / ECTS	4 / 5,0	Modulverantwortliche/r	Dr. Anne Paschke		
Arbeitsaufwand (h)	150				
Präsenzstudium (h)	56	Selbststudium (h)	94		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen	Es werden Kentnisse aus dem Modul Grundlagen des Rechts vorausgesetzt.				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Klausur (120 min) oder 1 Take-at-Home-Exam				
Zu erbringende Studienleistung	für Organisation, Governance, Bildung / MA Sozialwissenschaften statt der Prüfungsleistung: 1 Klausur (120 min) oder 1 Take-at-Home-Exam				
Zusammensetzung der Modulnote					

Die Inhalte sind abhängig von der Wahl des Studienschwerpunkts:

Im Studienschwerpunkt Öffentliches Recht werden die Grundzüge des Technikrechts und Umweltrechts vermittelt. Nach einer Einführung in die historischen und europa- und völkerrechtlichen Grundzüge der benannten Rechtsgebiete werden unter Rückbezug auf andere Gebiete wie den Natur- und Wirtschaftswissenschaften die verschiedenen Ausprägungen dieser Rechtsgebiete näher beleuchtet. Hierbei wird jeweils ein Rückbezug zu bereits erlerntem Wissen der Stu-

dierenden hergestellt.

In der Vorlesung Umweltrecht werden insbesondere das Bau- und Immissionsschutzrecht, das Kreislaufwirtschaftsrecht, das Naturschutzrecht sowie das Klimaschutzrecht näher betrachtet. In der Vorlesung Technikrecht werden ergänzend das Anlagenrecht, das Produkthaftungsrecht, das Mobilitätsrecht, die Produkt- und Gerätesicherheitsrecht, das Patentrecht, das Technikstrafrecht sowie das Datenschutzrecht und die Erstellung Technischer Normungen adressiert.

Im Studienschwerpunkt Zivilrecht werden die Inhalte aus dem IT- und Datenrecht sowie die Rechtsbereiche, die für Start-Ups von Bedeutung sind erlernt.

Das Internet hat die Art, wie wir kommunizieren, Informationen auswerten und arbeiten oder konsumieren, grundlegend verändert, daher befasst sich die Vorlesung IT- und Datenrecht mit den rechtlichen Vorgaben der digitalten Transformation. Die Studierenden erlernen die rechtlichen Grundlagen für eine Datennutzung und die Einhaltung des Datenschutzrechts. Sie erlernen die Grundzüge des Urheberrechts und lernen, was bei der Erstellung einer Webpräsenzen (Homepage, Webshop, Social-Media-Account) rechtlich zu berücksichtigen ist. Zudem werden sie für Abmahnrisiken beim Online- Vertrieb sensibilisiert. Abschließend werden im Rahmen der Vorlesung die Grundzüge des IT-Sicherheitsrechts näher beleuchtet.

In der Vorlesung Recht für Start-Ups wird das praxisrelevante Wissen, das für einen erfolgreichen Start eines Start-Up-Unternehmens notwendig ist, vermittelt. Die Studierenden erlernen u.a. verschiedene Unternehmensformen kennen. Sie lernen zudem Schritt für Schritt, was für eine Unternehmensgründung erforderlich ist und was, wenn das Unternehmen in den Geschäftsbetrieb eintritt, rechtlich auf sie zu kommt, z.B. im Bereich Marken- und Patenrechte, Handels- und Lauterkeitsrecht und Arbeitsrecht. In der Vorlesung wird auf die weiteren wirtschaftswissenschaftlichen Vorlesungen z.B. zu Geschäftsmodellen eingegangen, um daran anknüpfend rechtliche Herausforderungen zu erarbeiten.

Qualifikationsziel

Die Lehrveranstaltungen vermitteln die nachfolgend benannten theoretischen rechtlichen Inhalte, um die Absolventinnen und Absolventen zu befähigen, selbständig in ihrem jeweiligen Fachbereich die einschlägigen rechtlichen Normen zu

identifizieren und fachbezogene rechtswissenschaftliche Entscheidungen unter Berücksichtigung der aktuellen Rechtslage zu treffen und diese in einer wissenschaftlichen und praxisorientierten Darstellungsweise schriftlich und mündlich präsentieren. Erst die anwendungsorientierte integrative Betrachtung von rechtlichen Vorgaben und technischen Prozessen ermöglicht eine rechtskonforme Unternehmens-/Produkt-/Fertigungsgestaltung (Compliance).

Nach Abschluss des Moduls im Studienschwerpunkt Öffentliches Recht können die Studierenden selbständig mit den Fachgesetzen im Umwelt- und Technikrecht umgehen und einschlägige Rechtsnormen sowie technische Normen zu ermitteln. Hierbei werden technische Beispielsfälle aus anderen Vorlesungen oder aus Praktika der Studierenden aufgegriffen und diese anhand der bestehenden Rechtslage gemeinsam bewertet. Die Studierenden können hierdurch die zuständigen Aufsichtsbehörden identifizieren und selbständig prüfen, ob ihre Anlage bzw. Maschine einer behördlichen Genehmigung bedarf oder ob diese anzeigepflichtig ist. In diesem Zusammenhang wird auch der "Stand der Technik" als wichtiger Rechtsbegriff mit Beispielen aus der technischen Praxis belebt, um die Studierenden für die Berücksichtigung der künftigen Entwicklung zu sensibilisieren. Ferner erlernen die Studierenden Rechtsfragen zur Eindämmung der Folgen des Klimawandels, um deren Bedeutung und Folgen auch aus wirtschaftlicher Perspektive besser einschätzen und umsetzen zu können, Zudem lernen Sie die Haftungsverantwortlichkeiten kennen und können Haftungs- und Sanktionierungsrisiken in Produktionsprozessen identifizieren.

Nach Abschluss des Moduls im Studienschwerpunkt Zivilrecht können die Studierenden selbständig die für sie relevanten Fachgesetze und einschlägigen Normen auffinden und durch die Arbeit mit dem Gesetz Rechtsfragen im ITund Datenrecht sowie im Kontext der Unternehmensgründung und Unternehmensführung lösen. Da die Regulierung in diesem Bereich sehr schnelllebig ist, nimmt neben der Vermittlung der fachlichen Kompetenzen insbesondere die Vermittlung der rechtswissenschaftlichen Methodenkompetenz eine entscheidene Bedeutung ein, um den Studierenden eine selbstständigen Rechtsanwendung zu ermöglichen. Nach Abschluss des Moduls sind die Studierenden für die Inhalte der Vorlesungen sensibilisiert, um bei der selbstständigen (kommerziellen) Nutzung des Internets oder bei der Gründung eines Unternehmens sich rechtskonform zu verhalten. Zudem haben sie erlernt gegenüber Juristen die sie bei der Rechtsdurchsetzung unterstützen, die richtigen Fragen zu stellen.

Literatur

Für den Studienschwerpunkt Öffentliches Recht

- Gesetzbücher:
 - Umweltrecht dtv. Beck, 31. Aufl. 2022
 - Bundes-Immissionsschutzgesetz, dtv. Beck, 17. Aufl. 2022
- Lehrbücher:
 - Ensthaler, Jürgen, Technikrecht: Rechtliche Grundlagen des Technologiemanagments, 2. Aufl. 2022
 - Schlacke, Umweltrecht, 8. Aufl. 2021
 - Rodi, Handbuch Klimaschutzrecht, 2022

Für den Studienschwerpunkt Zivilrecht

- Gesetzbücher:
 - Datenschutzrecht, dtv Beck, 14. Aufl. 2022
 - IT- und Computerrecht, dtv. Beck, 15. Aufl. 2022
 - Arbeitsgesetze, dtv. Beck, 100. Aufl. 2022
- Lehrbücher:
 - Informations- und Kommunikationsrecht, 2018
 - Kühling/Klar/Sackmann, Datenschutzrecht, 2021
 - Schädel, Wirtschaftsrecht für Hightech-Start-ups, 2019

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich				

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Es ist einer der beiden Schwerpunkte zu wählen:

- Öffentliches Recht:
 - Umweltrecht
 - Technikrecht
- Zivilrecht:
 - IT- und Datenrecht
 - Recht für StartUps

Studierende im Master Umweltingenieurwesen können nur den Schwerpunkt Öffentliches Recht belegen.

Anwesenheitspflicht

Titel	der	Veranstaltung
--------------	-----	---------------

Umweltrecht

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Anne Paschke		2	Vorlesung	deutsch

Titel der Veranstaltung

Technikrecht

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Anne Paschke		2	Vorlesung	deutsch

Literaturhinweise

Wird in der Veranstaltung bekanntgegeben.

Titel der Veranstaltung

IT- und Datenrecht

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Dr. Anne Paschke		2	Vorlesung	deutsch

Literaturhinweise

Wird in der Vorlesung bekannt gegeben.

Titel der Veranstaltung

Recht für StartUps

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Anne Paschke		2	Vorlesung	

Modulname	Spezialisierung Recht		
Nummer	2216360	Modulversion	V3
Kurzbezeichnung	WW-RW-36	Sprache	deutsch
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortliche/r	Dr. Anne Paschke
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Kenntnisse aus dem Modul Grundlagen des Rechts werden vorausgesetzt.		
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Klausur (120 min) oder 1 Take-at-Home-Exam		
Zu erbringende Studienleistung	für Organisation, Governance, Bildung / MA Sozialwissenschaften statt der Prüfungsleistung: 1 Klausur (120 min) oder 1 Take-at-Home-Exam		
Zusammensetzung der Modulnote			

Die Inhalte sind abhängig von der Wahl des Studienschwerpunkts:

Im Studienschwerpunkt Öffentliches Recht werden die Grundzüge des Energierechts aufgeteilt auf Energierecht I und Energierecht II vermittelt.

Die Veranstaltung Energierecht I dient dazu, die Grundlagen des Energierechts auf europäischer und deutscher Ebene darzustellen. Zu Beginn der Veranstaltung wird die Entwicklung der Energiewirtschaftsrechts in den letzten Jahrzehnten dargestellt. Die Vorlesung widmet sich im Schwerpunkt der Regulierung des Netzbetriebs und damit verbundene Themen wie Entflechtung, Netzanschluss, Netznutzung und Netznutzungsentgelte. In Grundzügen werden die wesentlichen Vertragsstrukturen der Energielieferbeziehungen sowie die Stellung der Letztverbraucher in der Energiewirtschaft Gegenstand der Veranstaltung sein. Ein weiterer Schwerpunkt liegt in der Versorgung von Letztverbrauchern, z.B. Grundversorgung und Vertragsanpassungsmöglichkeiten. Die Vorlesung ist interaktiv gestaltet und bietet Gelegenheit zu Diskussionen. Die besprochenen Themen werden anhand zahlreicher praktischer Fälle anschaulich gemacht.

Die Vorlesung Energierecht II ist vorrangig dem Recht der "Energiewende" gewidmet. Sie ergänzt die Vorlesung Energierecht I – es ist aber nicht zwingend, vorab Energierecht I gehört zu haben. Ein inhaltlicher Schwerpunkt der Vorlesung ist die Einführung in das Recht der Erneuerbaren Energien (EEG) inklusive der historischen Entwicklungen und der europäischen Bezüge, u.a. Ausbauziele, Anschluss- und Einspeisevorrang, Ausschreibungen/Tarife und Finanzierung, Zudem wird ein vertiefter Blick auf die spezifische Rechtslage von Windenergieanlagen Onshore und Offshore (u.a. Planung und Genehmigung, Vertragsgestaltung) geworfen. Außerdem werden die wichtigsten rechtlichen Grundlagen zum Stromnetzausbau (aus EnWG, EnLAG, NABEG, BBPIG) Gegenstand der Veranstaltung sein. Schließlich besteht die Möglichkeit, aktuelle Entwicklungen im Energierecht zu betrachten, z.B. hinsichtlich der Themen Sektorenkopplung oder grüner Wasserstoff. Die Vorlesung ist interaktiv gestaltet und bietet Gelegenheit zu Diskussionen. Die besprochenen Themen werden anhand zahlreicher praktischer Fälle anschaulich gemacht.

Im Studienschwerpunkt Zivilrecht werden je nach Wahl der Studierenden die Inhalte aus dem Vergaberecht, Patent- und Markenrecht und IT-Sicherheitsrecht vermittelt.

In der Vorlesung Patent- und Markenrecht werden die Grundlagen des deutschen und europäischen Patentrechtes, die entsprechenden Patentierungsvoraussetzungen und Verfahrensabläufe beim Deutschen Patent- und Markenamt (DPMA) und dem Europäischen Patentamt (EPA) vermittelt. Die Voraussetzungen der Patentierung und die entsprechende Rechtsprechung werden dann insbesondere auf computerimplementierte Erfindungen also insbesondere Erfindungen, die in wesentlichem Umfang Software enthalten angewendet und beleuchtet. In kleinerem Umfang werden auch Gebrauchsmuster und deren Unterschiede zum Patent sowie eingetragene Designs und Gemeinschaftsgeschmacksmuster thematisiert.

Die Vorlesung Vergaberecht behandelt den Anwendungsbereich und Ablauf von Vergabeverfahren sowie die vergaberechtlichen Rechtsschutzmöglichkeiten. Sie orientiert sich an den Regelungen des EU-Vergaberechts (Kartellvergaberecht) nach dem 4. Teil des GWB und der VgV. Es werden aber an geeigneten Stellen Exkurse in das Unterschwellenvergaberecht sowie in die besonderen Vergaberegime der Sektorenaufträge, der verteidigungs- und sicherheitsrelevanten Aufträge sowie der Konzessionen unternommen. Ein erster Schwerpunkt der Vorlesung liegt auf der Frage, in welchen Fällen das Vergaberecht zur Anwendung kommt und gegebenenfalls welches Vergaberechtsregime anzuwenden ist. Auf Basis des Oberschwellenvergaberechts wird ein Überblick über den Verfahrensablauf gegeben, beginnend mit den möglichen Verfahrensarten, über die an Bieter und Auftragsgegenstand zu stellenden Anforderungen, die notwendigen Bekanntmachungen, bis hin zur Angebotswertung und Beendigung des Vergabeverfahrens. Schließlich werden detailliert die vergaberechtlichen Rechtsschutzmöglichkeiten (Primär- und Sekundärrechtsschutz) behandelt. Die Vorlesung nimmt Rücksicht auf aktuelle Entwicklungen im Vergaberecht und behandelt die jeweiligen Themen anhand von Beispielsfällen aus der vergaberechtlichen Praxis.

In der Vorlesung IT-Sicherheitsrecht wird einer der zentralen Bereiche der kommenden Dekaden aus rechtlicher Sicht beleuchtet. Die Studierenden lernen die rechtlichen Rahmenbedingungen, die zur Einführung und Unterhaltung angemessener IT-Schutzstandards Vorgaben machen. Zudem erfahren sie, wie auf vertraglicher Ebene die it-sicherheitsrechtlichen Risiken verteilt werden. Die Einheit vermittelt einen ganzheitlichen Ansatz und versetzt die Studierenden in die Lage, zusammen mit der einschlägigen Fachliteratur selbständig wissenschaftliche sowie praxisorientierte Lösungen erarbeiten, um die notwendigen informationstechnischen Schritte zu betreuen.

Qualifikationsziel

Die Lehrveranstaltungen vermitteln die nachfolgend benannten theoretischen rechtlichen Inhalte, um die Absolventinnen und Absolventen zu befähigen, selbständig in ihrem jeweiligen Fachbereich die einschlägigen rechtlichen Normen zu identifizieren und fachbezogene rechtswissenschaftliche Entscheidungen unter Berücksichtigung der aktuellen Rechtslage zu treffen und diese in einer wissenschaftlichen und praxisorientierten Darstellungsweise schriftlich und mündlich präsentieren. Erst die anwendungsorientierte integrative Betrachtung von rechtlichen Vorgaben und technischen Prozessen ermöglicht eine rechtskonforme Unternehmens-/Produkt-/Fertigungsgestaltung (Compliance).

Nach Abschluss des Moduls im Studienschwerpunkt Öffentliches Recht können die Studierenden selbständig mit den Fachgesetzen im Energierecht umgehen und einschlägige Rechtsnormen ermitteln. Hierbei werden technische Beispielsfälle aus anderen Vorlesungen aufgegriffen und diese anhand der bestehenden Rechtslage gemeinsam bewertet. Hierbei wird auch der bereichsspezifische "Stand der Technik" mit Beispielen aus der technischen Praxis erlernt.

Nach Abschluss des Moduls im Studienschwerpunkt Zivilrecht können die Studierenden selbständig die für sie relevanten Fachgesetze und einschlägigen Normen auffinden und durch die Arbeit mit dem Gesetz Rechtsfragen im Vergaberecht, Patent- und Markenrecht und/oder IT-Sicherheitsrecht lösen. Nach Abschluss des Moduls sind die Studierenden für die Inhalte der Vorlesungen sensibilisiert, um sich bei Vergabeverfahren beteiligen zu können und hinreichend befähigt im Rahmen von patent- und markenrechtlichen Verfahren die richtigen Fragen in der Praxis stellen zu können.

Literatur

Für den Studienschwerpunkt Öffentliches Recht:

- Gesetzestexte:
 - Energierecht, dtv. Beck, 17. Aufl. 2022
- Lehrbücher:
 - Kühling/Rasbach/Busch, Energierecht, 5. Aufl. 2022
 - Baumgart, Energierecht, 2022

Für den Studienschwerpunkt Zivilrecht:

- Gesetzestexte:
 - Vergaberecht, dtv. Beck, 25. Aufl. 2022
 - Patent- und Designrecht, dtv. Beck, 16. Aufl. 2022
 - Wettbewerbsrecht, Markenrecht und Kartellrecht, dtv. Beck, 44. Aufl. 2022
- Lehrbücher:
 - Naumann, Vergaberecht, 2. Aufl. 2022
 - Burgi, Vergaberecht, 3. Aufl. 2021
 - Samer, Das neue Patentrecht, 2022
 - Ann, Patentrecht, 8. Aufl. 2022
 - Hornung/Schallbruch (Hrgs.) IT-Sicherheitsrecht, 2020

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Grundlagen- und Ergän- zungsbereich				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Es ist eine der beiden Schwerpunkte zu wählen (dabei ist der gleiche Schwerpunkt zu wählen, der in der Orientierung belegt wurde).

- Öffentliches Recht:
 - Energierecht 1
 - Energierecht 2
- Zivilrecht: (2 der 3 Veranstaltungen sind zu wählen)
 - IT-Sicherheitsrecht
 - Patent- und Markenrecht
 - Vergaberecht

Studierende des Masters Nachhaltige Energietechnik können nur den Schwerpunkt Öffentliches Recht wählen.

Anwesenheitspflicht

Titel der Veranstaltung					
Energierecht 1					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Sebastian Helmes		2	Vorlesung	deutsch	

litei der Veranstaltung				
Energierecht 2				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Sebastian Helmes		2	Vorlesung	deutsch

Titel der Veranstaltung					
IT-Sicherheitsrecht	IT-Sicherheitsrecht				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Hendrik Brockmann		2	Vorlesung	deutsch	

Titel der Veranstaltung					
Patent- und Markenrecht					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Andreas Friedrich		2	Vorlesung	deutsch	
Literaturhinweise					
Patent- und Musterrecht (Ve Wettbewerbsrecht und Karte	_				

Titel der Veranstaltung					
Vergaberecht					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Tobias Bode		2	Vorlesung	deutsch	

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Vertiefungsfach Bodenschutz und Geotechnik	
ECTS	18

Modulname	Tiefenlagerung		
Nummer	4399780	Modulversion	
Kurzbezeichnung	BAU-STD-15	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	Institut für Geomechanik und Geotechnik
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Joachim Stahlmann
Arbeitsaufwand (h)			
Präsenzstudium (h)	84	Selbststudium (h)	96
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.)		
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Tiefenlagerung (VÜ)]

Endlager und Untertagedeponien: Charakterisierung der für die Endlagerung und untertägige Verbringung wesentlichen Stoffe, ihre Entstehung und Volumina sowie ihres Gefährdungspotentials für die Umwelt, Beschreibung der technischen und sicherheitsbezogenen Anforderungen an die Endlagerbehälter sowie untertägigen Hohlräume und geologischen Formationen, Endlagerkonzeption und auslegung für verschiedene Wirtsgesteine (Salz, Ton, Kristallin), bergbauliche und technische Anforderungen an den Betrieb, Rückholung, Stilllegung und Safeguards.

Gebirgsmechanische Aspekte: Gebirgstragverhalten von Fels (Ton, Tonstein, Kristallin) und Salz, Sprengvortrieb, Teilschnittmaschinen, Sicherung, Felshydraulik, Deckgebirge, Geotechnische Barrieren für Strecken und Schächte, Baustofftechnologie, Hohlraumverringerung, Versatzmaterial Messtechnik und Messkonzepte

Systemverhalten von Tiefenlagern - Langzeitsicherheitsanalyse: Rechtliche Rahmenbedingungen, Sicherheitsnachweis, Strahlung und Strahlenwirkung von Radionukliden, Eigenschaften der Abfälle, Barrierenkonzepte und Sicherheitsfunktionen, Langzeitrelevante Eigenschaften potentieller Tiefenlagerformationen, Prozesse in Endlagern (thermisch, hydraulisch, mechanisch, geochemisch und Schadstofftransportmechanismen), Modelle für Langzeitsicherheitsanalysen, Endpunkt der Langzeitsicherheitsanalyse

Qualifikationsziel

Die Studierenden erwerben grundlegende Kenntnisse zur Thematik der Beseitigung gefährlicher und umweltgefährdender Stoffe durch Tiefenlagerung bzw. durch Verbringung in untertägige Hohlräume in geologischen Formationen. Sie sind nach erfolgreichem Abschluss des Moduls in der Lage, die komplexen Zusammenhänge bei der Entsorgung gefährlicher Stoffe zu erkennen, um z.B. bei der Planung dieser Untertagebauwerke mitwirken zu können. Es werden die gebirgsmechanischen Aspekte für die Planung und Ausführung von untertägigen Hohlraumbauten the- matisiert. Neben den technischen Aspekten zur Erstellung und Nutzung geeigneter Hohlräume werden die verschiede- nen Verfahren und Methoden zur ingenieurtechnischen Charakterisierung des geologischen "Baukörpers" vermittelt. Darüber hinaus wird sowohl das kurzfristige als auch das langzeitliche Verhalten der Stoffe im Untergrund behandelt, das ganz wesentlich für die Sicherheitsbewertung der technischen Konzepte und der gewählten Standorte ist. Grundlage dafür bilden die einschlägigen Gesetzeswerke und Verwaltungsvorschriften, deren Maßgaben und Wirkungen anhand von Beispielen aus der Praxis erläutert werden. Besonders herausgestellt wird die große Interdisziplinarität des Themas

Literatur

Forschungsberichte, Veröffentlichungen, aktuelle Informationen im Internet, Skript

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Boden- schutz und Geotechnik				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Die Kenntnisse aus dem Modul "Theoretische und experimentelle Boden- und Felsmechanik" werden vorausgesetzt.

Teilnahmebeschränkung auf 30 Personen.

Anwesenheitspflicht

Titel der Veranstaltung

Tiefenlagerung

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Volker Mintzlaff Ulrich Noseck Matthias Rosenberg Joachim Stahlmann		6	Vorlesung/Übung	deutsch

Modulname	Grundlagen der Geotechnik und Altlastenerkundung				
Nummer	4399770	Modulversion			
Kurzbezeichnung	BAU-STD-25	Sprache	deutsch		
Turnus		Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften		
Moduldauer		Einrichtung			
SWS / ECTS	0 / 6,0	Modulverantwortliche/r			
Arbeitsaufwand (h)		•			
Präsenzstudium (h)		Selbststudium (h)			
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform					
Zu erbringende Studienleistung					
Zusammensetzung der Modulnote					
Inhalte					
Qualifikationsziel					
Literatur					

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Boden- schutz und Geotechnik				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung						
Altlastenerkundung, und -sanierung						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Kai Münnich		2	Vorlesung/Übung	deutsch		
Titel der Veranstaltung						
Grund- und Felsbau						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Matthias Rosenberg Joachim Stahlmann		4	Vorlesung/Übung	deutsch		

Modulname	Theoretische und experimentelle Boden- und Felsmechanik					
Nummer	4315030	Modulversion				
Kurzbezeichnung	BAU-STD2-5	Sprache	deutsch			
Turnus		Lehreinheit				
Moduldauer	1	Einrichtung	Institut für Geomechanik und Geotechnik			
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Joachim Stahlmann			
Arbeitsaufwand (h)						
Präsenzstudium (h)	84	Selbststudium (h)	96			
Zwingende Voraussetzungen						
Empfohlene Voraussetzungen	Es wird empfohlen erst "Theoretische anschließend "Grund- und Felsbau un und Altlastenerkundung" zu belegen.	d Grundbaudynamik" oder "				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.)					
Zu erbringende Studienleistung	Praktikumsbericht					
Zusammensetzung der Modulnote						

[Boden- und Felsmechanik $(V+\ddot{U})$]

Von den Hauptgebieten der Geomechanik werden Boden- und Felsmechanik mit den nachfolgenden Themen behandelt: Baugrunderkundung, Festigkeits- und Verformungsverhalten, Labor- und Feldversuche, Stabilitätsuntersuchungen, Stoffgesetze, Bettungs- und Steifemodulverfahren, Flächengründungen, Herstellung von Pfählen, Tragverhalten von Pfählen, Berechnung von Pfählen, Eingespannte Pfähle / Seitendruck auf Pfähle, Pfahlprobebelastungen, Baugrundverbesserung, Bodenverfestigung, Rechtsfragen in der Geotechnik, Schadensfälle in der Geotechnik, Gefügemodelle, Spannungsdehnungsverhalten, Wasserdurchlässigkeit, Felsmechanische Untersuchungen

[Bodenmechanisches Praktikum (P)]:

Baugrunderkundung, Labor- und Feldversuche zur Klassifikation, Wasserdurchlässigkeit, Festigkeits- und Verformungsverhalten in Abhängigkeit der Bodenart.

Qualifikationsziel

Die Studierenden sind nach erfolgreichem Abschluss in der Lage, mit dem erlangten Verständnis der theoretischen und experimentellen Boden- und Felsmechanik die Planung und Ausführung von Gewerken im Boden und Fels durchzuführen. Die Studierenden sind mit Anerkennung des Praktikumsberichts in der Lage, Labor- und Feldversuche durchzuführen und auszuwerten.

Literatur

- Vorlesungsunterlagen
- Grundbautaschenbuch Teil 1 bis Teil 3, Ernst & Sohn, 8. Auflage, 2018
- Geotechnik Bodenmechanik, G. Möller, Ernst & Sohn, 1. Auflage, 2007

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Boden- schutz und Geotechnik			

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Die Teilnahme am bodenmechanischen Praktikum ist verpflichtend.

Titel der Veranstaltung

Bodenmechanisches Praktikum

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Eugen Daumlechner Matthias Rosenberg Joachim Stahlmann		2	Praktikum	deutsch

Titel der Veranstaltung

Boden- und Felsmechanik

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Matthias Rosenberg Joachim Stahlmann		4	Vorlesung/Übung	deutsch

Modulname	Bodenökologie und Nachhaltige Bodennutzung				
Nummer	1514280	Modulversion			
Kurzbezeichnung	PHY-IGÖ-28	Sprache	deutsch		
Turnus	nur im Wintersemester	Lehreinheit			
Moduldauer	1	Einrichtung			
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Wolfgang Durner		
Arbeitsaufwand (h)	180				
Präsenzstudium (h)	56	Selbststudium (h)	124		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	Prüfungsleistungen: Klausur Bodenök Klausur Mikrobielle Ökosystemdiens		•		
Zu erbringende Studienleistung					
Zusammensetzung der Modulnote					

[Bodenökologie und Bodennutzung (V)] Die LVA stellt die ökologische Bedeutung unterschiedlicher Bodennutzungsformen mit Blick auf Bodentiere sowie die Stabilität, Funktionsweise und Leistung der Biozönosen in den Mittelpunkt - Bodenökologie und ökologische Gliederungssysteme der Bodenorganismen - Lebensraumfunktion des Bodens - Anpassungsmechanismen der Bodenorganismen und der Produktionsfunktion des Bodens - Ökologische Stresssituationen, Regenerationsmöglichkeiten- Indikatoren und Folgen des Klimawandels [Istope in der bodenökologischen Forschung (V)] - Isotopenanalytik und Messtechnik - Kohlenstoff- (C-) und Stickstoff- (N-) Kreisläufe in Terrestrischen Ökosystemen (Vegetation, Böden) - Organische Bodensubstanz und deren Transformation, Stabilisierung und Auswaschung - Isotopentracer in der Bodenhydrologie - Boden-Pflanze-Atmosphäre-Interaktionen und Global Change [Mikrobielle Ökosystemdienstleistungen: Umweltauswirkungen und Managementoptionen] - Energetische Grundmotive mikrobieller Stofftransformationen - Funktion und Regulation mikrobiell vermittelter Stoffkreisläufe und Transformationen in Ökosystemen - Mikrobielle Gemeinschaften und deren Interaktionen - Methoden zur Messung der Vielfalt und Aktivität von Mikroorganismen in Ökosystemen - Limitierung und Steuerung mikrobieller Aktivitäten in Böden und anderen komplexen Habitaten - Praxis-Beispiele und zukünftige Perspektiven für das Management von mikrobiellen Leistungen

Qualifikationsziel

Die Studierenden erwerben Kenntnisse zu bodenökologischen Zusammenhängen, dem Einsatz von Isotopen in der bodenökologischen Forschung und zu mikrobiellen Ökosystemdienstleistungen. Schwerpunkte liegen hier zu-nächst auf der Vermittlung von Grundlagen der Bodenökologie, der Lebensraumfunktion des Bodens, der dort vor-kom-menden Organismen und ihrer Anpassungsstrategien sowie der Produktionsfunktion des Bodens. Isotope sind wichtige Tracer in der bodenökologischen Forschung, mit deren Hilfe die Transformation und der Verbleib von Substanzen in der Umwelt verfolgt werden können. Die Studierenden lernen anhand aktueller Forschungsbei-spiele Methoden zur Ermittlung der Vielfalt biologische Gemeinschaften, deren Veränderlichkeit und Aktivität, un-ter der Nutzung molekularer Methoden und der Anwendung Stabiler Isotope für die Erforschung von C- und N-Kreisläufen. Sie verstehen die Wechselwirkungen zwischen biologischen Faktoren, Bodeneigenschaften und Um-weltbedingungen, was sie in die Lage versetzt, Strategien zu Voraussagen zur biologischen Aktivitäten in Zusam-menhang zukünftiger Umweltveränderungen zu entwickeln.

Literatur

Bodenökologie und Bodennutzung: - Skript zur Vorlesung wird gestellt. - F. Scheffer, P. Schachtschabel (2018) Lehrbuch der Bodenkunde. 17. Aufl., Spektrum, Heidelberg. - H.-P. Blume, R. Horn, S. Thiele-Bruhn (2010) Handbuch des Bodenschutzes. 4. Aufl., Wiley-VCH, Wein-heim. - P. Lavelle, A.V. Spain (2005) Soil Ecology. Springer, Dordrecht. Isotope in der bodenökologischen Forschung: - Skript zur Vorlesung wird gestellt - J.R. Ehleringer, A.E. Hall, G.D. Farquhar, Stabe Isotope in Plant Carbon-Water Relations, Academic Press 1993 - Nieder, R. and Benbi, D.K., 2008, Carbon and nitrogen in the terrestrial environment. Springer, Dordrecht. Mikrobielle Ökosystemdienstleistungen: Umweltauswirkungen und Managementoptionen - Skript zur Vorlesung wird gestellt - M.T. Madigan, K.S. Bender, D.H. Buckley, W.M. Sattley, & D.A. Stahl. Brock Mikrobiologie. 2020. Pearson - I. Pepper, C. Gebra, T, Gentry . 2014. Environmental Microbiology. Academic Press

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Boden- schutz und Geotechnik				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Grundkenntnisse entsprechend der Vorlesung "Bodenkunde -- Einführung" (PHY-IGÖ-086) sind zwingend erforderlich.

Anwesenheitspflicht

Titel der Veranstaltung

Isotope in der bodenökologischen Forschung

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Axel Don		1	Vorlesung	deutsch

Literaturhinweise

Isotope in der bodenökologischen Forschung: - Skript wird zur Verfügung gestellt - J.R. Ehleringer, A.E. Hall, G.D. Farquahar, Stabe Isotope in Plant Carbon-Water Relations, Academic Press 1993 R. Nieder, D.K. Benbi (2008): Carbon and Nitrogen in the Terrestrial Environment. Springer, Dordrecht

Titel der Veranstaltung

Mikrobielle Ökosystemdienstleistungen: Umweltauswirkungen und Managementoptionen

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Christoph Tebbe		2	Vorlesung	deutsch

Literaturhinweise

Vorlesungsskript

Bodenökologie und Bodennutzung Dozent/in Mitwirkende SWS Art LVA Sprache Wolfgang Durner Sascha Iden Stefan Schrader 1 Vorlesung deutsch

Literaturhinweise

Skript zur Vorlesung als Lerngrundlage wird gestellt. Folgende Lehrbücher zum Nachschlagen und Vertiefen sind in der UB vorhanden: F. Scheffer, P. Schachtschabel (2002) Lehrbuch der Bodenkunde. 15.Aufl., Spektrum, Heidelberg. U. Gisi (1997) Bodenökologie. 2. Aufl., Thieme, Stuttgart. H.-P. Blume (2004) Handbuch des Bodenschutzes. 3. Aufl., Ecomed, Landsberg am Lech. D.C. Coleman, D.A. Crossley, P.F. Hendrix (2004) Fundamentals of Soil Ecology. 2. Aufl., Elsevier, Amsterdam. P. Lavelle, A.V. Spain (2005) Soil Ecology. Springer, Dordrecht.

$Technische\ Universit\"{a}t\ Braunschweig\ |\ Modulhandbuch:\ \underline{Umweltingenieurwesen\ (Master)}$

Vertiefungsfach Energietechnik	
ECTS	18

Modulname	Thermische Gebäudesimulation		
Nummer	4310360	Modulversion	
Kurzbezeichnung	BAU-STD4-3	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer		Einrichtung	Institut für Bauklimatik und Energie der Architek- tur
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Elisabeth Endres
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				

Titel der Veranstaltung					
Simulation und Modellierung von Gebäuden					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Elisabeth Endres		4	Seminar	deutsch	

Modulname	Energetisch Planen und Sanieren		
Nummer	4310340	Modulversion	
Kurzbezeichnung	BAU-STD4-3	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer		Einrichtung	Institut für Bauklimatik und Energie der Architek- tur
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Elisabeth Endres
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- und ressourcengerechtes Bauen				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN						
Belegungslogik bei der Wahl von Lehrveranstaltungen						
Anwesenheitspflicht	Anwesenheitspflicht					
Titel der Veranstaltung	Titel der Veranstaltung					
Nachhaltigkeitsstrategien für den Bestand						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Elisabeth Endres		4	Seminar	deutsch		

Modulname	Energiesysteme Biomassenutzung		
		N. 1.1	<u> </u>
Nummer	4310330	Modulversion	
Kurzbezeichnung	BAU-STD4-3	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer		Einrichtung	Institut für Siedlungswas- serwirtschaft
SWS / ECTS	3 / 4,0	Modulverantwortliche/r	Thomas Dockhorn
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung				
Energiesysteme Biomassenutzung				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Andreas Haarstrick Sören Hornig		3	Vorlesung/Übung	deutsch

	1		· · · · · · · · · · · · · · · · · · ·
Modulname	Wasserkraftanlagen - Technologien und Modellierung		
Nummer	4310320	Modulversion	
Kurzbezeichnung	BAU-STD4-3	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer		Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortliche/r	Jochen Aberle
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik			

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN
Belegungslogik bei der Wahl von Lehrveranstaltungen
Die Module "Wasserkraftanlagen - Technologien und Modellierung" und "Konstruktiver Wasserbau" schließen sich gegenseitig aus.
Anwesenheitspflicht

Titel der Veranstaltung				
Wasserkraftanlagen - Technologien und Modellierung				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jochen Aberle		3	Vorlesung/Übung	deutsch

Modulname	Regenerative Energietechnik		
Nummer	2520170	Modulversion	
Kurzbezeichnung	BAU-STD-34	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortliche/r	Jens Friedrichs
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	(D) Prüfungsleistung: Klausur, 120 M minutes	finuten (E) 1 Examination el	ement: Written exam, 120
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

Qualifikationsziel

(D) Die Studierenden können die wesentlichen regenerativen Energiewandlungs- und Speichertechnologien benennen und ihrer Verschaltung zu Systemen skizzieren. Sie können die theoretische Effizienz der wesentlichen Speichertechnologien berechnen und auf dieser Basis untereinander vergleichen. Darüber hinaus kennen sie die typischen Wirkungsgrade verschiedener Anlagen und können auf dieser Basis bestehende Anlagen bewerten. Sie können die wesentlichen systembedingten Vor- und Nachteile angeben und darauf aufbauend Verbesserungsmaßnahmen entwickeln. Darüber hinaus können die Studierenden einfache Systeme der regenerativen Energietechnik konzipieren. Ebenfalls können sie die Integration von regenerativen Energietechnologien in das elektrische Energieversorgungssystem analysieren und im Kontext der aktuellen und zukünftigen Herausforderungen bewerten . ======= (E) The students can name the basic technologies for renewable energy conversion and storage and are able to draft their combination to systems. They are able to calculate the theoretical efficiencies for the most significant technologies and thus are able to compare them. They know the typical efficiencies of various systems and on this basis they are able to evaluate present systems. Further, they know the major characteristic advantages and disadvantages of the technologies and are able to develop measures for improvement on this basis. Besides, they are able to design simple systems. They can analyze the integration of renewable energy technologies into the electrical energy supply system and are able to evaluate the systems in the context of current and future challenges.

Literatur

Winter, Nitsch: Wasserstoff als Energieträger, Springer, ISBN: 3-540-15865-0 Bührke, Wengenmayer: Erneuerbare Energie, Wiley-VCH 2007, ISBN-10: 3-527-40727-8 Stoy: Wunschenergie Sonne, ISBN: 3-87200-611-8; Kaltsch-

mitt, Hartmann: Energie aus Biomasse, Springer, ISBN: 3-540-64853-4 Insti, W. et al.: Wasserstoff, die Energie für alle Zeiten, Udo Pfriemer Verlag 1980, ISBN: 3-7906-0092-X

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung

Regenerative Energietechnik

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Bernd Engel Jens Friedrichs Stefanie Kroker Daniel Schröder		2	Vorlesung	deutsch

Literaturhinweise

(1) Holger Watter, Regenerative Energiesysteme, Springer Vieweg, 2015; ISBN 978-3-658-09638-0 (2) Adolf Schwab, Elektroenergiesysteme, Springer Vieweg, 2017; ISBN 978---662-55316-9 (3) Konrad Mertens, Photovoltaik, Carl Hanser Verlag GmbH & Co. KG, 2018; ISBN 978-3-446-44863-6

Titel der Veranstaltung

Regenerative Energietechnik

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Bernd Engel		1	Übung	deutsch
Jens Friedrichs				
Stefanie Kroker				
Daniel Schröder				

Literaturhinweise

(1) Holger Watter, Regenerative Energiesysteme, Springer Vieweg, 2015; ISBN 978-3-658-09638-0 (2) Adolf Schwab, Elektroenergiesysteme, Springer Vieweg, 2017; ISBN 978---662-55316-9 (3) Konrad Mertens, Photovoltaik, Carl Hanser Verlag GmbH & Co. KG, 2018; ISBN 978-3-446-44863-6

Modulname	Energiewirtschaft und Marktintegration erneuerbarer Energien			
Nummer	2423460	Modulversion		
Kurzbezeichnung	ET-HTEE-42	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Elektrotechnik, Informationstechnik, Physik	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortliche/r	Bernd Engel	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur 120 Minuten oder mündliche	Prüfung 30 Minuten		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

- 1. Energiewirtschaft
- 2. Energiepolitik
- 3. Gesetze und Fördersysteme
- 4. Märkte (Strommarkt 2.0, Regelleistungsmarkt)
- 5. Direktvermarktung / Bilanzkreismanagement
- 6. Virtuelles Kraftwerk
- 7. Großspeicher

Qualifikationsziel

Nach Abschluss des Moduls haben die Studierenden Kenntnisse über die Energiewirtschaft in Deutschland erlangt. Sie können aktuelle Entwicklungen hinsichtlich der Märkte bewerten und beurteilen. Neue Technologien und Forschungseinblicke werden integriert.

Literatur

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung					
Energiewirtschaft und Marktintegration erneuerbarer Energien					
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache	
Bernd Engel Mattias Hadlak		2	Vorlesung	deutsch	
Titel der Veranstaltung					
Energiewirtschaft und Marktintegration erneuerbarer Energien					
Dozent/in Mitwirkende SWS Art LVA Sprache					
Bernd Engel Mattias Hadlak		2	Übung	deutsch	

Modulname	Innovative Energiesysteme		
Nummer	2423340	Modulversion	
Kurzbezeichnung	ET-HTEE-34	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Elektrotechnik, Informationstechnik, Physik
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortliche/r	Bernd Engel
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Prüfungsleistung: mündliche Prüfung	30 Minuten	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

- 1. Netzentwicklung und Erzeugungsstruktur 2050 2. Konventionelle Kraftwerke 3. Erneuerbare Energien 4. Neuartige Erzeugungssysteme 5. P2X: Power-to-X (Heat, Gas,
-) 6. Mini-/Mico-Grid, Inselsysteme 7. Virtuelle Kraftwerke

Qualifikationsziel

Die Studierenden haben nach Abschluss des Moduls Kenntnisse über die konventionelle und nachhaltige Erzeugung von elektrischer Energie erlangt, sowie neueste Entwicklungen kennengelernt. Darüber hinaus wird Wissen über die Verknüpfung der verschiedenen Erzeugungsanlagen vermittelt. Die Studierenden werden dadurch in die Lage versetzt, die unterschiedlichen Erzeugungsanlagen hinsichtlich ihres Primärenergieverbrauchs und ihrer Auswirkungen auf die Umwelt zu bewerten und Vor- und Nachteile zu benennen.

Literatur

Quaschning, Volker: Regenerative Energiesysteme: Technologie # Berechnung # Simulation. München 2015. Hanser Verlag. Kaltschmitt, Martin: Erneuerbare Energien: Systemtechnik, Wirtschaftlichkeit, Umweltaspekte. Berlin 2013. Springer Vieweg. Heuck, Klaus; Dettmann, Klaus-Dieter; Schulz, Detlef: Elektrische Energieversorgung: Erzeugung, Übertragung und Verteilung elektrischer Energie für Studium und Praxis. Wiesbaden 2013. Springer Vieweg. Schwab, Adolf J.: Elektroenergiesysteme: Erzeugung, Übertragung und Verteilung elektrischer Energie. Berlin 2015. Springer Vieweg.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN						
Belegungslogik bei der Wahl von	Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht						
Titel der Veranstaltung						
Innovative Energiesysteme						
Dozent/in	Mitwirkende SWS Art LVA Sprache					
Lukas Ebbert Bernd Engel		2	Vorlesung	deutsch		
Literaturhinweise						
Die Energiefrage Bedarf und Pote	ntiale, Nutzung, Risiken und Koster	n, K. Heinloth,	Vieweg			
Titel der Veranstaltung						
Innovative Energiesysteme						
Dozent/in	Dozent/in Mitwirkende SWS Art LVA Sprache					
Lukas Ebbert Bernd Engel		2	Übung	deutsch		

Modulname	Technologien der Verteilungsnetze		
Nummer	2423300	Modulversion	
Kurzbezeichnung	ET-HTEE-30	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Elektrotechnik, Informationstechnik, Physik
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortliche/r	Bernd Engel
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur 120 Minuten		
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

- Rolle und Geschichte der Verteilungsnetze in der Energieversorgung
- Netzstrukturen & Netzentwicklung
- Internationaler Vergleich
- Betriebsmittel (Kabel, Freileitungen, Transformatoren, Schaltanlagen)
- Schutzkonzepte
- Netzfinanzierung & Netzentgelte
- Netzplanung
- Innovative Betriebsmittel
- Systemdienstleistungen im Verteilungsnetz

Qualifikationsziel

Nach erfolgreichem Abschluss des Moduls besitzen die Studierenden Grundkenntnisse über Technologien die zur Verteilung von elektrischer Energie aktuell und zukünftig relevant sind. Sie sind über aktuelle und zukünftige Entwicklungen in den elektrischen Energieverteilungsnetzen informiert und können bestehende Herausforderungen formulieren. Sie sind in der Lage, Technologien, Komponenten und Systeme zu analysieren, zu beurteilen und im Grundsatz zu entwerfen bzw. zu dimensionieren.

Literatur

Elektrische Energieverteilung – Flosdorff, Hilgarth – Vieweg + Teubner

 $Elektrische\ Energieversorgung-Heuck,\ Dettmann,\ Schulz-Springer Vieweg$

Taschenbuch der elektrischen Energietechnik – Schufft – Hanser

Elektrische Anlagentechnik – Knies, Schierack – Hanser

Elektroenergie system e-Schwab-Springer

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung

Technologien der Verteilungsnetze

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Till Garn Johannes Schmiesing Henrik Wagner		3	Vorlesung	deutsch

Literaturhinweise

Elektrische Energieverteilung; Flosdorff, Hilgarth; Vieweg + Teubner Elektrische Energieversorgung; Heuck, Dettmann, Schulz; SpringerVieweg Taschenbuch der elektrischen Energietechnik; Schufft; Hanser Elektrische Anlagentechnik; Knies, Schierack; Hanser Elektroenergiesysteme; Schwab; Springer

Titel der Veranstaltung

Technologien der Verteilungsnetze

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Till Garn Johannes Schmiesing Henrik Wagner		1	Übung	deutsch

Literaturhinweise

Elektrische Energieverteilung; Flosdorff, Hilgarth; Vieweg + Teubner Elektrische Energieversorgung; Heuck, Dettmann, Schulz; SpringerVieweg Taschenbuch der elektrischen Energietechnik; Schufft; Hanser Elektrische Anlagentechnik; Knies, Schierack; Hanser Elektroenergiesysteme; Schwab; Springer

Modulname	Systeme der Windenergieanlagen			
Nummer	2518290	Modulversion		
Kurzbezeichnung	MB-PFI-29	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Maschinenbau	
Moduldauer	1	Einrichtung		
SWS / ECTS	3 / 5,0	Modulverantwortliche/r	Jens Friedrichs	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	Selbststudium (h)	108	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minu	ten oder mündliche Prüfung	, 30 Minuten	
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

Historische Entwicklung; Bauarten Strömungsmechanische Grundlagen; Theorie von Betz Schnelllaufzahl, Leistungszahl, Modellgesetze Meteorologische Grundlagen, Windangebot, Windhistogramme, Windklassen, Windatlas Wind # Messung # Ertrag - Prognose Widerstandsläufer # Auftriebsläufer; Geschwindigkeitsdreiecke; Auftriebs- und Widerstandsbeiwert, Lilienthal-Polare Konstruktiver Aufbau; Rotor # Triebstrang # Hilfsaggregate # Turm u. Fundament Auslegung einer WEA nach dem Auftriebsprinzip; Kennfeld und Teillastverhalten Stromerzeugung mit WEA; Steuerung und Regelung; Anlagenkonzepte; netz- und windgeführte Anlagen Betriebsüberwachung, Monitoring, Wartung; Planung, Betrieb und Wirtschaftlichkeit Ausgeführte Anlagen, Windparks Onshore # Offshore

Qualifikationsziel

Die Studierenden sind in der Lage, anhand von Beispielen und Übungsaufgaben die Funktionsprinzipien und Systemeigenschaften der unterschiedlichen Windenergieanlagen (WEA) zu bewerten und der Standortfrage zuzuordnen. Zur Beurteilung des Standortes werden entsprechende statistische Methoden angewendet. Sie sind in der Lage, planerisch und konzeptuell am Entwurf von Windenergieanlagen und Windenergieparks mitzuwirken. Sie verfügen über Kenntnisse der unterschiedlichen Steuer- und Regelungskonzepte von wind- und netzgeführten Anlagen und sind in der Lage, die Wirtschaftlichkeit von verschiedenen Konzepten unter Berücksichtigung des lokalen Windangebots zu beurteilen.

Literatur

T. Burton et. al.: Wind Energy Handbook, John Wiley & Sons; 2. Auflage, 2011. R. Gasch, J. Twele: Windkraftanlagen, 8. Aufl. Springer, 2013. J.-P. Molly: Windenergie, 2. Auflage, Verlag C.F. Müller Karlsruhe, 1990.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Titel der Veranstaltung

Systeme der Windenergieanlagen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jens Friedrichs Heiko Schwarz		2	Vorlesung	deutsch

Literaturhinweise

T. Burton et. al.: Wind Energy Handbook, John Wiley & Sons; 2. Auflage, 2011. R. Gasch, J. Twele: Windkraftanlagen, 8. Aufl. Springer, 2013. J.-P. Molly: Windenergie, 2. Auflage, Verlag C.F. Müller Karlsruhe, 1990.

Titel der Veranstaltung

Systeme der Windenergieanlagen

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Jens Friedrichs		1	Übung	deutsch

Literaturhinweise

T. Burton et. al.: Wind Energy Handbook, John Wiley & Sons; 2. Auflage, 2011. R. Gasch, J. Twele: Windkraftanlagen, 8. Aufl. Springer, 2013. J.-P. Molly: Windenergie, 2. Auflage, Verlag C.F. Müller Karlsruhe, 1990.

Modulname	Systemtechnik in der Photovoltaik			
Nummer	2423380	Modulversion		
Kurzbezeichnung	ET-HTEE-38	Sprache		
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Elektrotechnik, Informationstechnik, Physik	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortliche/r	Bernd Engel	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	mündliche Prüfung 30 Minuten			
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

Inhalte:

- 1. Einführung in die Systemtechnik der Photovoltaik
- 2. Anlagenkonfigurationen
- 3. Wechselrichtertopologien
- 4. Funktionen der Wechselrichter
- 5. Weitere Komponenten der PV-Systemtechnik
- 6. Netzintegration von PV- Anlagen
- 7. Inselnetzanlagen
- 8. Netzgekoppelte PV-Anlagen mit Speicher
- 9. Zukünftige Entwicklungen

Qualifikationsziel

Die Vorlesung gibt einen Überblick über die Anforderungen an die Systemkomponenten der netzgekoppelten und Inselnetz-Photovoltaikanlagen ohne und mit dezentralen Batteriespeichern zum Beispiel zur Eigenverbrauchsmaximierung. Durch Förderprogramme und den starken Preisverfall bekommt die Photovoltaik eine wachsende Bedeutung für die elektr. Energieversorgung in Deutschland (30 Gigawatt bis 2013 installiert, Anteil bis zu 30 % an der Mittagslast) zu. Besonders eingegangen wird auf die Wechselrichtertechnik mit einem Vergleich der Eigenschaften verschiedener Schaltungstopologien und deren Auswirkungen auf die PV-Anlagenauslegung. In der Übung werden PC-toolbasiert Anlagenauslegungen und deren Netzintegration berechnet. Abgerundet wird die Vorlesung mit einer eintägigen, kostenlosen Exkursion zum internationalen Markt- und Technologieführer für Solarwechselrichter nach Kassel. Nach Abschluss des Moduls sind die Studierenden in der Lage, Komponenten und PV-Anlagen und ihre Netzintegration zu analysieren, zu beurteilen und zu entwerfen bzw. zu dimensionieren.

Literatur

Photovoltaik, Heinrich Häberlein, VDE-Verlag, ISBN 978-3-8007-3205-0 Photovoltaik für Profis, Falk Antony et. al., Verlag Solarpraxis, ISBN 978-3-934595-38-5 Skript

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung

Systemtechnik in der Photovoltaik

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Bernd Engel Frederik Tiedt Björn Oliver Winter		2	Vorlesung	deutsch

Literaturhinweise

Photovoltaik, Heinrich Häberlein, VDE-Verlag, ISBN 978-3-8007-3205-0 Photovoltaik für Profis, Falk Antony et. al., Verlag Solarpraxis, ISBN 978-3-934595-38-5 Skript

Titel der Veranstaltung

Systemtechnik in der Photovoltaik (2013)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Bernd Engel Frederik Tiedt Björn Oliver Winter		2	Übung	deutsch

Literaturhinweise

Photovoltaik, Heinrich Häberlein, VDE-Verlag, ISBN 978-3-8007-3205-0 Photovoltaik für Profis, Falk Antony et. al., Verlag Solarpraxis, ISBN 978-3-934595-38-5 Skript

Modulname	Thermische Energieanlagen			
Nummer	2520090	Modulversion		
Kurzbezeichnung	MB-WuB-09	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Maschinenbau	
Moduldauer	1	Einrichtung		
SWS / ECTS	3 / 5,0	Modulverantwortliche/r	Daniel Schröder	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	Selbststudium (h)	108	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Grundlegende Kenntnisse im Bereich	der Thermodynamik		
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur 120 Minu	ıten oder mündliche Prüfung	s, 30 Minuten	
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

Vorlesung: Entwicklung der Kraftwerke. Dampfkraftprozeß. Gasturbinenprozesse. Dampferzeuger (Vor- und Nachteile sowie Gründe für die Entwicklung der einzelnen Bauarten). Wärmetechnische Berechnung und Konstruktion von Dampferzeugern. Werkstoffe. Funktion und Auslegung der Hilfsaggregate wie Kondensator, Wasservorwärmer, Speisewasser- und Umwälzpumpe, Sicherheitsventile und Umleitstationen, Gebläse, Luftvorwärmer, Elektro-Filter, Entschwefelung, NOx -Minderung, Kamin. Dampfturbine. Gasturbine. Kombianlagen und Mehrstoffprozesse. Übung: Vertiefung der theoretischen Grundlagen durch Anwendung auf Beispiele aus der Kraftwerkstechnik, Auslegung, Konstruktion von Dampferzeugerbauelementen unter Beachtung von Regelwerken und Normen.

Qualifikationsziel

Nach Teilnahme in diesem Modul sind die Studierenden ausgebildet, den Aufbau von Kraftwerksanlagen zu verstehen und diese auszulegen. Ziel der Veranstaltung ist es, dass die Studierenden die Funktionsweise der einzelnen Komponenten von Kraftwerksanlagen und im Zusammenwirken verstehen. Zudem werden die Kraftwerksanlagen thermodynamisch berechnet. Abschließend werden Maßnahmen zur Wirkungsgradsteigerung diskutiert und an Beispielen berechnet. Der Schwerpunkt der Kraftwerksanlagen sind Dampfkraftwerke, Gaskraftwerke und Kombi-Kraftwerke.

Literatur

Brandt, F. Dampferzeuger: Kesselsysteme, Energiebilanz, Strömungstechnik. 2. Auflage. Band 3 der FDBR - Fachbuchreihe. Essen: Vulkan-Verlag Strauss,

- K. Kraftwerkstechnik zur Nutzung fossiler, regenerativer und nuklearer Energiequellen. 1998 Berlin, Heidelberg, New York: Springer Verlag
- S. Kakac: Boilers, Evaporators & Condensers, Wiley-Intersciences, ISBN: 0-471-62170-6 Singer,
- J. G.: Combustion, Fossil Power Systems Combustion Engineering Inc., 1981, Library of Congress Catalog Card Nr. 81-66247, ISBN: 0-960 5974

VDI: Energietechnische Arbeitsmappe, ISBN 3-540-62195-4 Cerbe/Wilhelms; Technische Thermodynamik; 18. Auflage; Hanser-Verlag

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von	n Lehrveranstaltungen			
Anwesenheitspflicht				
			,	
Titel der Veranstaltung				
Thermische Energieanlagen				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Henning Zindler		2	Vorlesung	deutsch
Titel der Veranstaltung				
Thermische Energieanlagen				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Henning Zindler		1	Übung	deutsch

$Technische\ Universit\"{a}t\ Braunschweig\ |\ Modulhandbuch:\ \underline{Umweltingenieurwesen\ (Master)}$

Vertiefungsfach Environmental Sustainability and Life Cycle Engineering	
ECTS	18

Modulname	Indo-German Challenge for Sustainable Production			
Nummer	2522730	Modulversion		
Kurzbezeichnung	MB-IWF-73	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Maschinenbau	
Moduldauer	1	Einrichtung		
SWS / ECTS	3 / 5,0	Modulverantwortliche/r	Christoph Herrmann	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	45	Selbststudium (h)	105	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	(D) 1 Prüfungsleistung: Präsentation 1 presentation 1 course achievement: re) 1 examination element:	
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

(D) - Notwendigkeit für digitale Entscheidungsunterstützung in der Produktion, z.B. hinsichtlich Energieeffizienz, -flexibilität und -transparenz - Konzept Cyber-Physischer Produktionssysteme (CPPS) zur Unterstützung physischer Produktionssysteme durch digitale Methoden und Werkzeuge - Vor- und Nachteile der Digitalisierung in der Produktion - Konzept des lebenszyklusorientierten Denkens in lokalen und globalen Dimensionen - Ableitung von Handlungsempfehlungen hinsichtlich der verschiedenen Nachhaltigkeitsdimensionen (ökologisch, ökonomisch und sozial) - Technische Umsetzung eines CPPS in der Lernfabrik der TU Braunschweig sowie des Joint Indo-German Experience Lab des BITS Pilani, Indien - Anwendung der Methodik der Ökobilanzierung nach ISO 14040 - Kultureller Austausch und Training handlungsbezogener Kompetenzen ========= (E) - Necessity for digital decision support in production, e.g. regarding energy efficiency, flexibility and transparency - Concept of Cyber-Physical Production Systems (CPPS) to support physical production systems through the use of digital methods and tools - Advantages and disadvantages of digitalisation in production - Concept of life cycle thinking in local and global dimensions - Elaboration of recommendations for action with regard to the various dimensions of sustainability (ecological, economic and social) - Technical implementation of a CPPS in the Learning Factory of TU Braunschweig and the Joint Indo-German Experience Lab of BITS Pilani, India - Application of the methodology of Life Cycle Assessment (LCA) according to ISO 14040 - Cultural exchange and training of hands-on competencies

Qualifikationsziel

(D) Die Studierenden

#

können Methoden aus den Bereichen Cyber-Physische Produktionssysteme (CPPS) und Ökobilanzierung (LCA) anwenden und im Rahmen von Teamprojekten in Lernfabriken weiterentwickeln. #

können erläutern, welche Möglichkeiten Technologien und Methoden der Industrie 4.0 zur Erreichung von Nachhaltigkeitszielen eröffnen. #

können anhand von Beispielen und unter Anwendung erlernter Methoden unterschiedliche Herausforderungen bei der Erreichung von Nachhaltigkeitszielen im deutschen und indischen Kontext erläutern. #

sind in der Lage, Handlungsfelder im Kontext Industrie 4.0 anhand eines konkreten industrienahen Beispiels zu identifizieren und geeignete Lösungen zu konzipieren. #

können Ziele und Arbeitspakete in einem internationalen praxisorientierten Studienprojekt definieren und mithilfe verschiedener Methoden bearbeiten. #

können sich in internationalen Teams unter Zuhilfenahme geeigneter Kommunikationsmittel und Managementmethoden organisieren. #

can apply methods from the fields of Cyber-Physical Production Systems (CPPS) and Life Cycle Assessment (LCA) and develop them further in team projects in learning factories. #

can explain the possibilities that technologies and methods of Industry 4.0 offer for achieving sustainability goals. # can explain different challenges in achieving sustainability goals in the German and Indian context through examples and the application of learned methods. #

are able to identify fields of action in the context of Industry 4.0 on the basis of a particular industry-related example and to design suitable solutions. #

can define goals and work packages in an international practice-oriented study project and work on them using various methods. #

can organise themselves in international teams with the help of appropriate communication tools and management methods. #

are able to present the solutions they have developed and discuss the chosen methods and technologies.

Literatur

Thiede, S., & Herrmann, C. (2018). Eco-Factories of the Future. New York, United States: Springer Publishing. https://doi.org/10.1007/978-3-319-93730-4 Thiede, S., Juraschek, M., Herrmann, C. (2016). Implementing Cyber-physical Production Systems in Learning Factories. Procedia CIRP, Vol. 54, 7-12. https://doi.org/10.1016/j.procir.2016.04.098 Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0 Stepby-step data mining guide. Hauschild, M. Z., Rosenbaum, R. K., & Olsen, S. I. (2018). Life Cycle Assessment: Theory and Practice. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-56475-3

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Environ- mental Sustainability and Life Cycle Engineering					

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				

Indo-German Challenge for Sustainable Production Dozent/in Mitwirkende SWS Art LVA Sprache Juan Felipe Cerdas Marin Christoph Herrmann Mark Mennenga Nadja Mindt Maximilian Rolinck

Literaturhinweise

1. Thiede, S., & Herrmann, C. (2018). Eco-Factories of the Future. New York, United States: Springer Publishing. https://doi.org/10.1007/978-3-319-93730-4 2. Thiede, S., Juraschek, M., Herrmann, C. (2016). Implementing Cyber-physical Production Systems in Learning Factories. Procedia CIRP, Vol. 54, 7-12. https://doi.org/10.1016/j.procir.2016.04.098 3. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide. 4. Hauschild, M. Z., Rosenbaum, R. K., & Olsen, S. I. (2018). Life Cycle Assessment: Theory and Practice. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-56475-3

Modulname	Methods and Tools for Life Cycle oriented Vehicle Engineering				
Nummer	2545050	Modulversion			
Kurzbezeichnung	MB-IWF2-05	Sprache			
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Maschinenbau		
Moduldauer	1	Einrichtung			
SWS / ECTS	3 / 5,0	Modulverantwortliche/r	Christoph Herrmann		
Arbeitsaufwand (h)	150				
Präsenzstudium (h)	42	Selbststudium (h)	108		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur+, 120 Minuten oder mündliche Prüfung, 30 Minuten				
Zu erbringende Studienleistung	1 Studienleistung: Präsentation im Rahmen eines Teamprojektes (auf Antrag fließt das Ergebnis der Studienleistung im Rahmen von Klausur+ zu maximal 20% in die Bewertung ein)				
Zusammensetzung der Modulnote					

- Grundlagen der lebenszyklusorientierten Produktentstehung in der Automobilindustrie
- Anforderungen an ein Elektrofahrzeug
- Methoden und Werkzeugen für lebenszyklusorientierte Fahrzeugtechnik
- Materialauswahl, Berechnung der Flottenemissionen sowie Break-Even Kalkulationen
- Konzept des lebenszyklusorientierten Denkens
- Sensibilisierung für Problemverschiebungen

Qualifikationsziel

Die Studierenden...

- ...sind in der Lage, eine lebenszyklusorientierte Produktentstehung in der Automobilindustrie durchzuführen.
- ...können automobilspezifische Produktentstehungsprozesse, die Entwicklungsmethodik und Strategien sowie Werkzeuge für die Planung, Konstruktion und Auslegung von Fahrzeugen und Komponenten sowie für die Planung der Produktion verstehen.
- ...können mit Hilfe des Quality Function Deployment Tools Produktanforderungen definieren und strukturieren.
- ...können die Aufgaben, Anforderungen und Ergebnisse der an der Fahrzeugentwicklung beteiligten Akteure einordnen und können die Wichtigkeit von unternehmensinternen und -übergreifenden Kooperationen verstehen.
- ...können technisch, wirtschaftlich und ökologisch bedeutsame Zielgrößen in der lebenszyklusorientierten Produktentstehung von Fahrzeugen bewerten.
- ...können Aufbau und relevante Parameter eines Life Cycle Assessments analysieren und die Ergebnisse interpretieren.
- ...sind in der Lage, Break-Even Kalkulationen durchzuführen und zu interpretieren.
- ...können die rechtlichen Rahmenbedingungen verstehen und deren Einhaltung überwachen (z.B. Berechnung der Flottenemissionen).

Literatur

Julian M. Allwood; Jonathan M. Cullen. Sustainable Materials – With both eyes open. Uit Cambridge Ltd, 2011

Christoph Herrmann . Ganzheitliches Life Cycle Management. Springer, 2010

Richard van Basshuysen. Fahrzeugentwicklung im Wandel: Gedanken und Visionen im Spiegel der Zeit. Vieweg +Teubner Verlag, 2010

Eberhard Abele, Reiner Anderl, Herbert Birkhofer, Bruno Rüttinger . EcoDesign: Von der Theorie in die Praxis. Springer, 2007

Wolfgang Wimmer, Kun Mo LEE, Ferdinand Quella, John Polak. ECODESIGN -- The Competitive Advantage: The Competitive Advantage. Springer, 2010

Kampker, Achim; Vallée, Dirk; Schnettler, Armin (2013): Elektromobilität. Grundlagen einer Zukunftstechnologie. Berlin, Heidelberg: Springer

Klein, Bernd (2013): Leichtbau-Konstruktion. Berechnungsgrundlagen und Gestaltung. 10., überarb. u. erw. Aufl. 2013. Wiesbaden, s.l: Springer Fachmedien Wiesbaden.

Korthauer, Reiner (Hg.) (2013): Handbuch Lithium-Ionen-Batterien. Berlin, Heidelberg, s.l: Springer Berlin Heidelberg.

Ponn, Josef; Lindemann, Udo (2011): Konzeptentwicklung und Gestaltung technischer Produkte. Systematisch von Anforderungen zu Konzepten und Gestaltlösungen. 2. Aufl. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg (VDI-Buch).

Siebenpfeiffer, Wolfgang (Hg.) (2013): Energieeffiziente Antriebstechnologien. Hybridisierung - Downsizing - Software und IT. Dordrecht: Springer

Wallentowitz, Henning; Freialdenhoven, Arndt (2011): Strategien zur Elektrifizierung des Antriebsstranges. Technologien, Märkte und Implikationen. 2., überarbeitete Auflage. Wiesbaden: Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden GmbH Wiesbaden

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Environ- mental Sustainability and Life Cycle Engineering				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung

Methods and tools for life cycle oriented vehicle engineering

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Juan Felipe Cerdas Marin Philipp Engels Sönke Hansen Muhammad Ammad Raza Siddi- qui Thomas Vietor		2	Vorlesung	englisch

Literaturhinweise

? Julian M. Allwood; Jonathan M. Cullen. Sustainable Materials ? With both eyes open. Uit Cambridge Ltd, 2011 ? Christoph Herrmann . Ganzheitliches Life Cycle Management. Springer, 2010 ? Richard van Basshuysen. Fahrzeugentwicklung im Wandel: Gedanken und Visionen im Spiegel der Zeit. Vieweg+Teubner Verlag, 2010 ? Eberhard Abele, Reiner Anderl, Herbert Birkhofer, Bruno Rüttinger . EcoDesign: Von der Theorie in die Praxis. Springer, 2007 ? Wolfgang Wimmer, Kun Mo LEE, Ferdinand Quella, John Polak. ECODESIGN -- The Competitive Advantage: The Competitive Advantage. Springer, 2010 ? Kampker, Achim; Vallée, Dirk; Schnettler, Armin (2013): Elektromobilität. Grundlagen einer Zukunftstechnologie. Berlin, Heidelberg: Springer ? Klein, Bernd (2013): Leichtbau-Konstruktion. Berechnungsgrundlagen und Gestaltung. 10., überarb. u. erw. Aufl. 2013. Wiesbaden, s.l: Springer Fachmedien Wiesbaden. ? Korthauer, Reiner (Hg.) (2013): Handbuch Lithium-Ionen-Batterien. Berlin, Heidelberg, s.l: Springer Berlin Heidelberg. ? Ponn, Josef; Lindemann, Udo (2011): Konzeptentwicklung und Gestaltung technischer Produkte. Systematisch von Anforderungen zu Konzepten und Gestaltlösungen. 2. Aufl. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg (VDI-Buch). ? Siebenpfeiffer, Wolfgang (Hg.) (2013): Energieeffiziente Antriebstechnologien. Hybridisierung - Downsizing - Software und IT. Dordrecht: Springer ? Wallentowitz, Henning; Freialdenhoven, Arndt (2011): Strategien zur Elektrifizierung des Antriebsstranges. Technologien, Märkte und Implikationen. 2., überarbeitete Auflage. Wiesbaden: Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden GmbH Wiesbaden

Titel der Veranstaltung

Methods and tools for life cycle oriented vehicle engineering

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Juan Felipe Cerdas Marin Philipp Engels Sönke Hansen Muhammad Ammad Raza Siddi- qui Thomas Vietor		1	Übung	englisch

Literaturhinweise

? Julian M. Allwood; Jonathan M. Cullen. Sustainable Materials ? With both eyes open. Uit Cambridge Ltd, 2011 ? Christoph Herrmann . Ganzheitliches Life Cycle Management. Springer, 2010 ? Richard van Basshuysen. Fahrzeugentwicklung im Wandel: Gedanken und Visionen im Spiegel der Zeit. Vieweg+Teubner Verlag, 2010 ? Eberhard Abele, Reiner Anderl, Herbert Birkhofer, Bruno Rüttinger . EcoDesign: Von der Theorie in die Praxis. Springer, 2007 ? Wolfgang Wimmer, Kun Mo LEE, Ferdinand Quella, John Polak. ECODESIGN -- The Competitive Advantage: The Competitive Advantage. Springer, 2010 ? Kampker, Achim; Vallée, Dirk; Schnettler, Armin (2013): Elektromobilität. Grundlagen einer Zukunftstechnologie. Berlin, Heidelberg: Springer ? Klein, Bernd (2013): Leichtbau-Konstruktion. Berechnungsgrundlagen und Gestaltung. 10., überarb. u. erw. Aufl. 2013. Wiesbaden, s.l: Springer Fachmedien Wiesbaden. ? Korthauer, Reiner (Hg.) (2013): Handbuch Lithium-Ionen-Batterien. Berlin, Heidelberg, s.l: Springer Berlin Heidelberg. ? Ponn, Josef; Lindemann, Udo (2011): Konzeptentwicklung und Gestaltung technischer Produkte. Systematisch von Anforderungen zu Konzepten und Gestaltlösungen. 2. Aufl. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg (VDI-Buch). ? Siebenpfeiffer, Wolfgang (Hg.) (2013): Energieeffiziente Antriebstechnologien. Hybridisierung - Downsizing - Software und IT. Dordrecht: Springer ? Wallentowitz, Henning; Freialdenhoven, Arndt (2011): Strategien zur Elektrifizierung des Antriebsstranges. Technologien, Märkte und Implikationen. 2., überarbeitete Auflage. Wiesbaden: Vieweg+Teubner Verlag / Springer Fachmedien Wiesbaden GmbH Wiesbaden

Modulname	Life Cycle Assessment for sustainable engineering					
Nummer	2545020					
Nummer	2343020	Modulversion				
Kurzbezeichnung	MB-IWF2-02	Sprache				
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Maschinenbau			
Moduldauer	1	Einrichtung				
SWS / ECTS	3 / 5,0	Modulverantwortliche/r				
Arbeitsaufwand (h)	150					
Präsenzstudium (h)		Selbststudium (h)				
Zwingende Voraussetzungen						
Empfohlene Voraussetzungen	 Studierende verfügen idealerweise bereits über Kenntnisse zu Matritzenrechnung (z.B. Matrix-Multiplikation) Studierende kennen die chemischen Summenformeln von geläufigen Substanzen (z.B. CO2, H20) 					
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur+, 120 Minuten oder mündliche Prüfung, 30 Minuten					
Zu erbringende Studienleistung	Präsentation im Rahmen eines Teamprojektes (auf Antrag fließt das Ergebnis der Studienleistung im Rahmen von Klausur+ zu maximal 20% in die Bewertung ein)					
Zusammensetzung der Modulnote						

- Notwendigkeit für eine Quantifizierung von Umweltwirkungen
- Konzept des lebenszyklusorientierten Denkens
- Sensibilisierung für Problemverschiebungen
- Grundlagen und Anwendung der Methodik der Ökobilanz (Life Cycle Assessment, LCA)
- Struktur einer Ökobilanz gemäß ISO 14040/14044
- Vor- und Nachteile der LCA Methodik, Anwendungsgebiete, Ausprägungsformen

Qualifikationsziel

Die Studierenden...

- sind in der Lage, eine Ökobilanz gemäß ISO 14040/14044 durchzuführen
- können eine bestehende Ökobilanz hinsichtlich der Aussagekraft der Ergebnisse sowie möglicher Schwachstellen analysieren
- sind in der Lage, die Ergebnisse einer Ökobilanz an Laien zu kommunizieren, und dabei auf relevante Annahmen, Einschränkungen und Rahmenbedingungen einzugehen
- können die verschiedenen Wahlmöglichkeiten, welche ihnen bei der Modellierung im Rahmen einer Ökobilanz zur Verfügung stehen, wiedergeben, und eine begründete Entscheidung treffen, welche dieser Modellierungsansätze sie in einem gegebenen Kontext anwenden würden
- können relevante Inhalte innerhalb eines vorgegebenen Themas aus dem Bereich Ökobilanzierung identifizieren, verstehen, aufbereiten, und für andere verständlich präsentieren
- können, unter Nutzung von bereitgestellten Daten, eine Ökobilanzsoftware anwenden, um damit aussagekräftige Ergebnisse zu erzielen
- können sich im Rahmen einer Gruppenarbeit effektiv selbst organisieren, die Arbeit aufteilen, eine termingerechte Zielerreichung sicherstellen und eine lösungsorientierte Kommunikation praktizieren

Literatur

- HAUSCHILD, Michael Z.; ROSENBAUM, Ralph K.; OLSEN, Stig Irvin. Life cycle assessment. Springer, 2018
- ISO 14040:2006 Environmental management Life cycle assessment Principles and framework

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Environ- mental Sustainability and Life Cycle Engineering				

ZUGEHÖRIGE LEHRVI	ERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung					
Life Cycle Assessment for	sustainable engineering (V)				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
			Vorlesung	deutsch	
Titel der Veranstaltung					
Life Cycle Assessment for sustainable engineering (Ü)					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Christoph Herrmann			Übung	deutsch	

Modulname	Life Cycle Assessment for sustainable engineering with Laboratory				
Nummer	2545030	Modulversion	v2		
Kurzbezeichnung	MB-IWF2-03	Sprache			
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Maschinenbau		
Moduldauer	1	Einrichtung			
SWS / ECTS	3 / 7,0	Modulverantwortliche/r			
Arbeitsaufwand (h)	210				
Präsenzstudium (h)		Selbststudium (h)			
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen	 Studierende verfügen idealerweise bereits über Kenntnisse zu Matritzenrechnung (z.B. Matrix-Multiplikation) Studierende kennen die chemischen Summenformeln von geläufigen Substanzen (z.B. CO2, H20) 				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur+, 120 Minuten oder mündliche Prüfung, 30 Minuten				
Zu erbringende Studienleistung	2 Studienleistungen: a) Präsentation im Rahmen eines Teamprojektes (auf Antrag fließt das Ergebnis der Studienleistung im Rahmen von Klausur+ zu maximal 20% in die Bewertung ein) b) Laborprotokoll und Präsentation der Laborergebnisse				
Zusammensetzung der Modulnote					

- Notwendigkeit für eine Quantifizierung von Umweltwirkungen
- Konzept des lebenszyklusorientierten Denkens
- Sensibilisierung für Problemverschiebungen
- Grundlagen und Anwendung der Methodik der Ökobilanz (Life Cycle Assessment, LCA)
- Struktur einer Ökobilanz gemäß ISO 14040/14044
- Vor- und Nachteile der LCA Methodik, Anwendungsgebiete, Ausprägungsform
- Umgang mit wissenschaftlichen Methoden und Programmierwerkzeugen zur computergestützten Modellierung, Auswertung und Interpretation von Ökobilanzen, insbesondere für neue Technologien wie bspw. Elektromobilität

Qualifikationsziel

Die Studierenden...

- ... sind in der Lage, eine Ökobilanz gemäß ISO 14040/14044 durchzuführen
- ... können eine bestehende Ökobilanz hinsichtlich der Aussagekraft der Ergebnisse sowie möglicher Schwachstellen analysieren
- ... sind in der Lage, die Ergebnisse einer Ökobilanz an Laien zu kommunizieren, und dabei auf relevante Annahmen, Einschränkungen und Rahmenbedingungen einzugehen
- ... können die verschiedenen Wahlmöglichkeiten, welche ihnen bei der Modellierung im Rahmen einer Ökobilanz zur Verfügung stehen, wiedergeben und eine begründete Entscheidung treffen, welche dieser Modellierungsansätze sie in einem gegebenen Kontext anwenden würden
- ... können relevante Inhalte innerhalb eines vorgegebenen Themas aus dem Bereich Ökobilanzierung identifizieren, verstehen, aufbereiten, und für andere verständlich präsentieren
- ... können unter Nutzung von bereitgestellten Daten eine Ökobilanzsoftware anwenden, um damit aussagekräftige Ergebnisse zu erzielen
- ... können sich im Rahmen einer Gruppenarbeit effektiv selbst organisieren, die Arbeit aufteilen, eine termingerechte Zielerreichung sicherstellen und eine lösungsorientierte Kommunikation praktizieren
- ... sind in der Lage, unter Nutzung von bereitgestellten Daten, selbstständig Ökobilanz-Modelle sowie Routinen zur Auswertung und Visualisierung zu entwickeln

Literatur

HAUSCHILD, Michael Z.; ROSENBAUM, Ralph K.; OLSEN, Stig Irvin. Life cycle assessment. Springer, 2018.

ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Environ- mental Sustainability and Life Cycle Engineering				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Es ist nur eines der beiden Labore "Computational Modelling in Life Cycle Assessment" bzw. "Augmented Reality Applications in Sustainable Manufacturing and Life Cycle Engineering" zu belegen.

Anwesenheitspflicht

Titel der Veranstaltung

Life Cycle Assessment for sustainable engineering (V)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
			Vorlesung	deutsch

Titel der Veranstaltung

Life Cycle Assessment for sustainable engineering (Ü)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Christoph Herrmann			Übung	deutsch

Titel der Veranstaltung

Augmented Reality Applications in Sustainable Manufacturing and Life Cycle Engineering

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Christoph Herrmann	Christoph Herrmann	1	Labor	englisch

Titel der Veranstaltung Computational Modelling in Life Cycle Assessment Dozent/in Mitwirkende SWS Art LVA Sprache Juan Felipe Cerdas Marin Philipp Engels Christoph Herrmann Sofia Pinheiro Melo Geleilate

Literaturhinweise

^{1.} HAUSCHILD, Michael Z.; ROSENBAUM, Ralph K.; OLSEN, Stig Irvin. Life cycle assessment. Springer, 2018. 2. ISO 14040:2006 Environmental management? Life cycle assessment? Principles and framework 3. Cerdas, F., Thiede, S., & Herrmann, C. (2018). Integrated Computational Life Cycle Engineering? Application to the case of electric vehicles. CIRP Annals, 1?4. https://doi.org/10.1016/j.cirp.2018.04.052 4. Mutel C (2017) Brightway: An Open Source Framework for Life Cycle Assessment, 47. 11?12.

Modulname	Environmental and Sustainability Management in Industrial Application		
Nummer	2522950	Modulversion	
Kurzbezeichnung	MB-IWF-95	Sprache	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Maschinenbau
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortliche/r	Christoph Herrmann
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Empfohlen wird im vorherigen Wintersemester das Modul "Ganzheitliches Life Cycle Management" zu absolvieren. Dies ist aber keine zwingende Voraussetzung für die Teilnahme.		
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur+ (120 min) oder mündliche Prüfung (30 min)		
Zu erbringende Studienleistung	Präsentation im Rahmen eines Teamprojektes (auf Antrag fließt das Ergebnis der Studienleistung im Rahmen von Klausur+ zu maximal 10% in die Bewertung ein)		
Zusammensetzung der Modulnote			

Anforderungen an Unternehmen aus Perspektive einer nachhaltigen Entwicklung. Konzept der planetarischen Belastungsgrenzen (#Planetary Boundaries#) Indikatoren für ökologische Grenzen, wie z.B. Biodiversitätsverlust, Luftverschmutzung oder den Stickstoffkreislauf. Zwei zentralen Säulen für Unternehmen: Governance und Leadership. Bestehenden Vorschriften, Gesetze und Normen wie ISO 26000 (Leitfaden zur gesellschaftlichen Verantwortung) oder ISO 14001 (Umweltmanagementsystemnorm). Alleinstellungsmerkmale zur Differenzierung gegenüber Wettbewerbern. verschiedene Methoden für Nachhaltigkeitsstrategien, wie die Materialitätsanalyse. Indikatoren und Maßnahmen hinsichtlich Produktpolitik, Umweltkommunikation, Corporate Social Responsibility oder externer Zertifizierungen.

Qualifikationsziel

Nach Abschluss des Moduls # Environmental and Sustainability Management in Industrial Application# sind Studierende in der Lage,

- Unternehmen systematisch hinsichtlich Umwelt- und Nachhaltigkeitsrisiken zu analysieren und basierend auf dieser Analyse Nachhaltigkeitsstrategien für Unternehmen abzuleiten.
- geeignete Methoden anzuwenden, um die relevanten Umwelt- und Nachhaltigkeitsaspekte innerhalb des Lebenszyklus eines Produkts zu identifizieren und daraus Anforderungen an Unternehmen abzuleiten.
- geeignete Maßnahmen zu identifizieren, um diese Anforderungen innerhalb einer Unternehmensorganisation umzusetzen.
 - Fachkenntnisse zu verschiedenen Themen des Umwelt- und Nachhaltigkeitsmanagements im Rahmen einer Fallstudie anzuwenden.
- fundierte Diskussionen über Umwelt- und Nachhaltigkeitsthemen zu führen und in einem heterogenen Team entwickelte Nachhaltigkeitsstrategien Team zu begründen.

Literatur

Literatur wird in der Veranstaltung bekanntgegeben.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Environ- mental Sustainability and Life Cycle Engineering				

1				
ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl vo	n Lehrveranstaltungen			
Anwesenheitspflicht				
Titel der Veranstaltung				
Environmental and Sustainability	Management in Industrial A	pplication		
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Robar Arafat Sönke Hansen Stephan Krinke		2	Vorlesung	englisch
Literaturhinweise				
Literatur wird in der Veranstaltun	g bekanntgegeben.			
Titel der Veranstaltung				
Environmental and Sustainability	Management in Industrial A	pplication		
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Robar Arafat Sönke Hansen Stephan Krinke		1	Teamprojekt	englisch
Literaturhinweise				
Literaturempfehlung folgt.				

Modulname	Material Resources Efficiency in Engineering		
Nummer	2545040	Modulversion	
Kurzbezeichnung	MB-IWF2-040	Sprache	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Maschinenbau
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortliche/r	Christoph Herrmann
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	(D) 1 Prüfungsleistung: Klausur+, 120 dienleistung: Präsentation im Rahmen der Studienleistung im Rahmen von Kexamination element: written exam+, vement: presentation in the context of achievement is taken into account in tachievement can account maximum 2	eines Teamprojektes (auf A Clausur+ zu maximal 20% in 120 minutes or oral exam 30 a teamproject (on application the assessment of the written	ntrag fließt das Ergebnis die Bewertung ein) (E) 1 minutes 1 course achie- in, the result of the course examination+. The course
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

(D) - Einführung in die aktuelle Nutzung von natürlichen Ressourcen im industriellen Kontext und Darstellung damit verbundener Energie- und Stoffströme sowie politische, gesellschaftliche, technologische und ökonomische Herausforderungen - Methoden und Werkzeugen zur ganzheitlichen, lebenszyklusorientierten Bewertung und Erhöhung der Materialeffizienz im industriellen Wertstrom - Bewertung und Einordnung der Ströme unter ökologischen und ökonomischen Aspekten - Überblick über Maßnahmen zur Reduzierung des Energiebedarfs in einzelnen Phasen (z.B. Rohmaterialbereitstellung) und im gesamten Lebensweg - Maßnahmen zur Reduzierung von Materialverlusten in der Materialbereitstellung und Produkterstellung - Treiber und Möglichkeiten zur Reduzierung der Materialintensität (z.B. Nachfragereduzierung, Material- und Produktsubstitution) - Closed-loop Ansätze in der Produkt- und Materialwiederverwendung und #verwertung (z.B. industrial metabolism, cradle-to-cradle) -Anwendungsgebiete und Fallbeispiele - Sensibilisierung für die ökologische, wirtschaftliche und gesellschaftliche Relevanz globaler Materialströme für technische Produkte von der Rohstoffgewinnung bis hin zum Recycling of natural resources in an industrial context and presentation of related energy and material flows as well as political, social, technological and economic challenges - Methods and tools for holistic, lifecycle assessment and increasing material efficiency in industrial value stream - Evaluation and classification of streams under ecological and economical aspects - Overview of measures to reduce the energy consumption in each phase (e.g. raw material provisioning) and the entire life cycle - Measures to reduce material losses in the material supply and product creation - Drivers and opportunities to reduce material intensity (e.g., demand reduction, material and product substitution) - Closed-loop approaches in product and material reuse and recycling (e.g. industrial metabolism, cradle-to-cradle) - Areas of application and case studies - Awareness of the ecological, economic and social relevance of global material flows for technical products from raw material extraction to recycling

Qualifikationsziel

(D) Die Studierenden

#

sind in der Lage, die Materialströme für technische Produkte in einen globalen Kontext einzuordnen und daraus resultierende Konsequenzen für Umwelt, Wirtschaft und Gesellschaft zu hinterfragen # können den Prozess der Rohmaterialbereitstellung, -verarbeitung, Produkterstellung und #nutzung analysieren #

sind in der Lage, Methoden und Werkzeuge umzusetzen (z.B. Materialflussanalyse, Life Cycle Assessment, Life Cycle Costing), die eine ganzheitliche, lebenszyklusorientierte Bewertung der Materialeffizienz unter verschiedenen Zielgrößen (ökologisch, ökonomisch, sozial) im industriellen Wertstrom ermöglichen #

können Maßnahmen und Ansätze zur Erhöhung der Materialeffizienz unter den vorher definierten Zielgrößen identifizieren und analysieren, welche Umsetzungsherausforderungen im sozio-ökonomischen und -ökologischen Umfeld bestehen #

können die mit Materialsubstitution verbundenen Herausforderung identifizieren und argumentieren, warum bei der Materialwahl der gesamte Produktlebensweg betrachtet werden muss #

are able to classify the material flows for technical products in a global context and question the resulting consequences for the environment, economy and society # ... can analyse the process of raw material supply, processing, product manufacturing and use # ...are able to implement methods and tools (e.g. material flow analysis, life cycle assessment, life cycle costing) that enable a holistic, life cycle-oriented evaluation of material efficiency under different target sizes (ecological, economic, social) in the industrial value stream # ...can identify measures and approaches to increase material efficiency under the previously defined target variables and analyze which implementation challenges exist in the socio-economic and ecological environment # ...can identify the challenges associated with material substitution and argue why the entire product life cycle must be considered when choosing materials # ...can evaluate the ecological and economic relevance of the use of materials in technical products and services, identify key levers for improvement and anticipate potential implementation challenges

Literatur

Vorlesungsfolien (Powerpoint) Allwood J; Cullen J.: Sustainable Materials # With both eyes open Ashby, M. F.: Materials and the Environment # Eco-Informed Material Choice Herrmann C.: Ganzheitliches Life Cycle Management

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Environ- mental Sustainability and Life Cycle Engineering				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

(D)Die Vorlesung bzw. die Klausur ist Prüfungsleistung und wird benotet. Die Übung bzw. Fallstudienarbeit ist Studienleistung und muss belegt werden.(E)The lecture or the written exam is an examination element and is graded. The exercise or case study work is a course achievement and must be documented.

Anwesenheitspflicht

Titel der Veranstaltung

Material resources efficiency in engineering

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Juan Felipe Cerdas Marin Christoph Herrmann Usama Khalid		1	Übung	englisch
Nelli Kononova				

Literaturhinweise

Literatur: Vorlesungsfolien (Powerpoint) Allwood J; Cullen J.: Sustainable Materials ? With both eyes open Ashby, M. F.: Materials and the Environment ? Eco-Informed Material Choice Herrmann C.: Ganzheitliches Life Cycle Management

Titel der Veranstaltung

Material resources efficiency in engineering

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Juan Felipe Cerdas Marin Christoph Herrmann Usama Khalid Nelli Kononova		2	Vorlesung	englisch

Literaturhinweise

Literatur: Vorlesungsfolien (Powerpoint) Allwood J; Cullen J.: Sustainable Materials ? With both eyes open Ashby, M. F.: Materials and the Environment ? Eco-Informed Material Choice Herrmann C.: Ganzheitliches Life Cycle Management

Modulname	Energy Efficiency in Production Engineering		
Nummer	2522930	Modulversion	
Kurzbezeichnung	MB-IWF-93	Sprache	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Maschinenbau
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortliche/r	Christoph Herrmann
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur+ (120 min) oder mündliche P	rüfung (30 min)	
Zu erbringende Studienleistung	Präsentation im Rahmen eines Teamprojektes (auf Antrag fließt das Ergebnis der Studienleistung im Rahmen von Klausur+ zu maximal 20% in die Bewertung ein)		
Zusammensetzung der Modulnote			

- Hintergründe und Methoden zur ganzheitlichen Planung, Gestaltung und Entwicklung nachhaltiger Produktionssysteme
- Begriffsdefinition und Herkunft der Nachhaltigkeit in der Produktion
- Technologien und Vorgehensweisen zur industriellen Datenerfassung
- Energetische Bewertung von Produktionsprozessen anhand verschiedenster Kennzahlen
- · Datenanalyse von Produktionsprozessen anhand von Sankey Diagrammen in Theorie und Praxis
- Analyse von Produktionsprozessen anhand einer (Energie-)Wertstromanalyse
- Analyse der verschiedenen Betrachtungsebenen von Fabriken (Produktionsprozesse, technische Gebäudeausrüstung, Gebäudehülle) und relevanter Material-, Energie- und Informationsflüsse
- Gastvorträge aus der Industrie zu relevanten Themen nachhaltiger Produktionssysteme
- Erlangen von Kenntnissen zu Energieflexibität in der Produktion
- Praxisorientierte Anwendung verschiedener Methoden zur Steigerung der Energieeffizienz in der Lernfabrik des IWF

Qualifikationsziel

Die Studierenden

- erläutern die Planung, Gestaltung und Entwicklung nachhaltigkeitsorientierter Produktionssysteme in verschiedenen Kontexten
- beurteilen verschiedene Strategien (z.B. Effizienzstrategie) und Prinzipien (z.B. Vermeidungsprinzip) einer nachhaltigen Entwicklung in definierten Anwendungsfällen im Labormaßstab
- bewerten bestehende Produktionssysteme in ökonomischer, ökologischer und sozialer Dimension
- sind in der Lage, die Ergebnisse verschiedener Effizienzstrategien an Fachfremde zu illustrieren und relevante Annahmen, Einschränkungen und Rahmenbedingungen korrekt anzuwenden
- konzipieren im Rahmen des Teamprojekts eigene Forschungsfragen, werten Versuche aus und leiten eine Ergebnispräsentation der Forschungsergebnisse ab
- organisieren sich im Teamprojekt und sammeln Erfahrungen in relevanten Softskills u.a. Teamarbeit, Kommunikations- und Präsentationsfähigkeit
- analysieren nachhaltigkeitsorientierte Produktionssystem innerhalb eines vorgegebenen Themas
- sind in der Lage, relevante Handlungsfelder und Maßnahmen für eine nachhaltige Produktion auszuwählen

Literatur

Vorlesungsskript "Energy Efficiency in Production Engineering" mit ausführlichen Quellenangaben für das Selbstudium

Herrmann, Christoph: Ganzheitliches Life Cycle Management, Berlin 2009

Dyckhoff, H. (2000): Umweltmanagement # Zehn Lektionen in umweltorientierter Unternehmensführung, Berlin: Springer-Verlag Berlin Heidelberg, 2000.

Günther, H.-O.; Tempelmeier, H. (2005): Produktion und Logistik. 6., verb. Aufl., [Hauptbd.], Berlin: Springer-Verlag Berlin Heidelberg, 2005.

Eversheim, W.; Schuh, G. (1999): Gestaltung von Produktionssystemen, VDI-Buch Nr. 3, Berlin: Springer-Verlag Berlin Heidelberg, 1999.

Hinweise

Die Veranstaltung #Energy Efficiency in Production Engineering# richtet sich insbesondere an Studierende der Fachrichtungen Maschinenbau, Wirtschaftsingenieurwesen Maschinenbau, nachhaltige Energietechnik, Technologie-orientiertes Management, Umweltingenieurwesen als auch verwandte Studiengänge.

Diese Vorlesung wird in Englisch gehalten.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Environ- mental Sustainability and Life Cycle Engineering				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Beide Veranstaltungen müssen belegt werden.

Anwesenheitspflicht

Titel der Veranstaltung

Energy Efficiency in Production Engineering

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Kurt Kilian Dickel Christoph Herrmann Marija Rosi#		2	Vorlesung	englisch

Literaturhinweise

1. Herrmann, Christoph: Ganzheitliches Life Cycle Management, Berlin 2009 2. Dyckhoff, H. (2000): Umweltmanagement ? Zehn Lektionen in umweltorientierter Unternehmensführung, Berlin: Springer-Verlag Berlin Heidelberg, 2000. 3. Günther, H.-O.; Tempelmeier, H. (2005): Produktion und Logistik. 6., verb. Aufl., [Hauptbd.], Berlin: Springer-Verlag Berlin Heidelberg, 2005. 4. Eversheim, W.; Schuh, G. (1999): Gestaltung von Produktionssystemen, VDI-Buch Nr. 3, Berlin: Springer-Verlag Berlin Heidelberg, 1999. 5. Vorlesungsskript "Energy Efficiency in Production Engineering"

Titel der Veranstaltung				
Energy Efficiency in Production E	Ingineering			
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Kurt Kilian Dickel Christoph Herrmann Marija Rosi#		1	Teamprojekt	englisch
Literaturhinweise				
Literatur wird ggf. in der Vorlesun	ng bekannt gegeben			

Modulname	Energy Efficiency in Production Engineering with Laboratory		
Nummer	2522940	Modulversion	v2
Kurzbezeichnung	MB-IWF-94	Sprache	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Maschinenbau
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 7,0	Modulverantwortliche/r	Christoph Herrmann
Arbeitsaufwand (h)	210		
Präsenzstudium (h)	56	Selbststudium (h)	154
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur+ (120 min) oder mündliche F	rüfung+ (30 min)	
Zu erbringende Studienleistung	 Studienleistungen: Präsentation und/oder schriftliche Ausarbeitung im Rahmen eines Teamprojektes (auf Antrag fließt das Ergebnis der Studienleistung im Rahmen von Klausur+ bzw. mündliche Prüfung+ zu maximal 20% in die Bewertung ein) Laborprotokoll und Präsentation der Laborleistung 		
Zusammensetzung der Modulnote			

- Hintergründe und Methoden zur ganzheitlichen Planung, Gestaltung und Entwicklung nachhaltiger Produktionssysteme
- Begriffsdefinition und Herkunft der Nachhaltigkeit in der Produktion
- Technologien und Vorgehensweisen zur industriellen Datenerfassung
- Energetische Bewertung von Produktionsprozessen anhand verschiedenster Kennzahlen
- · Datenanalyse von Produktionsprozessen anhand von Sankey Diagrammen in Theorie und Praxis
- Analyse von Produktionsprozessen anhand einer (Energie-)Wertstromanalyse
- Analyse der verschiedenen Betrachtungsebenen von Fabriken (Produktionsprozesse, technische Gebäudeausrüstung, Gebäudehülle) und relevanter Material-, Energie- und Informationsflüsse
- Gastvorträge aus der Industrie zu relevanten Themen nachhaltiger Produktionssysteme
- Erlangen von Kenntnissen zu Energieflexibität in der Produktion
- Praxisorientierte Anwendung verschiedener Methoden zur Steigerung der Energieeffizienz in der Lernfabrik des IWF
- Bewertung von Maßnahmen zur Steigerung der Energieflexibilität durch z.B. Lastprofilanalyse und Energieportfolio

Qualifikationsziel

Die Studierenden

- erläutern die Planung, Gestaltung und Entwicklung nachhaltigkeitsorientierter Produktionssysteme in verschiedenen Kontexten
- beurteilen verschiedene Strategien (z.B. Effizienzstrategie) und Prinzipien (z.B. Vermeidungsprinzip) einer nachhaltigen Entwicklung in definierten Anwendungsfällen im Labormaßstab
- bewerten bestehende Produktionssysteme in ökonomischer, ökologischer und sozialer Dimension
- sind in der Lage, die Ergebnisse verschiedener Effizienzstrategien an Fachfremde zu illustrieren und relevante Annahmen, Einschränkungen und Rahmenbedingungen korrekt anzuwenden
- konzipieren im Rahmen des Teamprojekts eigene Forschungsfragen, werten Versuche aus und leiten eine Ergebnispräsentation der Forschungsergebnisse ab
- organisieren sich im Teamprojekt und sammeln Erfahrungen in relevanten Softskills u.a. Teamarbeit, Kommunikations- und Präsentationsfähigkeit

- analysieren nachhaltigkeitsorientierte Produktionssystem innerhalb eines vorgegebenen Themas
- sind in der Lage, relevante Handlungsfelder und Maßnahmen für eine nachhaltige Produktion auszuwählen

Durch das Labor

- gewinnen die Studierenden mehr Souveränität im Umgang mit dem in der Vorlesung vorgestellten Thema der Energieflexibilität
- sind die Studierenden in der Lage Energiemessgeräte selbständig zu nutzen
- verstehen die Studierenden den Einfluss von volatile Erneuerbare Energien und Umwelteinflüsse auf die Produktion anhand einer Fallstudie in der Lernfabrik des IWF
- identifizieren die Studierenden Energieflexibilisierungspotentiale in der Produktion am Beispiel einer Analyse in der BatteryLab Factory

Literatur

Vorlesungsskript "Energy Efficiency in Production Engineering" mit ausführlichen Quellenangaben für das Selbstudium

Herrmann, Christoph: Ganzheitliches Life Cycle Management, Berlin 2009

Dyckhoff, H. (2000): Umweltmanagement # Zehn Lektionen in umweltorientierter Unternehmensführung, Berlin: Springer-Verlag Berlin Heidelberg, 2000.

Günther, H.-O.; Tempelmeier, H. (2005): Produktion und Logistik. 6., verb. Aufl., [Hauptbd.], Berlin: Springer-Verlag Berlin Heidelberg, 2005.

Eversheim, W.; Schuh, G. (1999): Gestaltung von Produktionssystemen, VDI-Buch Nr. 3, Berlin: Springer-Verlag Berlin Heidelberg, 1999.

Hinweise

Die Veranstaltung #Energy Efficiency in Production Engineering# richtet sich insbesondere an Studierende der Fachrichtungen Maschinenbau, Wirtschaftsingenieurwesen Maschinenbau, nachhaltige Energietechnik, Technologie-orientiertes Management, Umweltingenieurwesen als auch verwandte Studiengänge.

Diese Vorlesung wird in Englisch gehalten.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Environ- mental Sustainability and Life Cycle Engineering				

ZUGEHÖRIGE	LEHRVERA	NSTAI	TUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Alle Lehrveranstaltungen sind zu belegen.

Anwesenheitspflicht

Titel der Veranstaltung

Energy Efficiency in Production Engineering

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Kurt Kilian Dickel Christoph Herrmann Marija Rosi#		2	Vorlesung	englisch

Literaturhinweise

1. Herrmann, Christoph: Ganzheitliches Life Cycle Management, Berlin 2009 2. Dyckhoff, H. (2000): Umweltmanagement ? Zehn Lektionen in umweltorientierter Unternehmensführung, Berlin: Springer-Verlag Berlin Heidelberg, 2000. 3. Günther, H.-O.; Tempelmeier, H. (2005): Produktion und Logistik. 6., verb. Aufl., [Hauptbd.], Berlin: Springer-Verlag Berlin Heidelberg, 2005. 4. Eversheim, W.; Schuh, G. (1999): Gestaltung von Produktionssystemen, VDI-Buch Nr. 3, Berlin: Springer-Verlag Berlin Heidelberg, 1999. 5. Vorlesungsskript "Energy Efficiency in Production Engineering"

Titel der Veranstaltung

Energy Efficiency in Production Engineering

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Kurt Kilian Dickel Christoph Herrmann Marija Rosi#		1	Teamprojekt	englisch

Literaturhinweise

Literatur wird ggf. in der Vorlesung bekannt gegeben

Titel der Veranstaltung

Energy Efficiency in Production Engineering

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Kurt Kilian Dickel Christoph Herrmann Marija Rosi#		1	Labor	englisch

Literaturhinweise

Literatur wird ggf. in der Vorlesung bekannt gegeben

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Vertiefungsfach Küsteningenieurwesen und Seebau	
ECTS	18

Modulname	Grundlagen des Küsteningenieurwesens				
Nummer	4398090	Modulversion			
Kurzbezeichnung	BAU-STD2-6	Sprache	deutsch		
Turnus		Lehreinheit			
Moduldauer	1	Einrichtung			
SWS / ECTS	5 / 6,0	Modulverantwortliche/r	Nils Goseberg		
Arbeitsaufwand (h)					
Präsenzstudium (h)	70	Selbststudium (h)	110		
Zwingende Voraussetzungen		`			
Empfohlene Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.)				
Zu erbringende Studienleistung	Referat (20 Min.)				
Zusammensetzung der Modulnote					

- -Einführung in das Küsteningenieurwesen (soziologische und ökologische Bedeutung des Küstenraumes, Aufgaben und Zukunft des Küsteningenieurs)
- -Lineare und nichtlineare Wellentheorien, einschl. Gültigkeits- und Anwendungsbereichen; Wellentransformation im Flachwasser (Shoaling, Refraktion, Brechen) und in Wechselwirkung mit Hindernissen (Reflexion, Diffraktion) Entstehungsmechanismen des Seegangs, einschl. Verfahren zu dessen Parametrisierung und Vorhersage
- -Entstehung und Vorhersage von Gezeiten in Küstenbereich und Ästuaren, einschl. deren Sonderformen, Bedeutung und Nutzen; Entstehung und Vorhersage von Sturmflut und Bemessungswasserständen.
- -Einblick in den aktuellen Forschungsstand in vielfältigen Bereichen des Küsteningenieurwesens

Qualifikationsziel

Nach Abschluss des Moduls besitzen die Studierenden ein breites und solides Grundlagenwissen über die Mechanik der

Wasserwellen und die hydrodynamischen Prozesse im Küstenraum, das sie in die Lage versetzt, die Belastungs-, Erosions- und Transportgrößen für die benötigten konstruktiven und funktionellen Planungen von Ingenieurmaßnahmen

zu berechnen.

Die Studierenden sind in der Lage, mit der linearen und nichtlinearen Theorie der Wasserwellen die gesamten welleninduzierten Strömungsgrößen zu berechnen und die damit verbundenen Einwirkungen auf Sedimente, Bauwerke und
andere Hindernisse einzuschätzen. Durch die vermittelten Berechnungsgrundlagen zur Wellentransformation können
die Studierenden die Auswirkungen der Sohle im flachen Wasser (Shoaling, Refraktion, Wellenbrechen) sowie von
Bauwerken und anderen Hindernissen (Reflexion, Diffraktion) auf die Parameter (Höhe, Länge, Richtung) der Wellen
und deren Stabilität (Brechkriterium) am vorgegebenen Planungsort berechnen.

Anhand der erlernten Grundlagen zur Entstehung, Parametrisierung, mathematisch/statistischen Beschreibung und Vorhersage des Seegangs sind die Studierenden in der Lage, die Bemessungswellen für die funktionelle und konstruktive Planung zu bestimmen. Die Bemessungswasserstände können sie auf der Grundlage der erlangten Kenntnisse zur Entstehung und Vorhersage von Gezeiten an offenen Küsten und in Ästuaren sowie von Sturmfluten an den deutschen Nord- und Ostseeküsten festlegen.

Im Seminar werden die Studierenden in die Lage versetzt, wissenschaftlich zu recherchieren und Forschungsergebnisse

aus aktuellen Publikationen angemessen darzustellen.

Literatur

unter anderem / amongst others:

- Detailed Presentation Slides of the Lecture, Exercises, Solutions (PDF)
- Teaching Platform with educational videos, interactive diagrams, screencasts and lab videos (coastal.lwi.tu-bs.de)
- Task Library of the Institute
- EAK (2003): Empfehlungen für Küstenschutzwerke. Die Küste, Heft 65, Heide i. Holstein.
- Oumeraci, H. (2001): Küsteningenieurwesen. Kapitel 12 in: Lecher, K. et al.: Taschenbuch der Wasserwirtschaft, Berlin.
- CEM (2008): Coastal Engineering Manual. Washington, D.C: U.S. Army Corps of Engineers, Online-Ressource.
- Dean, Robert G.; Dalrymple, Robert A. (1991): Water wave mechanics for engineers and scientists. Advanced Series on Ocean Engineering, Singapore: World Scientific.
- Goda, Yoshimi (2010): Reanalysis of regular and random breaking wave statistics. Coastal Engineering Journal, vol. 52, no.1, JSCE.

Hinweise

Im dem Modul zugehörigen Seminar in Coastal Engineering mit dem Thema Data Science & Coastal Engineering wird eine Einführung in die Nutzung von Python als universelles Werkzeug zur Auswertung und Darstellung von Daten gegeben; dabei werden von den Studierenden Daten und Methoden aus der Vorlesung implementiert bzw. ausgewertet. Die erfolgreiche Bearbeitung und Abgabe von Code-Implementierungen wird als Studienleistung anerkannt.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Küsteningenieurwesen und Seebau				

••			
ZUGEHÖRIGE	I FHRVFR	ANCTAI	TINCEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Es besteht eine Anwesenheitspflicht im Vortragsseminar

Titel der Veranstaltung

Seminar in Coastal Engineering

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Benedikt Bratz		1	Seminar	englisch
Nils Goseberg				

Titel der Veranstaltung

Grundlagen des Küsteningenieurwesens

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
		4	Vorlesung/Übung	deutsch

Modulname	Dynamik und Entwurf im Küsteningenieurwesen				
Nummer	4398100	Modulversion			
Kurzbezeichnung	BAU-STD2-6	Sprache	deutsch		
Turnus		Lehreinheit			
Moduldauer	1	Einrichtung			
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Nils Goseberg		
Arbeitsaufwand (h)					
Präsenzstudium (h)	70	Selbststudium (h)	110		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.)				
Zu erbringende Studienleistung	Referat (20 Min.)				
Zusammensetzung der Modulnote					

Inhalte:

- -Sedimentologische und küstenmorphologische Grundlagen (Küstenformen und Küstenformationen, Bewegungsbeginn, Suspension und Transport von Sedimenten)
- -Küstenlängs- und Küstenquertransport durch Seegang (Bedeutung, Berechnungsverfahren, Anwendungen und Grenzen)
- -Lokale morphologische Prozesse (Prozesse der Wechselwirkung zwischen Seegang, Bauwerk und Sediment, Berechnung der Kolkbildung, der Luv-Anlandung und Lee-Erosion)
- -Wellenschutzbauwerke und Offshorebauwerke (Bauwerkstypen, Funktionsweise, Belastung, Bemessung und Konstruktion)
- -Innovative Bauwerke (Entwicklungsprozess anhand von Beispielen)
- -Wasserbauliches Versuchswesen als Planungswerkzeug
- -Einblick in den aktuellen Forschungsstand in vielfältigen Bereichen des Küsteningenieurwesens

Qualifikationsziel

Qualifikationsziele:

Nach Abschluss des Moduls können die Studierenden mithilfe der hydraulischen Grundlagen die Belastungs- und Transportgrößen für Sedimente und andere Stoffe im Küstenraum sowie die Einwirkungen auf Küstenbauwerke und weitere meerestechnische Anlagen bestimmen. Die Grundlagen des Sedimenttransportes ermöglichen den Studierenden, die natürlichen und bauwerksbedingten küstenmorphologischen Veränderungen zu berechnen. Die Bestimmung des Küstenlängs- und Küstenquertransports

macht die Vorhersage und Begründung der Änderungen des Küstenprofils und der Küstenlinie durch Sturmfluten und andere küstennahe Strömungen möglich. Das Verständnis der lokalen morphologischen Prozesse und deren qualitative Erfassung ermöglicht den Studierenden, die Wirkungen und Auswirkungen von Ingenieurmaßnahmen (Kolkbildung, Anlandung, Küstenerosion und Küstenrückgang) vorherzusagen.

Mit dem vermittelten Wissen über die Küsten- und Hochwasserschutzbauwerke, deren Funktionsweise und der Verfahren zu deren hydraulischer Belastung durch Seegang sowie deren Bemessung und Konstruktion sind die Studierenden in der Lage, sich auf die Besonderheiten der konstruktiven Aufgaben des Küsteningenieurs / der Küsteningenieurin vorzubereiten. Da diese Aufgaben nicht im Küstenbereich aufhören, lernen sie ebenfalls die Besonderheiten der Offshorebauwerke hinsichtlich der Belastungen und Konstruktion kennen. Ein Überblick über innovative Wellenschutzwerke und Offshorebauwerke sowie über deren Entwicklung ermöglicht den Studierenden, die erlangten Kennt-

nisse über die Prozesse bei der Wechselwirkung zwischen Seegang, Bauwerk und Sediment auf die Entwicklung innovativer Konstruktionen einzusetzen.

Durch die Einführung in die Grundlagen des Wasserbaulichen Versuchswesens und die praktische Anwendung anhand einiger Beispiele verfügen die Studierenden über ausreichende Kenntnisse zur Optimierung der funktionellen und konstruktiven Planung.

Im Seminar werden die Studierenden in die Lage versetzt, wissenschaftlich zu recherchieren und Forschungsergebnisseaus aktuellen Publikationen angemessen darzustellen.

Literatur

unter anderem / amongst others:

- Detailed Presentation Slides of the Lecture, Exercises, Solutions (PDF)
- Teaching Platform with educational videos, interactive diagrams, screencasts and lab videos (coastal.lwi.tu-bs.de)
- Task Library of the Institute
- EAK (2003): Empfehlungen für Küstenschutzwerke. Die Küste, Heft 65, Heide i. Holstein.
- Oumeraci, H. (2001): Küsteningenieurwesen. Kapitel 12 in: Lecher, K. et al.: Taschenbuch der Wasserwirtschaft, Berlin.
- CEM (2008): Coastal Engineering Manual. Washington, D.C: U.S. Army Corps of Engineers, Online-Ressource.
- Dean, Robert G.; Dalrymple, Robert A. (1991): Water wave mechanics for engineers and scientists. Advanced Series on Ocean Engineering, Singapore: World Scientific.
- Goda, Yoshimi (2010): Reanalysis of regular and random breaking wave statistics. Coastal Engineering Journal, vol. 52, no.1, JSCE.

Hinweise

Im Seminar in Coastal Engineering sollen die Studierenden einen Einblick in das forschungsorientierte Arbeiten bekommen und dabei Präsentationen von Veröffentlichungen ausarbeiten und diskutieren. Sowohl die Studierenden als auch die Mitarbeitenden geben während der Diskussion Hinweise, auf welche Weise die Studierenden ihre Fähigkeiten wissenschaftlich zu recherchieren sowie ihre Präsentationskompetenzen weiter verbessern können. Im Rahmen des Seminars in Coastal Engineering besteht somit eine Anwesenheitspflicht, da die Qualifikationsziele für alle Studierenden nur erreicht werden können, wenn die Studierenden aktiv an der Präsentations- und Diskussionsphase teilnehmen. Das Vortragsseminar wird auf Englisch abgehalten.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Küsteningenieurwesen und Seebau			

••			
THE PHODICE	I EHDVED A	NICTAI	TINCEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Anwesenheitspflicht im Vortragsseminar.

Titel der Veranstaltung

Seminar in Coastal Engineering

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Benedikt Bratz Nils Goseberg		1	Seminar	englisch

Titel der Veranstaltung				
Dynamik und Entwurf im Küsteningenieurwesen				
Dozent/in Mitwirkende SWS Art LVA Sprache				Sprache
Benedikt Bratz Nils Goseberg		4	Vorlesung/Übung	deutsch

Modulname	Spezialthemen des Küsteningenieurwe	Spezialthemen des Küsteningenieurwesens 1		
Nummer	4398110	Modulversion		
Kurzbezeichnung	BAU-STD2-6	Sprache	englisch deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Nils Goseberg	
Arbeitsaufwand (h)	180			
Präsenzstudium (h)	84	Selbststudium (h)	96	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	mdl. Prüfung (ca. 60 Min.) oder 2 md	l. Prüfungen (á 30 Min.)		
Zu erbringende Studienleistung	Experimentelle Arbeit			
Zusammensetzung der Modulnote				

[Praktikum im Küsteningenieurwesen (P)]

Einführung in die Mess- und Versuchstechnik im Küstenwasserbau, Planung und Durchführung von Modellversuchen (Standardversuche und aktuelle Projekte), Erfassung und Analyse von Messdaten, Auswertung der Modellversuche

[Ökohydraulische Prozesse vom Feld ins Labor (P)]

Ökosysteme und ökohydraulische Prozesse an Küsten, Stufen des Forschungszyklus mit einzelnen Arbeitsschritten, Grundlagen der Literaturrecherche, Entwicklung von Forschungsfragen, Einführung in die Mess- und Versuchstechnik für ökohydraulische Feldmessungen im Küstenwasserbau, Grundlagen der Feldstudienplanung, Planung und Durchführung einer Feldstudie, Erfassung und Analyse von Messdaten, Auswertung und Evaluation einer Feldstudie, wissenschaftliche Ausarbeitung und Präsentation von Forschungsergebnissen, Peer-Review wissenschaftlicher Ausarbeitungen, Skalengesetze, Einführung in die Mess- und Versuchstechnik für ökohydraulische Labormessungen im Küstenwasserbau, Grundlagen der Laborstudienplanung, Planung von Laborversuchen durch Übertragung Feldbeobachtungen.

[Hafenplanung und Seeverkehrswasserbau (B)]

Merkmale, Aufgaben und Bedeutung der Seeschifffahrtsstraßen, Tidedynamik, wasserbauliche Systemanalyse, Strombaumaßnahmen und -konzepte für Ästuarien, Unterhaltung von Seeschifffahrtsstraßen sowie Wechselwirkungen Seeschiff - Seeschifffahrtsstraße Planung, Verwaltung und Betrieb von Seehäfen, Probleme und Zukunftsperspektiveneines Hafenstandortes, Dimensionierung eines Containerterminals

[Küstenkunde und Küstenschutz Nord- und Ostsee (B)]

Historische Entwicklung des Küstenschutzes, Besonderheiten des Küstenschutzes im Nordsee- und Ostseeraum, Strategien und behördliche Organisation des Küstenschutzes, aktuelle Projekte des Insel- und Küstenschutzes.

[Spektralanalyse nichtlinearer Wellen im Küstenbereich (VÜ)]

Lineare und nichtlineare Wellentheorien, cnoidale Wellen und theta-Funktionen, Grundlagen von Fourier- und Hilbert- Huang-Transformation, Grundlagen und Algorithmen der direkten und inversen nichtlinearen Fourier-Transformation, Vorund Nachteile der verschiedenen Analysemethoden, Anwendung der Methoden auf verschiedene Beispiele von Oberflächenwellen und verschiedene Problemstellungen aus dem Küsteningenieurwesen, Interpretation der ausgegebenen Spektren, Vergleichsanalysen, Diskussion und Bewertung der Ergebnisse

[Tsunami engineering (V)]

Tsunamigefahr und Risiko, Tsunamiphänomene (Definition, wichtigste Tsunamieigenschaften im Vergleich zu den windinduzierten Wellen, Tsunamiklassifizierung, Intensitätsskalen), Tsunamientstehungsmechanismen, Tsunamiausbreitung und -überflutung (Tsunamieigenschaften im Tief- und Flachwasser, Erscheinungsformen an der Küste, Tsunamiauflauf), Tsunamiauswirkung an der Küste (tsunamigenerierte Kräfte, Auswirkung auf Gebäude, Umwelt und Gesellschaft), historische Tsunamiereignisse, Tsunamiküstenschutzmaßnahmen (strukturelle, nichtstrukturelle Schutzmaßnahmen, Hybrid-Schutzsysteme), Katastrophenschutz und Landnutzungsplanung, Visionen der tsunamiresilienten Städte, Tsunamigenerierung im Labor, numerische Modellierung von Tsunamis, Tsunamiforschung am LWI

[Numerische Modellierung von Küstenprozessen (VÜ)]

Überblick über aktuelle Modellmethoden (SPH, Reef3D, Delft3D, Mike, Telemac, SMS, Untrim) deren Einsatzgebiete, Grenzen und aktuelle Entwicklungen. Grundlagen der numerischen Modellierung, Numerische Modellierung von Seegang, Wellenaktionsgleichung, Mild-Slope-Gleichung, phasengemittelte und phasenauflösende Wellenmodellierung, Gezeitenströmung, Transportprozesse von Sedimenten und Salz, Modellierung von Erosionsprozessen und des Versagens von Küstenbarrieren durch Sturmfluten, Anwendungen von quelloffenen und international anerkannten numerischen Modellen zur Modellierung mit z.B. Delft3D, SWAN und XBeach.

Qualifikationsziel

Nach Abschluss des Moduls verfügen die Studierenden über das Wissen, wie die Lehrinhalte aus den Modulen Grundlagen des Küsteningenieurwesens und Dynamik und Entwurf im Küsteningenieurwesen in der Praxis umgesetzt werden und sind in der Lage, die Planung, Durchführung und Auswertung von hydraulischen Modellversuchen als Werkzeug für Planungsaufgaben durchzuführen. Sie können aufgrund des selbst durchgeführten Praktikums sachgerechte Lösungen entwickeln, diese angemessen vorschlagen und die Ergebnisse aufgrund der Kenntnisse über die hydrodynamischen und morphologischen Prozesse im Küstenraum fachgerecht auswerten und beurteilen.

Die Studierenden kennen die Grundsätze für den Bau und den Betrieb von Häfen, Hafenanlagen und Seeverkehrswasserstraßen. Aufgrund der Exkursionen in den unterschiedlichen Bereichen verfügen die Studierenden über das Wissen, wie komplexe Problemstellungen in der Praxis optimal gelöst werden. Die Studierenden kennen die Gemeinsamkeiten und Besonderheiten des Küsten- und Hochwasserschutzes an den deutschen Nord- und Ostseeküsten. Aufgrund der Exkursionen in den unterschiedlichen Bereichen verfügen die Studierenden über das Wissen, wie komplexe Problemstellungen in der Praxis optimal gelöst werden.

Die Studierenden kennen weiterführende Grundlagen sowie praktische Beispiele zu Theorie und Anwendung neuer nichtlinearer Analyseverfahren von Wellen im Küstenbereich und können erhaltene Analyseergebnisse interpretieren. Die Studierenden kennen die der FSBW zugrundeliegenden physikalischen Prozesse. Sie kennen die wesentlichen Ansätze der numerischen Modellierung dieser Prozesse sowie der Kopplung verschiedener Modelle. Die Studierenden können verschiedene Open-Source-Tools zur FSBW-Modellierung anwenden.

Die Studierenden kennen die Besonderheiten von Tsunamis in den Phasen von der Tsunamientstehung bis hin zur Überflutung der Küste. Sie können Tsunamigefahren und -risiken definieren sowie die verursachten Schäden und Versagensmechanismen von Bauwerken auf Grundlage der ausgeübten Kräfte klassifizieren. Auf Grundlage von Beispielen der umgesetzten Schutzstrategien in tsunamigefährdeten Ländern verfügen sie über das Wissen über die verfügbaren Schutzmaßnahmen und deren Vor- und Nachteile. Die Studierenden kennen die Labormethoden und numerischen Werkzeuge zur Simulation von Tsunamis.

Literatur

unter anderem/amongst others:

- Skripte und Vortragspräsentationen zu den einzelnen Lehrveranstaltungen
- NLWKN (2010): Generalplan Küstenschutz Niedersachsen Ostfriesische Inseln-. Niedersächsisches Landesamt für Wasserwirtschaft, Küsten- und Naturschutz, Norden.
- LU (2009): Regelwerk Küstenschutz Mecklenburg-Vorpommern. Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz, Rostock.
- EAU (2012): Empfehlungen des Arbeitsausschusses Ufereinfassungen, Häfen und Wasserstraßen. Hafenbautechnische Gesellschaft, Deutsche Gesellschaft für Erd- und Grundbau,11. Auflage, Berlin.
- EAK (2002): Empfehlungen für Küstenschutzwerke. Die Küste, Heft 65, Heide i. Holstein.
- Kuratorium für Forschung im Küsteningenieurwesen (2008): Archiv für Forschung und Technik an der Nord- und Ostsee. Die Küste, Heft 74, Heide i. Holstein.
- Kahlfeld, A., Schüttrumpf, H. (2006): Auswirkungen des JadeWeserPorts auf die Tide- und Morphodynamik der Jade, PIANC Kongress, Estoril
- Kondziella, B., Uliczka, K. (2006): Dynamisches Fahrverhalten sehr großer Containerschiffe unter extremen Flachwasserbedingungen, PIANC Kongress, Estoril
- Brühl, M. (2014): Direct and inverse nonlinear Fourier transform based on the Korteweg-deVries equation (KdV-NLFT) A spectral analysis of nonlinear surface waves in shallow water. Dissertation.

- Dean, R.G.; Dalrymple, R.A. (1991): Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering Volume 2, Singapore: World Scientific, 353 pp.
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. (1998): The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. London: Proceedings of the Royal Society of London A, vol. 454, pp. 903-995.
- Osborne, A. (2010): Nonlinear ocean waves and the inverse scattering transform. Amsterdam: Elsevier, 977 pp.
- -Bernard, E.N., Robinson, A.R. (2009): Tsunamis. The sea, Vol. 15. Harvard Univ. Press.
- -Camfield, F. (1980): Tsunami engineering. Fort Belvoir.
- -Santiago-Fadiño, V., Kontar, Y.A., Kaneda, Y. (2015): Post-tsunami hazard. Reconstruction and restoration. Advances in Natural and Technological Hazards Research.
- -Holthuijsen, L.H. (2010): Waves in Oceanic and Coastal Waters. Cambridge University Press; 1 edition, 404 pp.
- -Roelvink, D., and Reniers, A. (2012). A guide to modelling coastal morphology. World Scientific, 292pp.

Hinweise

Im vorliegenden Modul "Spezialthemen des Küsteningenieurwesens 1" wird ein Praktikum zum wasserbaulichen Versuchswesen angeboten. Die Studierenden führen selbständig unter Anleitung von Tutor*innen Versuche durch, werten die Daten aus und fertigen eine schriftliche Ausarbeitung darüber an, die als Studienleistung gewertet wird. Auf eine darüber hinausgehende mündliche Prüfung zum Praktikum wird verzichtet.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Küsteningenieurwesen und Seebau			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Die Belegung des Praktikum im Küsteningenieurwesen (Studienleistung) ist Pflicht. Aus den anderen sechs Veranstaltungen sind zusätzlich entweder Ökohydraulische Prozesse vom Feld ins Labor oder zwei der anderen Veranstaltungen auszuwählen und zu belegen.

Anwesenheitspflicht

Titel der Veranstaltung

Praktikum im Küsteningenieurwesen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Benedikt Bratz Nils Goseberg		2	Praktikum	deutsch

Titel der Veranstaltung

Hafenplanung und Seeverkehrswasserbau

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
N.N. Dozent-Bauingenieurwesen		2	Blockveranstaltung	deutsch

Titel der Veranstaltung				
Küstenkunde und Küstenschutz N	ordsee und Ostsee			
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Benedikt Bratz Nils Goseberg		3	Blockveranstaltung	deutsch
Titel der Veranstaltung				
Spektralanalyse nichtlinearer Wel	len im Küstenbereich			
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Markus Brühl		2	Vorlesung/Übung	deutsch
Titel der Veranstaltung				
Tsunami Engineering				
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Nils Goseberg		2	Vorlesung	englisch
Titel der Veranstaltung				
Numerical Modelling of Coastal F	rocesses			
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Saber Mohamed Elsayed Abdelaal Oliver Lojek		2	Vorlesung/Übung	englisch
Titel der Veranstaltung				
Ökohydraulische Prozesse vom Fe	eld ins Labor			
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Benedikt Bratz Nils Goseberg Oliver Lojek		4	Praktikum	deutsch

Modulname	Spezialthemen des Küsteningenieurwe	Spezialthemen des Küsteningenieurwesens 2		
Nummer	4398120	Modulversion		
Kurzbezeichnung	BAU-STD2-6	Sprache	englisch deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Nils Goseberg	
Arbeitsaufwand (h)				
Präsenzstudium (h)	84	Selbststudium (h)	96	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Mdl. Prüfung (ca. 60 Min.) oder 2 md	l. Prüfung (ca. 30 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Hafenplanung und Seeverkehrswasserbau (B)]

Merkmale, Aufgaben und Bedeutung der Seeschifffahrtsstraßen, Tidedynamik, wasserbauliche Systemanalyse, Strombaumaßnahmen und -konzepte für Ästuarien, Unterhaltung von Seeschifffahrtsstraßen sowie Wechselwirkungen Seeschifff - Seeschifffahrtsstraße Planung, Verwaltung und Betrieb von Seehäfen, Probleme und Zukunftsperspektiveneines Hafenstandortes, Dimensionierung eines Containerterminals

[Küstenkunde und Küstenschutz Nord- und Ostsee (B)]

Historische Entwicklung des Küstenschutzes, Besonderheiten des Küstenschutzes im Nordsee- und Ostseeraum, Strategien und behördliche Organisation des Küstenschutzes, aktuelle Projekte des Insel- und Küstenschutzes. [Spektralanalyse nichtlinearer Wellen im Küstenbereich (VÜ)]

Lineare und nichtlineare Wellentheorien, cnoidale Wellen und theta-Funktionen, Grundlagen von Fourier- und Hilbert- Huang-Transformation, Grundlagen und Algorithmen der direkten und inversen nichtlinearen Fourier-Transformation, Vorund Nachteile der verschiedenen Analysemethoden, Anwendung der Methoden auf verschiedene Beispiele von Oberflächenwellen und verschiedene Problemstellungen aus dem Küsteningenieurwesen, Interpretation der ausgegebenen Spektren, Vergleichsanalysen, Diskussion und Bewertung der Ergebnisse.

[Tsunami engineering (V)]

Tsunamigefahr und Risiko, Tsunamiphänomene (Definition, wichtigste Tsunamieigenschaften im Vergleich zu den windinduzierten Wellen, Tsunamiklassifizierung, Intensitätsskalen), Tsunamientstehungsmechanismen, Tsunamiausbreitung und -überflutung (Tsunamieigenschaften im Tief- und Flachwasser, Erscheinungsformen an der Küste, Tsunamiauflauf), Tsunamiauswirkung an der Küste (tsunamigenerierte Kräfte, Auswirkung auf Gebäude, Umwelt und Gesellschaft), historische Tsunamiereignisse, Tsunamiküstenschutzmaßnahmen (strukturelle, nichtstrukturelle Schutzmaßnahmen, Hybrid-Schutzsysteme), Katastrophenschutz und Landnutzungsplanung, Visionen der tsunamiresilienten Städte, Tsunamigenerierung im Labor, numerische Modellierung von Tsunamis, Tsunamiforschung am LWI

[Numerische Modellierung von Küstenprozessen (VÜ)]

Überblick über aktuelle Modellmethoden (SPH, Reef3D, Delft3D, Mike, Telemac, SMS, Untrim) deren Einsatzgebiete, Grenzen und aktuelle Entwicklungen. Grundlagen der numerischen Modellierung, Numerische Modellierung von Seegang, Wellenaktionsgleichung, Mild-Slope-Gleichung, phasengemittelte und phasenauflösende Wellenmodellierung, Gezeitenströmung, Transportprozesse von Sedimenten und Salz, Modellierung von Erosionsprozessen und

des Versagens von Küstenbarrieren durch Sturmfluten, Anwendungen von quelloffenen und international anerkannten numerischen Modellen zur Modellierung mit z.B. Delft3D, SWAN und XBeach.

Qualifikationsziel

Die Studierenden kennen die Grundsätze für den Bau und den Betrieb von Häfen, Hafenanlagen und Seeverkehrswasserstraßen. Aufgrund der Exkursionen in den unterschiedlichen Bereichen verfügen die Studierenden über das Wissen, wie komplexe Problemstellungen in der Praxis optimal gelöst werden.

Die Studierenden kennen die Gemeinsamkeiten und Besonderheiten des Küsten- und Hochwasserschutzes an den deutschen Nord- und Ostseeküsten. Aufgrund der Exkursionen in den unterschiedlichen Bereichen verfügen die Studierenden über das Wissen, wie komplexe Problemstellungen in der Praxis optimal gelöst werden. Die Studierenden kennen weiterführende Grundlagen sowie praktische Beispiele zu Theorie und Anwendung neuer nichtlinearer Analyseverfahren von Wellen im Küstenbereich und können erhaltene Analyseergebnisse interpretieren. Die Studierenden kennen die der FSBW zugrundeliegenden physikalischen Prozesse. Sie kennen die wesentlichen Ansätze der numerischen Modellierung dieser Prozesse sowie der Kopplung verschiedener Modelle. Die Studierenden können verschiedene Open-Source-Tools zur FSBW-Modellierung anwenden. Die Studierenden kennen die Besonderheiten von Tsunamis in den Phasen von der Tsunamientstehung bis hin zur Überflutung der Küste. Sie können Tsunamigefahren und risiken definieren sowie die verursachten Schäden und Versagensmechanismen von Bauwerken auf Grundlage der ausgeübten Kräfte klassifizieren. Auf Grundlage von Beispielen der umgesetzten Schutzstrategien in tsunamigefährdeten Ländern verfügen sie über das Wissen über die verfügbaren Schutzmaßnahmen und deren Vor- und Nachteile. Die Studierenden kennen die Labormethoden und numerischen Werkzeuge zur Simulation von Tsunamis.

Literatur

unter anderem/amongst others:

- Skripte und Vortragspräsentationen zu den einzelnen Lehrveranstaltungen
- NLWKN (2010): Generalplan Küstenschutz Niedersachsen Ostfriesische Inseln-. Niedersächsisches Landesamt für Wasserwirtschaft, Küsten- und Naturschutz, Norden.
- LU (2009): Regelwerk Küstenschutz Mecklenburg-Vorpommern. Ministerium für Landwirtschaft, Umwelt und Verbraucherschutz, Rostock.
- EAU (2012): Empfehlungen des Arbeitsausschusses Ufereinfassungen, Häfen und Wasserstraßen. Hafenbautechnische Gesellschaft, Deutsche Gesellschaft für Erd- und Grundbau,11. Auflage, Berlin.
- EAK (2002): Empfehlungen für Küstenschutzwerke. Die Küste, Heft 65, Heide i. Holstein.
- Kuratorium für Forschung im Küsteningenieurwesen (2008): Archiv für Forschung und Technik an der Nord- und Ostsee. Die Küste, Heft 74, Heide i. Holstein.
- Kahlfeld, A., Schüttrumpf, H. (2006): Auswirkungen des JadeWeserPorts auf die Tide- und Morphodynamik der Jade, PIANC Kongress, Estoril
- Kondziella, B., Uliczka, K. (2006): Dynamisches Fahrverhalten sehr großer Containerschiffe unter extremen Flachwasserbedingungen, PIANC Kongress, Estoril
- Brühl, M. (2014): Direct and inverse nonlinear Fourier transform based on the Korteweg-deVries equation (KdV-NLFT) A spectral analysis of nonlinear surface waves in shallow water. Dissertation.
- Dean, R.G.; Dalrymple, R.A. (1991): Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering Volume 2, Singapore: World Scientific, 353 pp.
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. (1998): The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. London: Proceedings of the Royal Society of London A, vol. 454, pp. 903-995.
- Osborne, A. (2010): Nonlinear ocean waves and the inverse scattering transform. Amsterdam: Elsevier, 977 pp.
- -Bernard, E.N., Robinson, A.R. (2009): Tsunamis. The sea, Vol. 15. Harvard Univ. Press.
- -Camfield, F. (1980): Tsunami engineering. Fort Belvoir.
- -Santiago-Fadiño, V., Kontar, Y.A., Kaneda, Y. (2015): Post-tsunami hazard. Reconstruction and restoration. Advances in Natural and Technological Hazards Research.
- -Holthuijsen, L.H. (2010): Waves in Oceanic and Coastal Waters. Cambridge University Press; 1 edition, 404 pp.
- -Roelvink, D., and Reniers, A. (2012). A guide to modelling coastal morphology. World Scientific, 292pp.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Küsteningenieurwesen und Seebau			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Aus den angebotenen Veranstaltungen des Moduls sind entweder Ökohydraulische Prozesse vom Feld ins Labor plus eine der anderen Veranstaltungen oder drei der Veranstaltungen zu belegen. Ferner dürfen aus den Veranstaltungen nur jene belegt werden, die im Pflichtmodul "Spezialthemen des Küsteningenieurwesens 1" noch nicht belegt wurden.

Anwesenheitspflicht

Titel	der	Veranstaltung
-------	-----	---------------

Hafenplanung und Seeverkehrswasserbau

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
N.N. Dozent-Bauingenieurwesen		2	Blockveranstaltung	deutsch

Titel der Veranstaltung

Küstenkunde und Küstenschutz Nordsee und Ostsee

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Benedikt Bratz Nils Goseberg		3	Blockveranstaltung	deutsch

Titel der Veranstaltung

Spektralanalyse nichtlinearer Wellen im Küstenbereich

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Markus Brühl		2	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Tsunami Engineering

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Nils Goseberg		2	Vorlesung	englisch

Titel der Veranstaltung

Numerical Modelling of Coastal Processes

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Saber Mohamed Elsayed Abdelaal		2	Vorlesung/Übung	englisch
Oliver Lojek				

Titel der Veranstaltung

Ökohydraulische Prozesse vom Feld ins Labor

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Benedikt Bratz Nils Goseberg Oliver Lojek		4	Praktikum	deutsch

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Vertiefungsfach ÖPNV	
ECTS	18

Modulname	ÖPNV - Planung von Infrastruktur			
Nummer	4306410	Modulversion		
Kurzbezeichnung	inaktiv	Sprache	deutsch	
Turnus		Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften	
Moduldauer		Einrichtung		
SWS / ECTS	0 / 6,0	Modulverantwortliche/r		
Arbeitsaufwand (h)	180			
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 min) oder mdl. Prüfung (30 min)			
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

- Definition spurgeführter Systeme im Stadtverkehr
- Entwicklung von Stadtbahnsystemen
- Planungsansätze/ Zuständigkeiten
- Rechtliche Grundlagen
- Finanzierung
- Planfeststellung und Projektablauf
- Systementwurf
- Planungsgrundlagen für die Trassierung und die Strecken
- Bau und Instandhaltung von Infrastruktur
- Haltestellen
- Energieversorgung (streckenseitig)
- Aktuelles in Deutschland und weltweit
- Überblick über Sicherungssysteme für Bahnen im Stadtverkehr
- Zugfolgesicherung
- Fahrwegsicherung
- Zugbeeinflussung und fahrerloser Betrieb
- Fahrwegsicherung in Bereichen mit Teilnahme am Straßenverkehr

Qualifikationsziel

Die Studierenden sind in der Lage, Infrastrukturanlagen für den ÖPNV (Schiene und Straße) in Deutschland nach den einschlägigen Verfahren und Regeln für einen spezifischen Einsatzfall zu planen und den Bau zu begleiten. Die Kenntnisse dieser Grundlagen sind für einen ökonomischen und ökologischen Betrieb notwendig. Als Mitarbeiter eines Nahverkehrbetreibers oder eines Planungsbüros für einen geplanten Einsatzfall können sie geeignete Sicherungssysteme auswählen und betrieblich dimensionieren. Sie sind befähigt, unter Anleitung erfahrener Planungsingenieure bei der sicherungstechnischen Ausrüstungsplanung mitzuarbeiten.

Literatur

- -Reinhardt: Öffentlicher Personennahverkehr
- -Pachl: Systemtechnik des Schienenverkehrs

-Naumann: Leit- und Sicherungstechnik im Bahnbetrieb

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Sem. Auswahl	ECTS			
Master Umweltingenieurwesen PO 3	Vertiefungsfach ÖPNV				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung

ÖPNV - Planung von Infrastruktur

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Bastian Ehrenholz		4	Vorlesung/Übung	deutsch
Jan Peter Ludwig Heemsoth				
Jörn Pachl				
Thomas Bernhard Siefer				
Nina Sievers				

Modulname	ÖPNV - Betrieb und Fahrzeuge			
Nummer	4398050	Modulversion		
Kurzbezeichnung	BAU-STD5-0	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung	Institut für Verkehrswesen, Eisenbahnbau und -betrieb	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Thomas Bernhard Siefer	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) oder mdl. Prüfung (ca. 30 Min.)			
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

 $[\ddot{O}PNV$ - Betrieb und Fahrzeuge $(V\ddot{U})]$

Einführung

- -Nachfrage
- -Verkehrsverbünde und Verkehrsgemeinschaften

Betrieb

- -Betriebsplanung
- -Betriebsleitung
- -Betriebsüberwachung
- -Organisation, Management, Personal, (+Telematik)

Fahrzeuge

- -Bau und Instandhaltung von Fahrzeugen
- -Energieversorgung; Alternative Antriebe
- -Betriebssicherung und -automatisierung
- -Umlauf und Fahrzeugdisposition/-einsatz

Vertrieb

- -Tarifierung
- -Arten von Fahrkartenverkauf
- -Kostenloser ÖPNV

Qualitätsmanagement / Anschlussplanung

- -Vergabe von Bus- und Schienenleistungen
- -Kontrolle

Neue Systeme, Multimodalität, Mobilitätsentwicklung

Qualifikationsziel

Die Studierenden erhalten Kenntnisse über die Betriebsabwicklung des ÖPNV, mit den Schwerpunkten der Einsatzplanung von Personal und Fahrzeugen. Im Bereich Fahrzeuge wird gezeigt, wie bedarfsgerecht Fahrzeuge beschafft und eingesetzt werden. Die Studierenden sind in der Lage, die Besonderheiten unterschiedlicher

Fahrzeugkonzepte (z. B. Hoch- und Niederflur) in Abhängigkeit von Einsatzgebieten zu bewerten. Des Weiteren erwerben die Studierenden grundlegende Kenntnisse über Konstruktion, Instandhaltung und Antriebstechniken von Fahrzeugen. Die Grundlagen der Energieversorgung werden vermittelt. Im Bereich Betrieb werden die Studierenden in die Lage versetzt, durchgängige Transportketten im städtischen Verkehr sicherzustellen.

Literatur

Reinhardt: Öffentlicher Personennahverkehr

Zugeordnet zu folgenden Studiengängen							
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS			
Master Umweltingenieurwesen PO 3	Vertiefungsfach ÖPNV						

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Bitte beachten Sie, dass dieses Modul im Bachelor- und Masterstudiengang Verkehrsingenieurwesen angeboten wird und nicht doppelt belegt werden kann.

Anwesenheitspflicht

Titel	der	Veranstaltur	ıg
-------	-----	--------------	----

ÖPNV - Betrieb und Fahrzeuge

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Bastian Ehrenholz Bernd Engel Thomas Bernhard Siefer Frank Soyck		4	Vorlesung/Übung	deutsch

Modulname	ÖPNV - Angebotsplanung	7	
Nummer	4306400	Modulversion	
Kurzbezeichnung	BAU-STD3-4	Sprache	deutsch
Turnus		Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion Bereich Pflichtform Sem. Auswahl ECTS					
Master Umweltingenieurwesen PO 3	Vertiefungsfach ÖPNV				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

Titel der Veranstaltung						
ÖPNV - Angebotsplanung	ÖPNV - Angebotsplanung					
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		
Bastian Ehrenholz Bernhard Friedrich Klaus Geschwinder Stephan Hoffmann Christian Priemer Thomas Bernhard Siefer Nina Sievers		4	Vorlesung/Übung	deutsch		

Modulname	Verkehrsplanung			
Nummer	4318020	Modulversion		
Kurzbezeichnung	BAU-STD2-7	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung	Institut für Verkehr und Stadtbauwesen	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Bernhard Friedrich	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur+ (90 Min.) oder mdl. Prüfung (ca. 30 Min.) Der Antrag auf eine Klausur+ ist durch die oder den Studierenden bei Prüfungsbeginn zu stellen. Nähere Informationen zu Abgabefristen der Hausarbeit erhalten Sie in den Lehrveranstaltungen des Moduls.			
Zu erbringende Studienleistung	Es kann im Vorfeld eine Hausarbeit a mit 12,5 % eingeht.	ngefertigt werden, die in die	Abschlussnote des Moduls	
Zusammensetzung der Modulnote				

[Verkehrsplanung (VÜ)]

- Einführung in die Verkehrsplanung
- Planungsmethodik
- Verhaltensbezogene Verkehrserhebungen
- Planung von Verkehrsnetzen
- Maßnahmenplanung im ÖPNV (externer Lehrbeauftragter aus der Praxis)
- Entscheidungsmodelle
- Verkehrsmodelle (Verkehrserzeugung, Verkehrsverteilung, Verkehrsaufteilung, Verkehrsumlegung)
- Wirkungsmodelle und Bewertungsverfahren
- Verkehrssicherheit

Qualifikationsziel

Die Studierenden erlangen einen Überblick über die Kennwerte der Mobilität, die daraus ableitbare sozioökonomische Bedeutung des Verkehrswesens und die dadurch begründete gesetzliche Verankerung der Raum- und Verkehrsplanung. Ausgehend von dem hiermit vermittelten Problem- und Aufgabenverständnis der Verkehrsplanung werden die Planungsmethodik sowie die Instrumente der Verkehrsnetzplanung im ÖPNV und Individualverkehr eingeführt. In diesem Zusammenhang lernen die Studierenden die Maßgaben des für Deutschland in der Verkehrsplanung geltenden Regelwerks kennen und können diese für Pla-nungsaufgaben anwenden. Durch die vertiefte Auseinandersetzung mit der Theorie und Praxis der Verkehrsnachfragemodellierung werden die Studierenden in die Lage versetzt, Maßnahmenuntersuchungen durchzuführen sowie Planungsalternativen quantitativ bewerten zu können. Sie werden damit qualifiziert, belastbare Empfehlungen für die Entwicklung der Verkehrsinfrastruktur leisten zu können.

Literatur

vgl. Vorlesung

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach ÖPNV				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Verkehr und Infrastruktur				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN						
Belegungslogik bei der Wahl von Lehrveranstaltungen						
Anwesenheitspflicht	Anwesenheitspflicht					
	_					
Titel der Veranstaltung						
Verkehrsplanung						
Dozent/in Mitwirkende SWS Art LVA Sprache						
Bernhard Friedrich		4	Vorlesung/Übung	deutsch		

Modulname	ÖPNV - Planung von Infrastruktur		
Nummer	4398060	Modulversion	
Kurzbezeichnung	BAU-STD5-0	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	Institut für Verkehrswesen, Eisenbahnbau und -betrieb
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Thomas Bernhard Siefer
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) mdl. Prüfung (ca. 3	80 Min.)	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[ÖPNV - Planung von Infrastruktur (VÜ)]

- Definition spurgeführter Systeme im Stadtverkehr
- Entwicklung von Stadtbahnsystemen
- Planungsansätze/ Zuständigkeiten
- Rechtliche Grundlagen
- Finanzierung
- Planfeststellung und Projektablauf
- Systementwurf
- Planungsgrundlagen für die Trassierung und die Strecken
- Bau und Instandhaltung von Infrastruktur
- Haltestellen
- Energieversorgung (streckenseitig)
- Aktuelles in Deutschland und weltweit
- Überblick über Sicherungssysteme für Bahnen im Stadtverkehr
- Zugfolgesicherung
- Fahrwegsicherung
- Zugbeeinflussung und fahrerloser Betrieb
- Fahrwegsicherung in Bereichen mit Teilnahme am Straßenverkehr

Qualifikationsziel

Die Studierenden sind in der Lage, Infrastrukturanlagen für den ÖPNV (Schiene und Straße) in Deutschland nach den einschlägigen Verfahren und Regeln für einen spezifischen Einsatzfall zu planen und den Bau zu begleiten. Die Kenntnisse dieser Grundlagen sind für einen ökonomischen und ökologischen Betrieb notwendig. Als Mitarbeiter eines Nahverkehrbetreibers oder eines Planungsbüros für einen geplanten Einsatzfall können sie geeignete Sicherungssysteme auswählen und betrieblich dimensionieren. Sie sind befähigt, unter Anleitung erfahrener Planungsingenieure bei der sicherungstechnischen Ausrüstungsplanung mitzuarbeiten.

Literatur

-Reinhardt: Öffentlicher Personennahverkehr

-Pachl: Systemtechnik des Schienenverkehrs

-Naumann: Leit- und Sicherungstechnik im Bahnbetrieb

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion Bereich Pflichtform Sem. Auswahl ECTS					
Master Umweltingenieurwesen PO 3	Vertiefungsfach ÖPNV				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				

Titel der Veranstaltung					
ÖPNV - Planung von Infrastruktur					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Bastian Ehrenholz		4	Vorlesung/Übung	deutsch	
Jan Peter Ludwig Heemsoth					
Jörn Pachl					
Thomas Bernhard Siefer					
Nina Sievers					

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Vertiefungsfach Umweltmonitoring	
ECTS	18

Modulname	Geoinformation		
Nummer	4310700	Modulversion	
Kurzbezeichnung	BAU-STD3-65	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	Institut für Geodäsie und Photogrammetrie
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Markus Gerke
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Portfolio		
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[3D-Stadtmodelle und BIM (V)]

- Datenmodellierung mit UML, XML Schema
- Standards und Anwendungen der 3D-Stadmodellierung
- Standards und Anwendung des Building Information Modellings

[Verteilte Geoinformation 1 (VÜ)]

- Allgemeine Webtechnologien
- Frameworks der WebGIS-Technologie
- Einbindung von verteilten Geodaten über WFS und OSM
- Veröffentlichung eigene Geodaten

Qualifikationsziel

In diesem Modul werden theoretische Grundkenntnisse der Modellierung, Standardisierung und Anwendung von 3DStadtmodellen und den geometrischen Komponenten des Building Information Modelings vermittelt, sowie die Technologien, die für verteilte Geoinformationen, deren Visualisierung und Analyse nötig sind. Qualifikationsziele sind Kenntnis und Verständnis über Technologien und Standards zur Modellierung von 3D-Stadtmodellen und BIM, wie auch die Kenntnis und der praktische Umgang mit webbasierten, clientseitigen Technologien zur Visualisierung und Analyse von Geodaten in 2D und 3D. Zusätzlich werden Kenntnisse über Geodatenbanken erlangt.

Literatur

Literatur wird in den Vorlesungen bekannt gegeben.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- monitoring			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Die Bereitschaft für das Erlernen und die Anwendung von Programmiertechniken wird vorausgesetzt.

Anwesenheitspflicht

Titel	der	Veransta	ltung

Verteilte Geoinformation 1

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Cosima Berger Markus Gerke		2	Vorlesung/Übung	deutsch

Titel der Veranstaltung

3D-Stadtmodelle und Austauschformate

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Cosima Berger Marc-Oliver Löwner		2	Vorlesung	deutsch

Modulname	Monitoring		
Nummer	4310680	Modulversion	
Kurzbezeichnung	BAU-STD3-65	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	Institut für Geodäsie und Photogrammetrie
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Markus Gerke
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Portfolio		
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Fernerkundung 1 (V/Ü)]

- -Satelliten der multispektralen und Radar-Fernerkundung
- -Klassifizierung
- -Change Detection
- -Geomonitoring mittels SAR-Interferometrie

[Auswertemethoden (V/\ddot{U})]

- -Koordinatenberechnung
- -Einführung in die Ausgleichungsrechnung
- -Grundlagen der Zeitreihenanalyse
- -terrestrische Sensorik für Monitoringaufgaben

Oualifikationsziel

Den Studierenden sollen theoretische Grundkenntnisse und praktische Methoden in den grundlegenden Verfahren der terrestrischen Koordinatenerfassung und -berechnung, sowie der Bestimmung von zeitabhängigen Veränderungen mittels Fernerkundung vermittelt werden Die Studierenden erwerben die instrumentelle Kompetenz, Grundzustände und Veränderungen der Erdoberfläche und ihrer Geoobjekte berechnen und ableiten zu können.

Literatur

Literatur wird in den Vorlesungen bekannt gegeben.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- monitoring				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der V	Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht					
Titel der Veranstaltung					
Fernerkundung 1					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Björn Riedel		2	Vorlesung/Übung	deutsch	
Titel der Veranstaltung					
Auswertemethoden					
Dozent/in Mitwirkende SWS Art LVA Sprache					
Markus Gerke Björn Riedel		2	Vorlesung/Übung	deutsch	

Modulname	Photogrammetrie		
Nummer	4398160	Modulversion	
Kurzbezeichnung	BAU-STD3-65	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	Institut für Geodäsie und Photogrammetrie
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Markus Gerke
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (60 Min.) oder mündl. Prüfur	ng (ca. 30 Min.)	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Bildverarbeitung (VÜ)]

- Modellierung der Bildaufnahme
- Bildpunktoperationen
- lineare und nicht-lineare Filter
- Fouriertransformation
- Morphologie
- Segmentierung
- Bildrestauration
- typische Anwendungsfelder, praktische Beispiele und Übungen

[Photogrammetrie und Laserscanning (VÜ)]

- die Geometrie des perspektivischen Bildes
- Projektion vom 3D-Raum in das Bild
- Bildorientierung
- dichte Punktzuordnung und abgeleitete Produkte
- Orthoprojektion
- Grundlagen des Laserscannings: Methodik, Technik, Systeme
- typische Anwendungsfelder, praktische Beispiele und Übungen

Qualifikationsziel

In diesem Modul werden die Studierenden in die Photogrammetrie als Wissenschaft, die geometrische und semantische Informationen aus Bildern ableitet, eingeführt. Ergänzt wird dieses Modul um das aktive Abtastverfahren Laserscanning, das es erlaubt, geometrische Informationen über Objekte zu erfassen. Im Rahmen der Bildanalyse wird in die digitale Bildverarbeitung eingeführt, die sich u.a. mit der Anwendung von Filtern oder Operatoren beschäftigt, die das Bild verbessern oder einen Vorverarbeitungsschritt für die Bildanalyse darstellen.

In den Veranstaltungen werden Grundkenntnisse und Methoden vermittelt, so dass die teilnehmenden Studierenden in der Lage sind, selbstständig Daten zu erfassen, auszuwerten und zu analysieren.

Literatur

Literatur wird in den Vorlesungen bekannt gegeben.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- monitoring				

				1		
ZUGEHÖRIGE LEHRVERANS	ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von	Lehrveranstaltungen					
Anwesenheitspflicht						
Titel der Veranstaltung						
Bildverarbeitung						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Markus Gerke		2	Vorlesung/Übung	deutsch		
Titel der Veranstaltung						
Photogrammetrie und Laserscanning 1						
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		
Markus Gerke		2	Vorlesung/Übung	deutsch		

Modulname	Ausgewählte Kapitel der Geodäsie und Geoinformatik		
Nummer	4398680	Modulversion	
Kurzbezeichnung	BAU-STD5-68	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	Institut für Geodäsie und Photogrammetrie
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Markus Gerke
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Zwei Prüfungsleistungen: Referat und	Portfolio oder Hausarbeit	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Fernerkundung 2]

- -Terrestrische Mikrowelleninterferometrie
- -Intensitäts- und Kohärenzanalyse von Radardaten
- -Multi-temporale Auswertemethoden der Radarinterferometrie
- -Analyse und Modellierung von Bewegungsraten und Intensitätszeitreihen

[Photogrammetrie und Laserscanning 2]

Vorlesungen, die auf dem Wissen aus dem Modul Photogrammetrie aufbauen und spezifische Aufgabenstellungen aus einem oder mehreren der folgenden Bereiche:

- -Informationsgewinnung aus Bildern und Punktwolken
- -Fusion von Bild- und Entfernungsdaten
- -3D-Modellierung
- -Deformationsmodellierung aus Bildern und Punktwolken

Als Prüfungsform wird eine bewertete Hausarbeit gefordert.

[Verteilte Geoinformation 2]

- Praktischer Umgang mit Geodatenbanken
- Veröffentlichung, Einbindung und Bearbeitung von Geodaten in webbasierte Systeme
- Einbindung von WFS/WMS sowie weiterer serverseitigen Komponenten

[Aktuelle Entwicklungen in Geodäsie und Geoinformatik]

Die TN wählen zu einem Thema aus dem gewählten Wahlbereich dieses Moduls eine wissenschaftliche Publikation und analysieren sie nach den Regeln guter wissenschaftlicher Arbeit. In einem individuellen Referat (schriftliche Ausarbeitung und Präsentation vor der Gruppe) wird der Artikel besprochen.

Qualifikationsziel

[Fernerkundung 2]

In der Veranstaltung Fernerkundung 2 werden die Grundkenntnisse in der Radarfernerkundung erweitert und vertieft. Die Studierenden erwerben durch die Kombination von Vorlesung und anwendungsbezogenen Übungen die Kompe-

tenz selbständig ausgewählte Fragestellungen im Bereich des geometrischen Monitoring und der Zustandsbeschreibung von Geoobjekten zu bearbeiten.

[Photogrammetrie und Laserscanning 2]

Die TN verstehen und wenden Methoden zur geometrischen und semantischen Auswertung von Punktwolken und Bildern an. In einer individuellen Ausarbeitung beschäftigen sie sich mit ausgewählten Datensätzen und Problemstellungen. Sie werten die Datensätze entsprechend aus und präsentieren und diskutieren Ergebnisse in einer schriftlichen Ausarbeitung (Hausarbeit).

[Verteilte Geoinformation 2]

In diesem Kurs werden vertiefte Kenntnisse im Umgang mit Geodatenbanken erlernt, um eigene Geodaten serverseitig publizieren und diese in clientseitige Webanwendungen zu visualisieren und zu analysieren. Die Qualifikationsziele sind das erweiterte Verständnis des Zusammenspieles von client- und serverseitigen Strukturen in geographisch orientierten webbasierten Systemen. Hierfür werden vertiefte Kenntnisse zu Geodatenbanken und Kartendienste (WFS/WMS) vermittelt und praktisch angewendet.

[Aktuelle Entwicklungen in Geodäsie und Geoinformatik]

In diesem Seminar lernen die TN, mit wissenschaftlichen Artikeln zu arbeiten und werden diese in einem Referat zusammenfassen und präsentieren. Hierbei ist der Fokus auf Themen der zweiten gewählten Veranstaltung in diesem Modul. Das Ziel ist die kritische Auseinandersetzung mit wissenschaftlicher Literatur und deren geeignete Präsentation zu erlernen und zu trainieren.

Literatur

Literatur wird in den Vorlesungen bekannt gegeben.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- monitoring				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Voraussetzung ist die Belegung von zwei der folgenden Veranstaltungen, wobei für Fernerkundung 2, Photogrammetrie und Laserscanning 2 und Verteilte Geoinformation 2 das entsprechende Modul im Wintersemester erfolgreich absolviert werden muss.

Anwesenheitspflicht

Titel der Veranstaltung

Aktuelle Entwicklungen in Geodäsie und Geoinformatik

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Ahmed Alamouri		2	Seminar	deutsch
Markus Gerke				
Marc-Oliver Löwner				
Mehdi Maboudi				
Björn Riedel				
	l l			

Titel der Veranstaltung						
Fernerkundung 2						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Björn Riedel		2	Vorlesung/Übung	deutsch		

Titel der Veranstaltung						
Photogrammetrie und Laserscanning 2						
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		
Ahmed Alamouri Markus Gerke Yahya Ghassoun Mehdi Maboudi		2	Vorlesung/Übung	englisch		

Titel der Veranstaltung				
Verteilte Geoinformation 2				
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Cosima Berger Markus Gerke		2	Vorlesung/Übung	deutsch

Modulname	Environmental Transport: Grundlagen und Modellierung				
Nummer	1199480	Modulversion			
Kurzbezeichnung	GEA-STD-48	Sprache	deutsch		
Turnus		Lehreinheit			
Moduldauer	1	Einrichtung			
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Sascha Iden		
Arbeitsaufwand (h)					
Präsenzstudium (h)	56	Selbststudium (h)	124		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mündliche Pr	rüfung (ca. 30 Min.)			
Zu erbringende Studienleistung					
Zusammensetzung der Modulnote					

[Grundlagen und mathematische Modellierung des Stofftransports in der Umwelt $(V+\ddot{U})$]

- Prozessübersicht Advektion, Dispersion, Sorption, Retardation, Abbau
- Modellierung des Wasser-, Gas- und Stofftransports in der Umwelt
- Abbauprozesse in Abhängigkeit von Umweltvariablen
- Mikrobielle Dynamik
- Kinetik von Xenobiotika in Organismen
- Grundlagen der Bestimmung von Transport- und Reaktionsparametern
- Modellierung mit FE-Techniken
- Numerik dynamischer Systeme und raumzeitlicher Probleme im Bereich Transport und Reaktion

Qualifikationsziel

Die Studierenden sind in der Lage, die grundlegenden Prozesse des Verhaltens und des Transports von Substanzen in verschiedenen Umweltkompartimenten wie Wasser, Boden, Aquiferen, Fließgewässern oder Luft auf der Kontinuumsebene konzeptionell zu formulieren und mathematisch über Differenzialgleichungen darzustellen. Sie haben Kenntnis der grundlegenden Techniken zur numerischen Lösung der mathematischen Transport- und Verhaltensgleichungen (Finite Differenzen, Finite Elemente-Verfahren). Sie kennen die Prinzipien der Prozessparametrisierung und Techniken zur Berücksichtigung der geeigneten Rand- und Anfangsbedingungen. Sie

können Fragestellungen zum Verhalten von Umweltchemikalien mit Hilfe von Simulationsmodellen bearbeiten und die Ergebnisse unter Berücksichtigung der zugrundeliegenden Annahmen interpretieren. Des weiteren erlangen die Studierenden grundlegende Kenntnisse in der Numerik

Literatur

Bear, Buchlin: Modelling and Applications of Transport Phenomena in Porous Media

Holzbecher: Environmental Modeling

Seinsfeld, Pandis: Atmospheric chemistry and physics Richter: Environmental fate modelling of pesticides

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- monitoring				

Belegungslogik bei der Wahl von Lehrveranstaltungen
Anwesenheitspflicht

Titel der Veranstaltung				
Grundlagen und mathematisch	e Modellierung des Stofftra	nsports in der Umwelt		
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Sascha Iden Sylvia Moenickes		4	Vorlesung/Übung	deutsch

Modulname	Environmental Fate: Inverse Modellierung				
Nummer	1112110	Modulversion			
Kurzbezeichnung	GEA-STD2-1	Sprache	deutsch		
Turnus		Lehreinheit			
Moduldauer	1	Einrichtung			
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Wolfgang Durner		
Arbeitsaufwand (h)					
Präsenzstudium (h)	56	Selbststudium (h)	124		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung	g (30 Min.)			
Zu erbringende Studienleistung					
Zusammensetzung der Modulnote					

[Angewandte und Inverse Modellierung $(V+\ddot{U})$]

- Lineare und nichtlineare Regression in Matrixschreibweise
- Residuenanalyse, Gütemaße und Modellselektion
- Berechnung von Konfidenz- und Prognoseintervallen
- Kollinearitätsanalyse und Parameterkorrelation
- Wichtung von Datenpunkten unterschiedlicher Fehlervarianz
- Nichtlineare Minimierung in einer und mehreren Dimensionen
- Identifizierbarkeit, Stabilität und Eindeutigkeit von inversen Problemen
- Optimierung experimenteller Designs
- Anwendung der erlernten Methoden auf folgende Probleme: Bestimmung von Sorptionsisothermen, Abbauparametern und Sorptionskinetik, Schätzung bodenhydraulischer Eigenschaften, Schätzung von Transportparametern aus Transportexperimenten in Labor und im Freiland

Qualifikationsziel

- Die Studierenden sind in der Lage Methoden der linearen und nichtlinearen Regression zur Schätzung von Parametern des Wasser- und Stofftransports eigenständig mit einem Computeralgebrasystem anzuwenden.
- Sie kennen die wichtigsten Verfahren der iterativen Minimierung und sind fähig, diese unter Berücksichtigung ihrer Vorund Nachteile zur Lösung von praktischen Problemen einzusetzen.
- Sie sind fähig, inverse Probleme für beliebige Problemstellungen und Modelltypen (lineare und nichtlineare Kompartimentmodelle, Transportmodelle in Form partieller Differenzialgleichungen) zu formulieren und zu lösen.
- Sie können die Unsicherheiten von Modellparametern und Modellvorhersagen in Form von Konfidenz- und Prognoseintervallen quantifizieren, geeignet darstellen und statistisch interpretieren.
- Sie sind in der Lage, Experimente für die Untersuchung des Verhaltens von Stoffen in der Umwelt zu planen und im Hinblick auf ihren Informationsgehalt zu optimieren.
- Sie können die Ergebnisse eigenständig durchgeführter Projekte präsentieren, erläutern und interpretieren.

Literatur

Draper und Smith (1998): Applied Regression Analysis, 3rd Ed., Wiley.

Fahrmeir, Kneib und Lang (2009): Regression. Modelle, Methoden und Anwendungen, Springer Verlag. Hill und Tiedemann (2007): Effective groundwater model calibration. With analysis of data, sensitivities, predictions and uncertainty. Wiley-Interscience.

Press, Teukolsky, Vetterling und Flannery (1992): Numerical Recipes. The Art of Scientific Computing, Cambridge University Press.

Richter, Diekkrüger und Nörteshäuser (1996): Environmental Fate of Pesticides: From the Laboratory to the Field Scale. Wiley Interscience und VCH, Weinheim.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- monitoring				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	
Titel der Veranstaltung	

Titel der Veranstaltung				
Inverse Modellierung				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Wolfgang Durner Sascha Iden		4	Vorlesung/Übung	deutsch

Modulname	Messung von Wasser und Stoffströmen im Boden-Pflanze-Atmosphäre-Kontinuum			
Nummer	1112400	Modulversion		
Kurzbezeichnung		Sprache		
Turnus	in jedem Semester	Lehreinheit		
Moduldauer	2	Einrichtung		
SWS / ECTS	/	Modulverantwortliche/r	Wolfgang Durner	
Arbeitsaufwand (h)				
Präsenzstudium (h)	49	Selbststudium (h)	131	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Portfolio			
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

Konzeption und Aufbau einer bodenhydrologischen Messstation zur Erfassung von Wasser- und Stoffflüssen in der ungesättigten Zone (Tensiometrie, Wassergehaltssensorik, Bodentemperatur, Bodenwasser-Entnahmegeräte, automatische Datenaufnahme und Datenübertragung)

Aufbau und Betrieb eines Lysimeters zur Verdunstungsmessung und Stofffrachtenerfassung

Erfassung mikrometeorologischer Größen (Temperatur, relative Luftfeuchtigkeit, Globalstrahlung, Windgeschwindigkeit, Class-A Pan zur direkten Verdunstungsmessung)

Untersuchungen zum Stickstoff-Haushalt von Ackerböden, Anwendung der Nmin-Methode

Qualifikationsziel

Die Studierenden sind in der Lage, eigenständig Messkampagnen im Feld zur Erfassung des Bodenwasserhaushalts sowie des Stofftransports in der ungesättigten Bodenzone zu konzipieren, geeignete Messinstrumente einzusetzen, deren Ergebnisse zu erfassen, darzustellen, in Hinblick auf die Plausibilität der Daten zu prüfen, und mit Hilfe numerischer Simulation auszuwerten.

Literatur

J.A. Tindall, J.R. Kunkel (1999): Unsaturated Zone Hydrology for Scientists and Engineers. Prentice-Hall J.L. Monteith, M. Unsworth (1990): Principles of environmental Physics, 2nd Ed., Butterworth and Heinemann N. McKenzie, K. Coughian, H. Cresswell (2002): Soil Physical Measurement and Interpretation for Land Evaluation. CSIRO Publishing

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- monitoring			

/	Ւ

ZUGEHÖRIGE LEHRVERANSTALTUNGEN
Belegungslogik bei der Wahl von Lehrveranstaltungen
Anwesenheitspflicht

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Vertiefungsfach Umwelt- und ressourcengerechtes Bauen	
ECTS	18

Modulname	Energie- und komfortgerechte Gebäudeplanung			
Nummer	4399730 Modulversion			
Kurzbezeichnung	BAU-STD-19	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer		Einrichtung	Institut für Bauklimatik und Energie der Architek- tur	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Elisabeth Endres	
Arbeitsaufwand (h)				
Präsenzstudium (h)		Selbststudium (h)		
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform				
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				
Inhalte				
Qualifikationsziel				
Literatur				

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- und ressourcengerechtes Bauen			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

Titel der Veranstaltung							
Simulation und Modellierung von Gebäuden							
Dozent/in	Mitwirkende	Mitwirkende SWS Art LVA Sprac					
Elisabeth Endres		4	Seminar	deutsch			
Titel der Veranstaltung							
Nachhaltigkeitsstrategien für de	en Bestand						
Dozent/in	Mitwirkende SWS Art LVA Sprache						
Elisabeth Endres		4	Seminar	deutsch			
Titel der Veranstaltung							
International Sustainability							
Dozent/in	Mitwirkende	sws	Art LVA	Sprache			
Henriette Bertram		4	Seminar	deutsch			
Titel der Veranstaltung							
Bauen im Kontext							
Dozent/in	Mitwirkende	sws	Art LVA	Sprache			
Elisabeth Endres Tobias Pörschke		4	Seminar	deutsch			

Modulname	Additive Fertigung im Bauwesen		
Nummer	4398700	Modulversion	
Kurzbezeichnung	BAU-STD5-70	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Dirk Lowke
Arbeitsaufwand (h)			
Präsenzstudium (h)	91	Selbststudium (h)	89
Zwingende Voraussetzungen		`	
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (60 Minuten) und experiment	telle Arbeit	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

In der Lehrveranstaltung V Materialien und Prozesse in der additiven Fertigung werden zunächst werkstoffübergreifend grundlegende Kenntnisse zu den verschiedenen additiven Fertigungsverfahren im Bauwesen vermittelt. Anschließend wird ein besonderer Fokus auf den 3D-Betondruck gelegt. Es werden die übergeordneten Themenbereiche 3DBetondruck- Verfahren (Selective Cement Activation, Selective Paste Intrusion, Large Particle 3D Concrete Printing, Beton-Extrusion, Shotcrete 3D Printing, Injection 3D Concrete Printing), Werkstoffentwicklung (betontechnologische Zusammensetzung, Einsatz von Zusatzmitteln), Prüfung von additiv gefertigten Objekten (Rheologie, Mechanik), Qualitätskontrolle und Anwendung in der Praxis behandelt. In der Lehrveranstaltung VÜ Methoden der Digitalen Baufabrikation (Methods of Computational Fabrication) werden die Grundlagenkenntnisse zur Programmierung in Rhino Grasshopper und Python gelehrt. Aufbauend auf der Vorlesung lernen die Studierenden in praktischen Übungen, druckbare Geometrien parametrisch zu erstellen, für den 3D-Druck vorzubereiten und Roboterbahnen zu generieren. Außerdem wird die Robotersimulation gelehrt, um die Herstellbarkeit von entworfenen Objekten zu prüfen. In der gemeinsamen Übung Angewandte Additive Fertigung wird das erworbene Wissen angewendet, um physische Objekte mittels eines ausgewählten additiven Herstellungsverfahrens umzusetzen.

Qualifikationsziel

Nach der Teilnahme an den Modulveranstaltungen sind die Studierenden in der Lage, eine einsatzorientierte Wahl additiver Fertigungsmethoden im Bauwesen zu treffen und die baustofftechnologischen, prozesstechnischen und robotischen Aspekte zu charakterisieren und zu beurteilen.

Die Studierenden können wichtige Material-Prozess-Interaktionen erkennen und anhand erlernter Zusammenhänge bewerten. Grundlegende Berechnungsmethoden zum Material- und Strukturverhalten werden erlernt und auf verschiedene Anwendungsfälle angewendet. Zudem liegen Kenntnisse über die Zusammensetzung von Materialien für die additive Fertigung vor, die mittels des erlernten Wissens weiterentwickelt und anschließend hergestellt werden können. Die Studierenden kennen zudem relevante Untersuchungsmethoden zur Bewertung eines additiven Fertigungsprozesses, können diese anwenden und die gewonnen Daten evaluieren.

Darüber hinaus können die Studierenden 3D-Objekte mittels Computer-Aided-Design entwerfen und die Daten für den additiven Fertigungsprozess geeignet aufbereiten. Zudem sind Sie in der Lage eine Roboterpfadplanung durchzuführen und den Roboter in einem einfachen Prozess zu steuern.

Durch Teilnahme an der Übung sind die Studierenden zudem in der Lage spezifische additive Fertigungsverfahren anzuwenden und physische Objekte herzustellen.

Literatur			
	-		
		,	

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- und ressourcengerechtes Bauen				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung

Materialien und Prozesse in der Additiven Fertigung

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
David Böhler Dirk Lowke Inka Mai		2	Vorlesung	deutsch

Titel der Veranstaltung

Methoden der Digitalen Baufabrikation

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dirk Lowke		2	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Angewandte Additive Fertigung

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
David Böhler Dirk Lowke Inka Mai		2	Übung	deutsch

	1		
Modulname	Verfahren zu Schutz und Sanierung		
Nummer	4306510	Modulversion	
Kurzbezeichnung	BAU-STD3-5	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer		Einrichtung	
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Bohumil Kasal
Arbeitsaufwand (h)		,	
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- und ressourcengerechtes Bauen				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung						
Bautenschutz und Bauwerkssanierung						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Jürgen Hinrichsen		4	Vorlesung/Übung	deutsch		
				<u> </u>		

Titel der Veranstaltung					
Zustandsbeurteilung und Sanierun	Zustandsbeurteilung und Sanierung von Holz				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Jürgen Hinrichsen Bohumil Kasal		3	Vorlesung/Übung	deutsch	

Modulname	Instandhaltung von Bauwerken aus mineralischen Baustoffen				
Nummer	4398210	Modulversion			
Kurzbezeichnung	BAU-STD-50	Sprache	deutsch		
Turnus		Lehreinheit			
Moduldauer	1	Einrichtung			
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Dirk Lowke		
Arbeitsaufwand (h)					
Präsenzstudium (h)	84	Selbststudium (h)	96		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen	Es werden Kenntnisse aus dem Modu	l "Betontechnik und Werksto	offverhalten" empfohlen.		
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.)				
Zu erbringende Studienleistung					
Zusammensetzung der Modulnote					

In der Lehrveranstaltung werden Kenntnisse zur Dauerhaftigkeit von Bauwerken aus mineralischen Baustoffen, zu Schadensursachen und mechanismen, zu Modellen zur Beschreibung von Schädigungen sowie zu Strategien zur Vermeidung von Bauschäden vermittelt. Darauf aufbauend werden Konzepte zur Instandsetzung und Verstärkung von Stahlbeton- und Spannbetonbauwerken sowie Mauerwerk, Putzen und Estrichen im Kontext der aktuellen Normung besprochen.

Es werden Aufgaben, Ziele und Methoden der Bauwerksuntersuchung und der Materialprüfung thematisiert. Zudem werden die Themenbereiche Planung, Organisation und Auswertung von Mess- und Prüfaufgaben, Sicherheit, Zuverlässigkeit, Normung und Zulassung, Anwendung von Methoden und Instrumentarien zur experimentellen Untersuchung sowie zum Monitoring von Stahlbetonbauwerken behandelt.

Im Modul werden Fallbeispiele vorgestellt und bearbeitet, die eine fächerübergreifende Problemlösungskompetenz schulen. Zudem werden Praktika zum Einsatz von Untersuchungsmethoden angeboten. Die besprochenen Themen bauen auf den Grundlagen des Bachelorfaches Baustoffkunde auf.

Qualifikationsziel

Nach dem Besuch der Lehrveranstaltung Bauschäden sind die Studierenden in der Lage, die Ursachen sowie die mechanischen, chemischen und physikalischen Mechanismen von Schäden an Bauwerken aus mineralischen Baustoffen zu beschreiben, zu erklären und zu differenzieren. Darauf aufbauend können die Studierenden Strategien zur Vermeidung von Schäden ableiten, Bauschäden beurteilen, zielführende Instandsetzungsstrategien ableiten, geeignete Instandsetzungskonzepte aufstellen und eine Erfolgskontrolle durchführen.

Nach der erfolgreichen Teilnahme an der Lehrveranstaltung Bauwerksuntersuchung sind die Studierenden in der Lage, Verfahren zur Schadensanalyse von Stahl- und Spannbetontragwerken zu beschreiben und Bauwerksuntersuchungsstrategien in Abhängigkeit vom Zustand der Bauwerke und der eingesetzten Baustoffe festzulegen. Zudem können sie die aktuellen zerstörungsfreien Prüfverfahren zur Qualitätssicherung, Inspektion und Dauerüberwachung von Bauteilen, Anlagen und Bauwerken in ihrer Funktionsweise verstehen, praktisch anwenden und deren Einsatzbereiche und -grenzen beurteilen.

Gezielte Fallbeispiele sollen die Abstraktionsfähigkeit und die Fähigkeit der Studierenden stärken, Erlerntes in ein neues Problemfeld zu transferieren und eigene Untersuchungskonzepte zu entwickeln.

Literatur

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- und ressourcengerechtes Bauen				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Dieses Modul kann nur in der Vertiefung Baustofftechnologie oder in der Vertiefung Bauwerkserhaltung belegt werden.

Anwesenheitspflicht

Titel der Veranstaltung

Abenteuer Bauwerksinstandhaltung - Praktische Bauwerksuntersuchung und Schadensdetektion

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
David Böhler Dirk Lowke		1	Übung	deutsch
Stefan Ullmann				

Titel der Veranstaltung

Bauschäden - Entstehung, Vermeidung, Instandsetzung

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
David Böhler		3	Vorlesung/Übung	deutsch
Dirk Lowke				

Titel der Veranstaltung

Bauwerksuntersuchung - Baustoffanalytik, Messtechnik, Monitoring

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
David Böhler Hans-Werner Krauss		2	Vorlesung	deutsch

Titel der Veranstaltung

Abdichten von Bauwerken

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
David Böhler Knut Herrmann		1	Vorlesung/Übung	deutsch

Modulname	Energetisch Planen und Sanieren		
Nummer	4310340	Modulversion	
Kurzbezeichnung	BAU-STD4-3	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer		Einrichtung	Institut für Bauklimatik und Energie der Architek- tur
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Elisabeth Endres
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- und ressourcengerechtes Bauen			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Energietechnik			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht	Anwesenheitspflicht				
Titel der Veranstaltung	Titel der Veranstaltung				
Nachhaltigkeitsstrategien für den Bestand					
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache	
Elisabeth Endres		4	Seminar	deutsch	

Modulname	Organische Baustoffe		
Nummer	4310670	Modulversion	
Kurzbezeichnung	BAU-STD3-36	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Bohumil Kasal
Arbeitsaufwand (h)			
Präsenzstudium (h)	84	Selbststudium (h)	96
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	2 Klausuren (45 Min.) oder 1 Klausur	(45 Min.) und Portfolio (Kla	ausur (45 Min.) 60%
Zu erbringende Studienleistung	Hausarbeit 20% und Übung 20%		
Zusammensetzung der Modulnote			

[Renewable and wood-based materials in civil engineering (VÜ)]

Natürliche und pflanzliche Werkstoffe, ökologische Aspekte nachwachsender Baustoffe, chemische Struktur natürlicher Rohstoffe, Holzwerkstoffe, WPC, bauphysikalische und mechanische Eigenschaften, chemische Verarbeitung von nachwachsenden Rohstoffen, hochfeste Fasern aus nachwachsenden Rohstoffen, Ökobilanz.

[Kunststoffe im Bauwesen (VÜ)]

Allgemeines: Standortbestimmung und Einführung Aufbau der Kunststoffe: Chemischer Aufbau, Bildungsreaktionen, Makromoleküle (Gestalt, Größe und Anordnung), Bindungskräfte, Einteilung der Kunststoffe

Verarbeitung der Kunststoffe: Pressen, Spritzgießen, Extrudieren, Blasformen, Kalandrieren, Schäumen, Umformen, Spanende Bearbeitung, Schweißen, Kleben, Mechanisches Verbinden

Eigenschaften der Kunststoffe: Festigkeits- und Verformungsverhalten, Temperatureinfluss, Belastungszeiteinfluss, Einfluss molekularer Orientierungen, Spannungsrissbildung, Physikalische Eigenschaften, Thermische Eigenschaften, Elektrische Eigenschaften, Dichte, Witterungsverhalten und chemische Beständigkeit, wichtige Standardkunststoffe Anwendung von Kunststoffen: Baustellen-Hilfsmittel, Bauhilfsstoffe und Bindemittel (Polymerimprägnierter Beton [PIC], polymermodifizierter zementgebundener Beton [PCC], reaktionsharzgebundener Beton [PC], Hartschaum-Leichtbeton, Fugendichtungsmassen und Fugenprofile); Kunststoffe im Hochbau (Wärme- und Schallschutz, Lichtelemente, Fenster, Fassaden, Installationsmaterial, Dachbahnen); Kunststoffe im Tiefbau (Dichtungsbahnen, Versorgungs- und Entsorgungsanlagen, Frostschutzlagen); Kunststoff-Bauwerke (Bauwerke aus Faserverbundwerkstoffen, Textile

Bauwerke); Bauwerksinstandsetzung Schäden an Kunststoffen im Bauwesen.

[Plant-based Natural Fibre Reinforcements in Construction (VÜ)]

- Natural fibres as construction materials.
- Fibre structure and properties.
- Properties of natural fibre reinforced polymer (NFRP) composites.
- Natural fibre reinforced cementitious (NFRC) materials in construction.
- NFRP materials in construction.
- NFRP tube encased NFRC hybrid structure.
- NFRP and NFRC for Structure Strengthening.
- Durability of NFRP and NFRC in construction.
- Degradation mechanism.

Fibre modifications.

Qualifikationsziel

Die Studierenden eignen sich die wesentlichen anatomischen, morphologischen, physikalischen und chemischen Eigenschaften von organischen Baustoffen (Holzwerkstoffe und Kunststoffe) an und erwerben vertiefte Kenntnisse über Rohstoffe, Eigenschaften, Herstellung und Anwendung von organischen Baustoffen und Holzwerkstoffen. Die materialwissenschaftlichen Aspekte organischer Werkstoffe wie konstitutive Gesetze, Kriechen, mechanosorptives Kriechen, usw. werden betont.

Die Studierenden eignen sich ferner die wesentlichen nicht- und semi-destruktiven Methoden für die in-situ Beurteilung des Holzes im Bauwerk an und erwerben vertiefte Kenntnisse über Prinzipien, Verfahren und Begrenzungen verschiedener Methoden. Praktische Kenntnisse werden durch Labor und "in-field"-Übungen (Feldversuche) vertieft. Bezugnehmend auf die Kunststoffe wird der Einfluss der makromolekularen Struktur auf die Eigenschaften von Kunststoffen im Detail betrachtet. Ein weiterer wesentlicher Aspekt ist das Langzeitverhalten von Kunststoffen unter der Einwirkung von Lasten, Medien und Bewitterung. Ferner lernen die Studierenden Methoden der Kunststoffanalytik kennen.

Die Studierenden werden mit Erreichen der Qualifikationsziele in die Lage versetzt, Holzwerkstoffe und Kunststoffe im Ingenieurbau für den jeweiligen Anwendungszweck gezielt auswählen zu können sowie Bewertungen an bestehenden Bauwerken und Konstruktionen nicht zuletzt im Schadensfall, sondern bereits bei der Planung sachgerecht durchzuführen.

Literatur

-Forest Products Laboratory. Wood handbook - Wood as an engineering material. General Technical Report FPL-GTR- 190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: 508 p. 2010. Free download http://www.fpl.fs.fed.us/products/publications/specific_pub.php?posting_id=18102

-Niemz, P., and W. U. Soderegger. 2017. Holzphysik. Physik des Holzes und der Holzwerkstoffe. Hanser-Verlag Leipzig, 580 p. ISBN 978-3-446-44526-0.

Holzmann, G., Wangelin, M., and R. Bruns. 2012. Natürliche und pflanzliche Baustoffe. 2. Auflage. Springer-Vieweg. 394 p. ISBN 978-3-8348-1321-3.

- -Folien in PDF-Format, vom Dozenten benannte Veröffentlichungen aus dem Fachbereich
- -Menges / Schmachtenberg / Michaeli / Haberstroh: Werkstoffkunde Kunststoffe, ISBN 3-446-21257-4, Carl Hanser Verlag 2002
- -Oberbach: Saechtling Kunststoff Taschenbuch, ISBN: 3-446-22670-2, Carl Hanser Verlag 2004
- -Frank: Kunststoff-Kompendium, ISBN: 3-8023-1589-8, Vogel Fachbbuchverlag 2000
- -Braun: Kunststofftechnik für Einsteiger, ISBN 3-446-22273-1, Carl Hanser Verlag 2003
- -Braun: Erkennen von Kunststoffen, Qualitative Kunststoffanalyse mit einfachen Mitteln, Carl Hanser Verlag 2003
- -Gächter / Müller: Kunststoff-Additive, ISBN: 3-446-15627-5, Carl Hanser Verlag 1989
- -Bargel / Schulze: Werkstoffkunde, Springer Verlag 2004
- -Potente: Fügen von Kunststoffen, Grundlagen, Verfahren, Anwendung, ISBN: 3-446-22755-5, Carl Hanser Verlag 2004

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Umwelt- und ressourcengerechtes Bauen				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Wahl von 2 Lehrveranstaltungen

Anwesenheitspflicht

Es besteht eine Anwesenheitspflicht in den praktischen Übungen der Lehrveranstaltung Renewable and wood-based materials in civil engineering.

Titel de	er Veran	staltung
----------	----------	----------

Advance Composite Materials in Construction

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Libo Yan		2	Vorlesung/Übung	englisch

Titel der Veranstaltung

Kunststoffe im Bauwesen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jürgen Hinrichsen		3	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Plant-based Natural Fibre Reinforcements in Construction

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Libo Yan		3	Vorlesung/Übung	englisch

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Vertiefungsfach Verkehr und Infrastruktur	
ECTS	18

24 1 1	DI 4 17 1 DI	1 11	
Modulname	Planungsmethodik und Pla	-	
Nummer	4318050	Modulversion	
Kurzbezeichnung	BAU-STD2-5	Sprache	deutsch
Turnus		Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	
Arbeitsaufwand (h)		·	
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Verkehr und Infrastruktur			

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			

Titel der Veranstaltung					
Planungsmethodik und Planungsm	odelle				
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache	
Bernhard Friedrich Frank Schröter		4	Vorlesung/Übung	deutsch	
Literaturhinweise	Literaturhinweise				
Präsentationsfolien der Vorlesung Materialien zur Übung					

Modulname	Characterization and Modeling of Asphalt Materials			
Nummer	4310890	Modulversion		
Kurzbezeichnung	BAU-STD4-89	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung	Institut für Straßenwesen ISBS	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Michael Wistuba	
Arbeitsaufwand (h)				
Präsenzstudium (h)	90	Selbststudium (h)	60	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.)			
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Mechanisches Verhalten von Asphaltmaterialien (2VÜ)]

Innovative und internationale Prüfmethoden im Zusammenhang mit neuesten Forschungsergebnissen, fortgeschrittene rheologische und mathematische Modelle für bitumengebundene Materialien.

[Erweiterte Charakterisierung von Asphalt Materialien (2VÜ)]

Modellierung von bitumengebundenen Materialien, rheologische Elementen, rheologische und analoge Modelle, Performance-Prüfverfahren sowie die Anwendung von Modellen auf experimentelle Ergebnisse.

[Novel Sensor Technologies in asphalt materials (2VÜ)]

Die Vorlesung thematisiert neue Sensortechnologien im Straßenbau, bspw. zur Zustandsüberwachung (Pavement Monitoring System) oder zur Zählung von Überfahrten des Schwerverkehrs. Die Studierenden lernenmodernste Sensortechnologien kennen, wie Beschleunigungssensoren, Smartphones, piezoelektrische Sensoren und faseroptische Sensoren. Ausgewählte Technologien werden in Echtzeit im Labor demonstriert.

Qualifikationsziel

Die Studierenden erlernen die neuesten Methoden und Modelle zur Charakterisierung von Asphaltmaterialien und zur Beschreibung des mechanischen Verhaltens von Bindemitteln bis zu Asphaltmischungen, inkl. des Verhaltens der dazwischenliegenden Materialphasen. Es wird dargestellt, wie Prüfmethoden und Parameter mit den entsprechenden Materialmodellen verbunden sind. Die Studierenden lernen die Grundkonzepte der Versagensmechanismen in Asphaltstraßen. Im Rahmen der Lehrveranstaltung Novel Sensor Technologies in asphalt materials ist es das Ziel, dass die Studierenden durch innovative Werkzeuge und Testmethoden ein fortgeschrittenes Wissen über die zukünftigen Möglichkeiten im Straßenbau erhalten.

Literatur

- -M. P. Wistuba, Straßenbaustoff Asphalt (2019)
- -T. Anderson, Fracture Mechanics: Fundamentals and Applications (2005)
- -Z. Baant, Scaling of Structural Strength (2001)
- -S. Huang, Advances in Asphalt Materials (2015)

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Verkehr und Infrastruktur			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Kenntnisse aus dem Bachelormodul "Grundlagen des Straßenwesens" werden vorausgesetzt.	
Anwesenheitspflicht	

Titel der Veranstaltung				
Advanced Characterization of Bituminous Materials				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Chiara Riccardi Michael Wistuba		2	Vorlesung/Übung	englisch

Titel del veralistationig				
Novel Sensor Technologies in Asphalt Materials				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jens Grönniger Frederik Kollmus		2	Vorlesung/Übung	englisch

Titel der Veranstaltung					
Mechanical Behaviour of Asphalt materials					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Stephan Büchler		2	Vorlesung/Übung	englisch	

Modulname	Asphalttechnologie und weiterführende Straßenbautechnik			
Nummer	4306820	Modulversion		
Kurzbezeichnung	BAU-STD-05	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung	Institut für Straßenwesen ISBS	
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Michael Wistuba	
Arbeitsaufwand (h)				
Präsenzstudium (h)	84	Selbststudium (h)	96	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung	g (ca. 30 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Asphaltbefestigungen (V)]

Die Lehrveranstaltung Asphaltbefestigungen baut auf ausgewählten Abschnitten der Lehrveranstaltungen Baustoffe und Befestigungen im Verkehrswegebau sowie Straßenbau und -erhaltung auf und vertieft den Straßenbau mit Asphalt. Thematisiert werden u. a. die Möglichkeiten zur Steigerung der Materialeffizienz durch Optimierung der Bindemitteleigenschaften (z. B. Temperaturverhalten, Alterung, Haftverhalten, Dauerhaftigkeit, Selbstheilung) und der Asphalteigenschaften (z. B. Verhalten unter Last und Zwang, Verdichtungsverhalten, Schichtenverbund). Ferner wird zur Steigerung der Ressourcenschonung der Einsatz von Alternativbaustoffen (Feststoffe, Bindemittel) diskutiert und der Wiederverwendung von Ausbauasphalt (Maximalrecycling, Bitumen-Verjüngung) ausreichend Zeit eingeräumt. Im Sinne der Erhöhung der Umweltverträglichkeit (Senkung der CO2-Emissionen) und des Arbeitsschutzes aber auch zur Steigerung der Energieeffizienz werden die Technologien zur Temperaturabsenkung vorgestellt. Schließlich werden die Studierenden mit besonderen Asphaltbauweisen vertraut gemacht, wie bspw. lärmoptimierten Asphaltdeckschichten, Offenporigem Gussasphalt, Halbstarren Asphaltbefestigungen, alternativen Asphaltbinderschichten und Kompositbauweisen mit/ohne Asphaltbewehrung.

[Straßenbautechnik in der Praxis (VÜ)]

Die Lehrveranstaltung bietet anhand ausgewählter Beispiele aus der Konzeption und der Produktion von Baustoffen bzw. Baustoffkomponenten, aus dem Verkehrswegebau und aus der Erprobung von neuen/innovativen Baugeräten oder Bauverfahren einen Einblick in die aktuelle bzw. zukünftige Praxis der Straßenbautechnik. Dies wird durch Exkursionen und Fachvorträge von Personen aus der Baupraxis unterstützt.

[Technologie von Pflasterdecken und Pflasterbelägen (VÜ)]

Die Lehrveranstaltung behandelt die Herstellung von Verkehrsflächen aus Pflasterdecken und Plattenbelägen. Sie thematisiert zunächst die Auswahl der jeweiligen Baustoffe bzw. Baustoffgemische (Natursteine, Pflasterklinker, Betonsteinpflaster, Bettungs- und Fugenmaterialien), geht dann auf die ungebundene und die gebundene Bauweise, den Einbau und die Verdichtung ein und befasst sich abschließend mit der Zustandskontrolle und Schadensanalyse.

[Qualitätssicherung im Straßenwesen (VÜ)]

Die Lehrveranstaltung informiert über die Organisation der Qualitätssicherung und ihre Anwendung auf das Straßenwesen. Dabei wird eingegangen auf die Grundlagen der Qualitätsorganisation, das Technische Regelwerk im Straßenwesen, die angewandte Qualitätssicherung im Straßenbau von der Erstprüfung der Baustoffe bzw. Baustoffge-

mische bis zur CE-Kennzeichnung, Bauleistung und Überwachung, Abnahme, Abrechnung und Gewährleistung und die Qualitätssicherung bei Straßenbetrieb und -erhaltung.

Qualifikationsziel

Die Studierenden gewinnen vertiefte asphalttechnologische Kenntnisse, um den schwierigen Optimierungsprozess bei Betrachtung aller wesentlichen Asphalteigenschaften gleichermaßen auf Grundlage gebrauchsorientierter Prüfverfahren durchzuführen. Sie werden in die Lage versetzt, fundamentale Laborprüfungen zur Ermittlung von mechanischen Baustoffeigenschaften durchzuführen und die Ergebnisse zu interpretieren. Anhand ausgewählter Stoffmodelle lernen sie die Werkzeuge zur Prognose des Gebrauchsverhaltens von Straßenbaustoffen kennen, um verschiedenartige Baustoffe in ihrer Wirkungsweise und Qualität zu bewerten. Danach können sie vorhandene Asphaltbauweisen kritisch bewerten und zur Entwicklung neuer Asphaltbauweisen beitragen. Darüber hinaus sind sie qualifiziert, die Wiederverwendung von Ausbauasphalt auf hohem Wertschöpfungsniveau voranzutreiben. Die Studierenden lernen darüber hinaus die

Grundlagen und die Anwendung eines Qualitätsmanagements am Beispiel des Straßenwesens kennen. Sie werden mit dem mehrstufigen System der Qualitätssicherung im Straßenbau vertraut gemacht und in die Lage versetzt, Mängel in der Qualitätssicherung zu erkennen bzw. frühzeitig abzuwenden.

Literatur

Richtlinien und Empfehlungen, Vorlesungsskripte

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Verkehr und Infrastruktur				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Die Veranstaltung Asphaltbefestigungen ist in diesem Modul verpflichtend zu belegen. Aus den übrigen drei Veranstaltungen müssen zwei gewählt werden.

Anwesenheitspflicht

Titel der Veranstaltung

Asphaltbefestigungen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Stephan Büchler		2	Vorlesung/Übung	deutsch
Johannes Büchner				
Jens Grönniger				
Frederik Kollmus				
Tess Sigwarth				
Michael Wistuba				

Titel der Veranstaltung

Straßenbautechnik in der Praxis

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Michael Wistuba		2	Vorlesung/Übung	deutsch

Titel der Veranstaltung					
Qualitätssicherung im Straßenwesen					
Dozent/in Mitwirkende SWS Art LVA Sprache					
Michael Wistuba		2	Vorlesung/Übung	deutsch	
Titel der Veranstaltung					
Technologie der Pflasterdecken und Plattenbeläge					
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache	

Michael Wistuba

2

Vorlesung/Übung

deutsch

Modulname	Straßenbautechnik		
Nummer	4306810	Modulversion	
Kurzbezeichnung	BAU-STD3-8	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	Institut für Straßenwesen ISBS
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Michael Wistuba
Arbeitsaufwand (h)			
Präsenzstudium (h)	84	Selbststudium (h)	96
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mündliche Pr	rüfung (ca. 30 Min.)	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Baustoffe und Befestigungen im Verkehrswegebau (VÜ)]

Die Lehrveranstaltung stellt einleitend die Frage nach den Anforderungen an Straßenbaustoffe (Griffigkeit, Rissresistenz, Alterungsbeständigkeit) und erläutert anschließend, wie diese durch gezielte Auswahl, Rezeptierung und Konzeption von Baustoffen bzw. Befestigungen erfüllt werden können. Näher eingegangen wird auf die Qualität von Gesteinen, Bindemitteln und Baustoffgemischen, auf die Bindemittelmodifikation, Wiederverwendung von Ausbaustoffen, Festlegung des Schichtaufbaus und Prognose der Lebensdauer von Straßenbefestigungen.

[Straßenbau und erhaltung (VÜ)]

Die Lehrveranstaltung befasst sich mit der technischen Abwicklung und Umsetzung von Bauvorhaben im Straßenbau. Praxisnah wird auf Transport, Einbau und Qualitätssicherung von Straßenbefestigungen eingegangen. Anschließend wird die Straßenerhaltung thematisiert. Detailliert erläutert werden die Methoden der Zustandserfassung und -bewertung der Oberflächen- und Schichteigenschaften, die bauliche und betriebliche Straßenerhaltung (insbesondere Winterdienst) sowie die Rückgewinnung und Wiederverwendung von Straßenbaustoffen. Anhand von zahlreichen Anwendungsbeispielen werden die Studierenden in der Lehrveranstaltung auf baustellenbezogene und betriebliche Fragestellungen im Verkehrswegebau vorbereitet.

[Straßenbaulaborpraktikum (P)]

In der Lehrveranstaltung werden von den Studierenden ausgewählte Prüfungen im institutseigenen Labor eigenhändig durchgeführt. So werden beispielsweise unter Anleitung Bodenparameter bestimmt (Dichte, Wassergehalt, Verdichtung), Prüfungen zur Zustandserfassung in situ (Tragfähigkeit, Ebenheit, Griffigkeit) durchgeführt oder Probekörper aus Walzund Gussasphalt hergestellt, deren Zusammensetzung und Kennwerte anschließend im Labor überprüft werden.

Qualifikationsziel

Die Studierenden lernen, dass die Nachhaltigkeit von Straßenkonstruktionen wesentlich von der Rezeptierung der Baustoffgemische und ihrer Zusammensetzung zu einem geschichteten Tragsystem abhängt. Sie werden befähigt, die grundsätzliche Eignung von Baustoffen für den Straßenbau zu beurteilen, etwa Gesteine für den Straßenbau zu erkennen oder die Bitumenqualität anhand von Ergebnissen aus Laborversuchen zu interpretieren. Die Studierenden erlernen die Herstellung und Prüfung von straßenbautypischen Probekörpern. Sie werden in die Lage versetzt, Aufwand und Nutzen von Standard-Prüfverfahren abzuschätzen sowie Prüfergebnisse richtig zu bewerten und zu interpretieren. Sie erwerben so vertiefte Kenntnisse in Theorie und Praxis zu den Methoden der Eignungs- und Qualitätsprüfung

von Ausgangsstoffen, Baustoffgemischen und Zusätzen, zur technischen Umsetzung des Asphaltrecyclings und zu den Grundlagen für die

Lebensdauerprognose mittels rechnerischer Methoden. Die Studierenden gewinnen darüber hinaus fundierte Kenntnisse zum Lebenszyklus von Straßenbauwerken, beginnend von der Baustoffanlieferung über Einbau und Nutzung bis zur Wiederverwendung.

Literatur

Richtlinien und Empfehlungen

Vorlesungsskripte

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Verkehr und Infrastruktur				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN						
Belegungslogik bei de	r Wahl von	Lehrveranstaltungen				
Anwesenheitspflicht						
Titel der Veranstaltu	ng					
Baustoffe und Befestig	ungen im V	erkehrswegebau				
Dozent/in		Mitwirkende		sws	Art LVA	Sprache
G. 1 D. 11				_	x	1

Titel der Veranstaltung			
Michael Wistuba			
Jens Grönniger			
Stephan Büchler	2	Vorlesung/Ubung	deutsch

Titel der Veranstaltung

 $Stra{\it Benbaulabor praktikum}$

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Stephan Büchler Michael Wistuba		2	Praktikum	deutsch

Titel der Veranstaltung

Straßenbau und -erhaltung

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Stephan Büchler Jens Grönniger Michael Wistuba		2	Vorlesung/Übung	deutsch

Modulname	Planung und Entwurf von Straßen			
Nummer	4306800	Modulversion		
Kurzbezeichnung	BAU-STD3-8	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung	Institut für Straßenwesen ISBS	
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Michael Wistuba	
Arbeitsaufwand (h)				
Präsenzstudium (h)	84	Selbststudium (h)	96	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung	g (ca. 30 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Straßenplanung und -entwurf (VÜ)]

In der LVA wird die Straßenplanung von der Feststellung des Bedarfs für den Bau einer Straße bis zur Umsetzung vorgestellt. Thematisiert werden der Planungsprozess, die Planungsebenen mit ihrem unterschiedlichen Detaillierungsgrad, die Belange der Umwelt, die Bürgerbeteiligung, rechtliche Fragen, die Finanzierung von öffentlichen Straßen, die planerische Gestaltung von Knotenpunkten und Kreuzungen, der Nachweis der Verkehrsqualität sowie Wirtschaftlichkeits- und Lebenszyklusanalyse.

[Computergestützter Straßenentwurf und Visualisierung(Ü)]

Die LVA zeigt die praxisnahe Planungs- und Entwurfsarbeit an einem konkreten Straßenbauprojekt mit Hilfe des Straßenplanungsprogramms VESTRA CAD. Es beginnt mit der dreidimensionalen Geländeaufnahme, computergestützt werden danach sämtliche Planungsaufgaben bezüglich der Trassierung, Gradienten- und Querschnittskonstruktion bearbeitet und gelöst.

[Dimensionierung von Verkehrswegen (VÜ)]

In der LVA werden die Grundlagen zur konstruktiven Ausbildung von Verkehrsflächenbefestigungen und zur rechnerischen Dimensionierung vermittelt. Das Hauptaugenmerk liegt auf hoch belasteten Straßen und Flugbetriebsflächen der flexiblen (Asphalt) und der starren Bauweise (Zementbeton). Es wird die modellhafte Darstellung des Schichtaufbaus, des zeit- und belastungsabhängigen Baustoffverhaltens, des Verbunds der Schichten und des Tragverhaltens des Baugrundes erläutert. Darüber hinaus werden die Berechnungsmethoden zur Analyse von Straßenkonstruktionen vorgestellt und Einsatzhinweise gegeben.

Qualifikationsziel

Die Studierenden erlernen die Aufgaben, Ziele und gesetzlichen Grundlagen zur Planung und Umsetzung von Straßenbauvorhaben. Am Ende der Lehrveranstaltung haben sie eine umfassende Kenntnis des Planungsprozesses und die Befähigung zur selbstständigen Umsetzung der planerischen Arbeiten. Sie können eventuelle Konfliktpunkte im Planungsprozess frühzeitig erkennen und zu ihrer Vermeidung beitragen.

Die Studierenden erlernen anhand eines Übungsbeispiels den computergestützten Straßenentwurf. Am Ende der Lehrveranstaltung können sie die Konstruktion der Straßenachse und des Höhenplans sowie die Ausgestaltung des Straßenquerschnitts am Rechner durchführen und anschließend die erarbeitete Trassierung in ein digitales Geländemodell einbetten und damit den Straßenentwurf visualisieren.

Die Studierenden erlernen die empirische und die analytische Dimensionierungs-methode und wie die jeweiligen Eingangsgrößen zur Dimensionierung erfasst werden. Sie kennen Primärwirkungsmodelle zur Beschreibung des Spannungs-Dehnungs-Verhaltens und des Langzeitverhaltens unter Gebrauch und sind mit den Grundlagen der Baustoffund Strukturmodellierung sowie dem Technischen Regelwerk zur Dimensionierung vertraut. Am Ende der Lehrveranstaltung werden sie in der Lage sein, Dimensionierungsaufgaben selbstständig zu lösen.

Literatur

Richtlinien und Empfehlungen, Vorlesungsskripte

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Verkehr und Infrastruktur			

Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung				
Dimensionierung von Verkehrswegen				
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Michael Wistuba		2	Vorlesung/Übung	deutsch
Titel der Veranstaltung				
Computergestützter Straßenentwu	f und Visualisierung			
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Jens Grönniger Stefan Reiser Michael Wistuba		2	Übung	deutsch

Titel der Veranstaltung

Straßenplanung und -entwurf

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Stephan Büchler Jens Grönniger Michael Wistuba		2	Vorlesung/Übung	deutsch

Modulname	Verkehrsplanung		
Nummer	4318020	Modulversion	
Kurzbezeichnung	BAU-STD2-7	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	Institut für Verkehr und Stadtbauwesen
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Bernhard Friedrich
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur+ (90 Min.) oder mdl. Prüfung Der Antrag auf eine Klausur+ ist durc len. Nähere Informationen zu Abgabefriste gen des Moduls.	h die oder den Studierenden	
Zu erbringende Studienleistung	Es kann im Vorfeld eine Hausarbeit a mit 12,5 % eingeht.	ngefertigt werden, die in die	Abschlussnote des Moduls
Zusammensetzung der Modulnote			

[Verkehrsplanung (VÜ)]

- Einführung in die Verkehrsplanung
- Planungsmethodik
- Verhaltensbezogene Verkehrserhebungen
- Planung von Verkehrsnetzen
- Maßnahmenplanung im ÖPNV (externer Lehrbeauftragter aus der Praxis)
- Entscheidungsmodelle
- Verkehrsmodelle (Verkehrserzeugung, Verkehrsverteilung, Verkehrsaufteilung, Verkehrsumlegung)
- Wirkungsmodelle und Bewertungsverfahren
- Verkehrssicherheit

Qualifikationsziel

Die Studierenden erlangen einen Überblick über die Kennwerte der Mobilität, die daraus ableitbare sozioökonomische Bedeutung des Verkehrswesens und die dadurch begründete gesetzliche Verankerung der Raum- und Verkehrsplanung. Ausgehend von dem hiermit vermittelten Problem- und Aufgabenverständnis der Verkehrsplanung werden die Planungsmethodik sowie die Instrumente der Verkehrsnetzplanung im ÖPNV und Individualverkehr eingeführt. In diesem Zusammenhang lernen die Studierenden die Maßgaben des für Deutschland in der Verkehrsplanung geltenden Regelwerks kennen und können diese für Pla-nungsaufgaben anwenden. Durch die vertiefte Auseinandersetzung mit der Theorie und Praxis der Verkehrsnachfragemodellierung werden die Studierenden in die Lage versetzt, Maßnahmenuntersuchungen durchzuführen sowie Planungsalternativen quantitativ bewerten zu können. Sie werden damit qualifiziert, belastbare Empfehlungen für die Entwicklung der Verkehrsinfrastruktur leisten zu können.

Literatur

vgl. Vorlesung

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach ÖPNV				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Verkehr und Infrastruktur				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung					
Verkehrsplanung					
Dozent/in Mitwirkende SWS Art LVA Sprache					
Bernhard Friedrich		4	Vorlesung/Übung	deutsch	

Modulname	Angebotsplanung und Transportstrategien im Schienenverkehr			
Nummer	4302050	Modulversion		
Kurzbezeichnung	BAU-STD-05	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer		Einrichtung	Institut für Verkehrswesen, Eisenbahnbau und -betrieb	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Thomas Bernhard Siefer	
Arbeitsaufwand (h)	180			
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	mündliche Prüfung (30 min)			
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Angebotsplanung und Transportstrategien im Schienenverkehr (VÜ)]

- -Verkehrspolitik
- -Verkehrswirtschaft
- -Fahrwegproblematik
- -Transportplanung im Personen- und Güterverkehr
- -Angebotsstrategien im Personen- und Güterverkehr

Qualifikationsziel

Die Studierenden lernen die politischen Umfeldbedingungen und die marktwirtschaftlichen Aspekte des Schienenverkehrs kennen. Unter diesen Randbedingungen werden die Angebotsplanung und die Transportstrategien sowohl des Güter- als auch des Personenverkehrs vermittelt.

Die Studierenden sind nach Abschluss des Moduls in der Lage, die Angebotsformen des Schienenverkehrs differenziert zu betrachten

Literatur

Vorlesungsskript

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion Bereich Pflichtform Sem. Auswahl ECTS					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Verkehr und Infrastruktur				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

		,				
Belegungslogik bei der Wahl von Lehrveranstaltungen						
Anwesenheitspflicht						
Titel der Veranstaltung						
Angebotsplanung und Transportst	rategien im Schienenverkehr					
Dozent/in Mitwirkende SWS Art LVA Sprache						
Florian Beland Thomas Bernhard Siefer 4 Vorlesung/Übung deutsch						

Modulname	Umweltschutz in Verkehrs- und Stadtplanung			
Nummer	4318270	Modulversion		
Kurzbezeichnung	BAU-STD3-1	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung	Institut für Verkehr und Stadtbauwesen	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Bernhard Friedrich	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) oder mdl. Prüfung	(ca. 30 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Umweltschutz in Verkehrs- und Stadtplanung ($V\ddot{U}$)]

- Einführung in die Ökologie
- Grundlagen, Beurteilung und Berechnung der Ansprüche und Belastungen der Umweltmedien: Boden (incl. Altlasten) und Luft (incl. Schall, Energie)
- Umweltschutz in der Bauleitplanung
- Prinzipien ökologischer Bau- und Siedlungsweisen
- Landschaftsplanung (z.B. Eingriffsregelung)

[Nachhaltigkeit in Verkehrs- und Stadtplanung (VÜ)]

- Beziehungen zwischen Nachhaltigkeit und Verkehrs- und Stadtplanung
- Bedeutung des Raums für eine nachhaltige Entwicklung
- Bedeutung der Mobilität für eine nachhaltige Entwicklung
- Funktionsmischung
- Nachhaltige Verkehrsplanung
- Verkehrslärm
- Soziale Bedürfnisse in der Verkehrs- und Stadtplanung
- Ökonomische Bedürfnisse in der Verkehrs- und Stadtplanung

Qualifikationsziel

Die Studierenden erlangen vertiefte Kenntnisse über die vom Verkehr und der Siedlungstätigkeit ausgehenden Umweltbelastungen, ihre Entstehung und ihre Wirkungen sowie deren qualitative und quantitative Bewertung. Darüber hinaus erhalten die Studierenden ein umfassendes Grundlagenwissen über den vorbeugenden Umweltschutz in der Raum-, Stadt- und Verkehrsplanung.

Die Studierenden werden befähigt, den abstrakten Begriff "Nachhaltigkeit" in konkreten Fachplanungen umzusetzen. Hierbei werden die Zusammenhänge zwischen den Aspekten der Zieltrias (Ökologie, Ökonomie, Soziales) deutlich. Die Studierenden erwerben grundlegende Kenntnisse über die Anforderungen, die an eine nachhaltige Verkehrs- und Stadtplanung gestellt werden müssen. Sie verstehen, welche Funktionen die räumliche Planung und der Verkehr im Rahmen einer nachhaltigen Entwicklung besitzen. Anhand eines konkreten Beispiels werden gemeinsam Nachhaltigkeitskriterien entwickelt, die dann durch die Anwendung an einem Siedlungsgebiet überprüft werden. Ferner werden

konkrete Anforderung an den Umgebungslärm (insbesondere Verkehrslärm) sowie dessen Berechnung, Bewertung und Bewältigung vermittelt. Die Studierenden erlernen damit die Fähigkeit, den Verkehrslärm entsprechend der relevanten rechtlichen Rahmenbedingungen zu berechnen.

Literatur

Materialien zur Vorlesung vgl. Vorlesung

- Präsentationsfolien der Vorlesung
- VBUS, Vorläufige Berechnungsmethode für den Umgebungslärm an Straßen, Bundesanzeiger Nr. 154a, Jg. 58, vom 17. Aug. 2006
- Schröter, F.; Nachhaltigkeit im Bestand das Beispiel der Siedlung Lehndorf in der Stadt Braunschweig, in: ECOSOPHIA-News (Online-Magazin für gesamtheitliches Planen + Bauen + Wohnen (Österreich)), http://www.dr-frankschroeter. de/lehndorf/main_n_10-00_03.htm, 2000
- Richtlinien für den Lärmschutz an Straßen RLS-90 (1990)

Bundesminister für Verkehr, Abt. Straßenbau; erarbeitet durch Forschungsgesellschaft für Straßen- und Verkehrswesen, Arbeitsausschuss Immissionsschutz an Straßen, Köln; eingeführt durch Allgemeines Rundschreiben Straßenbau Nr. 8/1990 des Bundesministers für Verkehr

- Schröter, F.; Nachhaltigkeit in Verkehrs- und Stadtplanung, e-Book (kostenlos) im Internet:

http://bookboon.com/de/nachhaltigkeit-in-verkehrs-und-stadtplanung-ebook

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Verkehr und Infrastruktur				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung						
Umweltschutz in Verkehrs- und Stadtplanung						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Bernhard Friedrich Frank Schröter		2	Vorlesung/Übung	deutsch		

Titel der Veranstaltung					
Nachhaltigkeit in Verkehrs- und Stadtplanung					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Bernhard Friedrich Frank Schröter		2	Vorlesung/Übung	deutsch	

Modulname	Bahnbau im Konfliktfeld "Fahren und Bauen"				
Nummer	4398840	Modulversion			
Kurzbezeichnung		Sprache			
Turnus	in jedem Semester	Lehreinheit			
Moduldauer	1	Einrichtung	Institut für Verkehrswesen, Eisenbahnbau und -betrieb		
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Thomas Bernhard Siefer		
Arbeitsaufwand (h)		-			
Präsenzstudium (h)	54	Selbststudium (h)	124		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	2 Prüfungsleistungen: • Klausur (60 Min.) 2/6 LP • Referat 4/6 LP				
Zu erbringende Studienleistung					
Zusammensetzung der Modulnote					

Bahnbau im Konfliktfeld Fahren und Bauen (V)

Den Studierenden werden die Anforderungen an die Bauablaufplanung vermittelt. Jeder Schwerpunkt wird beispielhaft an konkreten Projekten erarbeitet.

Planung einer Baustelle an der Eisenbahninfrastruktur (Ü)

Für die Erarbeitung der Bauablaufplanung wird der Umgang mit der Software SOG erlernt. Die erworbenen Fähigkeiten werden im Rahmen einer Gruppenarbeit an einem Beispiel angewandt. Dazu sind eine schriftliche Ausfertigung zu erstellen und die Ergebnisse im Rahmen eines Vortrages zu präsentieren.

Qualifikationsziel

Die Studierenden erwerben ein grundlegendes Verständnis für die Randbedingungen aus Raumordnung und Umweltschutz, für die Anforderungen der unterschiedlichen Eisenbahnverkehrsarten und Stakeholder, für die Leistungsphasen im Bahnbau sowie für das Zusammenspiel der Gewerke auf einer Eisenbahnbaustelle. Zudem erlangen sie einen Überblick über die Methode BIM und deren Einsatzmöglichkeit bei Bahnprojekten. Sie erwerben Kenntnisse über Instandhaltungsstrategien und die Liegedauer von Oberbaukomponenten und können

diese passend auf neue Situationen übertragen. Die Studierenden sind in der Lage für einfache Bauplanungen einzelner Gewerke die erforderlichen Lastenhefte unter Berücksichtigung einer LCC-Betrachtung aufzustellen sowie dafür eine Mengen- & Kostenkalkulation durchzuführen. Die dafür notwendige Bauablaufplanung und Baustellenlogistik kann unter Berücksichtigung des Regelfahrplans im Konfliktfeld Fahren und Bauen erarbeitet werden.

Literatur

Skripte

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Verkehr und Infrastruktur				

 \uparrow

ZUGEHÖRIGE LEHR	VERANSTALTUNGEN				
Belegungslogik bei der	Wahl von Lehrveranstaltungen				
Anwesenheitspflicht					
Titel der Veranstaltung					
Bahnbau im Konfliktfeld	"Fahren und Bauen"			,	
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
		2	Vorlesung	deutsch	
Titel der Veranstaltung					
Planung einer Baustelle an der Eisenbahninfrastruktur					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
		2	Übung	deutsch	

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Vertiefungsfach Ver- und Entsorgungswirtschaft	
ECTS	18

Modulname	Abfall- und Ressourcenwirtschaft		
Nummer	4398320	Modulversion	
Kurzbezeichnung	BAU-STD-65	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Kai Münnich
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) oder mündl. Prüfur	ng (ca. 30 Min.)	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

Abfallwirtschaftskonzepte; Erfassungslogistik; Anlagen- und Verfahrenstechnik (Schwerpunkt biologische Verfahren); Methoden zur Prozesssteuerung und -überwachung; Emissionsschutz; Produktentwicklung Sekundärrohstoffe; Methoden zur Qualitätssicherung von Sekundärrohstoffen; Bemessungsgrundlagen, Planung und Auslegung von Anlagen sowie der Abfallanalytik.

Qualifikationsziel

Die Studierenden erwerben vertiefende Kenntnisse über Aufgaben und Lösungsmethoden der kommunalen und industriellen Abfall- und Ressourcenwirtschaft sowie der stoffstrombezogenen Kreislaufwirtschaft. Der besondere Fokus liegt auf den biologischen Behandlungs- und Verwertungsverfahren für Siedlungsabfälle. Hierbei werden erforderliche Arbeitsschritte und Methoden zur Implementierung von Managementmaßnahmen und Anlagentechnologien erlernt.

Bewertungsmethoden zur Beschreibung und Beurteilung ökonomischer, ökologischer und sozialer Auswirkungen werden vermittelt und angewendet. Spezialkenntnisse im Bereich der Nutzung regenerativer Energien aus Siedlungsabfällen werden erworben. Die Studierenden werden in dieser Vorlesung dazu befähigt, ihr erworbenes Wissen zur Beurteilung von Abfallwirtschaftskonzepten zu nutzen sowie überschlägigen Bemessungen von ausgewählten Prozessschritten/- aggregaten durchzuführen.

Literatur

ausführliches Skript, PowerPoint Folien, Literaturempfehlungen

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Abfall- und Ressourcenwirtschaft					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft					

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

)						
Titel der Veranstaltung							
Abfallverwertung und -behandlung							
Dozent/in	Mitwirkende	sws	Art LVA	Sprache			
Dr. Andreas Haarstrick		4	Vorlesung/Übung	deutsch			

Modulname	Deponietechnik und Altlastensanierung			
Nummer	4398330	Modulversion		
Kurzbezeichnung	BAU-STD-79	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Kai Münnich	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung	g (jeweils ca. 30 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Landfill Mining, Deponiebau und Geotechnik der Abfälle (VÜ)]

Grundlagen der Abfallmechanik und der hydraulischen Eigenschaften von Abfällen; Interaktion der verschiedenen Größen; konstruktive Elemente von Deponien; Deponieemissionen sowie deren Monitoring; Langzeitverhalten von Deponiekörpern; Stellung und Nachnutzung von Deponien; Deponien in Schwellen- und Entwicklungsländern; Rechtliche Grund-lagen.

[Altlastenerkundung und -sanierung $(V\ddot{U})$]

Schadsoffe im Boden und Grundwasser; Vorgehensweise zur Erkundung; Bodenluftmessungen; Entnahme von Boden-, Bo-denluft- und Grundwasserproben; Be- und Auswertung von Analysenergebnissen; Instu und Onsite/Offsite Sanierungs-techniken; Verfahren zur Grundwasserreinigung; Biologische, thermische und physikalische Bodenreinigung; Nachnutzung kontaminierter Standorte; Landfill Mining

Oualifikationsziel

Die Studierenden erwerben vertiefte Kenntnisse über den Bau und Betrieb von Hausmülldeponien. Dabei werden die Aspekte zur Stellung der Deponie in der Abfallwirtschaft, die rechtlichen Rahmenbedingungen, die Standortsuche, der technischen Installationen bis hin zur Nachsorge, des Monitorings und des Landfill Minings berücksichtigt. Weiterhin erlangen sie detaillierte Erkenntnisse zu den mechanischen Eigenschaften von Abfällen sowie dem Langzeitverhalten in Bezug auf Wasser- und Gasemissionen. Insgesamt wird ein Fokus auf die Situation in Schwellen- und Entwicklungsländern gelegt. Die Studierenden werden damit in die Lage versetzt, die wesentlichen dynamischen Prozesse einer Deponie zu verstehen und zu beurteilen und die erforderlichen Bauwerksbestandteile zu dimensionieren.

Die Studierenden erlangen fundierte Kenntnisse zur Ermittlung und Sanierung von Altlasten. Dabei werden die grundlegenden Aspekte zu möglichen Schadstoffen, Eintragsquellen und Erkundung des Bodens und des Grundwas-sers betrachtet. Die möglichen Techniken zur Sanierung kontaminierter Standorte (biologisch, chemisch und physikalisch) werden erlernt. Der Spezialfall der Sanierung von alten Hausmüllkippen wird ausführlich erarbeitet. Die Studierenden werden damit in die Lage versetzt, eine Altlastenverdachtsfläche zu beurteilen und eine geeignete Sanierungstechnik für den jeweils speziellen Fall auszuwählen.

Literatur

PowerPoint Folien, Literaturempfehlungen

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Abfall- und Ressourcenwirtschaft					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Das Modul kann im Studiengang Umweltingenieurwesen nur belegt werden, wenn das Modul "Grundlagen der Geotechnik und Altlastenerkundung" nicht belegt wird.

Anwesenheitspflicht

Titel der Veranstaltung

Altlastenerkundung, und -sanierung

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Kai Münnich		2	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Landfill Mining, Deponiebau und Geotechnik der Abfälle

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Kai Münnich		2	Vorlesung/Übung	deutsch

Modulname	Mechanische und thermische Abfallbehandlung und Luftreinhaltung			
Nummer	4398340	Modulversion		
Kurzbezeichnung	BAU-STD-82	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	2	Einrichtung		
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Kai Münnich	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mündl. Prüfu	ing (jeweils ca. 30 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Mechanische und thermische Behandlung von Abfällen (VÜ)]

Die Vorlesung "Mechanische und thermische Behandlung von Abfällen" vermittelt Wissen zur thermochemischen Konversion von Siedlungsabfällen. Sie konzentriert sich auf Hausmüll, Gewerbeabfälle, Klärschlamm und Sonderabfall. Beschrieben wird der Weg von der mechanischen Vorbereitung über die Konversion bis zur Gasreinigung; Bemessungsgrundlagen, Planung und Auslegung von Anlagen. Neben technischen Aspekten werden Rechts- und Genehmigungsaspekte behandelt.

[Technologien und Konzepte zur Luftreinhaltung und Klimaschutz (VÜ)]

Kenntnis über abluftrelevante Rechtsvorschriften, baulich- und betriebliche Anforderungen, diverse Abluftbehandlungstechnologien, Erfassungs- und Analytik-Verfahren sowie der Fähigkeit zur konzeptionellen und planerischen Auslegung einzelner Bauteile.

Qualifikationsziel

Die Studierenden erlangen fundierte Kenntnisse über Verfahren zur mechanischen und thermischen Behandlung von Abfällen. Hierbei werden die relevanten Grundlagen des Abfallrechtes, insbesondere mit den gesetzlichen Vorschriften zur thermischen Abfallbehandlung, berücksichtigt. Weiterhin werden detaillierte Kenntnisse über Müllverbrennungsanlagen, die thermische Nutzung von Abfällen in industriellen Prozessen sowie in Biomassekraftwerken mit den jeweilig vorgeschalteten Aufbereitungsketten vermittelt. Die Lehrveranstaltung befähigt die Studierenden, Leistungsdaten von Verbrennungsanlagen zu berechnen sowie die grobe Auslegung von Anlagen vorzunehmen.

Die Studierenden erwerben grundlegende Kenntnisse über Technologien und Konzepte zur Emissionsvermeidung und - verminderung sowie zur Luftreinhaltung mit einer Fokussierung auf die Sektoren Abfall, Abwasser und Energieerzeu- gung. Die Studierenden sind in der Lage, Gesamtlösungen zu entwickeln, zu planen, umzusetzen/auszuführen und zu betreiben. Weiterhin können sie regionale und überregionale ökologische Zusammenhänge erkennen, analysieren und bewerten, um diese Erkenntnisse bei den planerischen Aufgaben zu berücksichtigen.

Literatur

PowerPoint Folien, Literaturempfehlungen.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Abfall- und Ressourcenwirtschaft			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

- -Teilnahmebeschränkung auf 40 Personen.
- -Dieses Modul kann nur in der Vertiefung Abfallwirtschaft oder Siedlungswasserwirtschaft belegt werden.

Anwesenheitspflicht

Titel der Veranstaltung

Mechanische und thermische Behandlung von Abfällen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Andreas Haarstrick		2	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Technologien und Konzepte zur Luftreinhaltung und Klimaschutz

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Andreas Haarstrick		2	Vorlesung/Übung	deutsch

Modulname	Internationale Abwasser- und Abfallw	virtschaft	
Nummer	4398310	Modulversion	
Kurzbezeichnung	BAU-STD-79	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	Institut für Siedlungswas- serwirtschaft
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Thomas Dockhorn
Arbeitsaufwand (h)			
Präsenzstudium (h)	50	Selbststudium (h)	130
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Es werden Kenntnisse aus dem Modu "Abfall- und Ressourcenwirtschaft" v		nmbehandlung" und / oder
Zu erbringende Prüfungsleistung/ Prüfungsform	Portfolio und Referat über das ganze de Die Studierenden erarbeiten in Kleing die zusammen mit der Vorlesung als Das Portfolio umfasst eine zusammen Gruppenarbeit zur Konzepterstellung wissenschaftlich eingeordnet werden. Gruppenarbeit mit enger Betreuung de Gruppenarbeit werden außerdem am I sowie dem Prüfenden und einem fach in einer Präsentation vorgestellt und a von der Portfolioprüfung ist bis zwei Referatstermine und der Termin für de veranstaltung zu Beginn des Semester	ruppen 30-minütige Referate Vorbereitung für die Abschlugestellte Leistungsmappe in im Rahmen der Abschlussver Die Erarbeitung der Portfoliurch die Institutsmitarbeiter/ Ende der Abschlussveranstal kundigen Beisitzer oder eine ls schriftliche Ausarbeitung Wochen vor der Abschlussver ie Abschlussveranstaltung w	der die Ergebnisse der eranstaltung dienen. der die Ergebnisse der eranstaltung dargestellt und os erfolgt in selbstständiger innen. Die Ergebnisse der tung den Teilnehmenden er fachkundigen Beisitzerin eingereicht. Die Abmeldung eranstaltung möglich. Die
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Internationale Abfallwirtschaft (V)]

Die einstündige Vorlesung stellt die Besonderheiten der Abfallbehandlung im internationalen Kontext auch in Entwicklungs- und Schwellenländern dar und dient somit der Einführung in das Thema des dazugehörigen Seminars Abfall-, Siedlungswasser- und Ressourcenwirtschaft in Entwicklungs- und Schwellenländern.

[Abfall-, Siedlungswasser- und Ressourcenwirtschaft in Entwicklungs- und Schwellenländern (S)]

Die Teilnehmer arbeiten eigenständig in Gruppen, mit dem Ziel ein kommunales Entsorgungskonzept zur Abwasserreinigung und Abfallbehandlung für Standorte aus unterschiedlichen Regionen der Welt zu erstellen. Um die verschiedenen relevanten Informationen zu den Standorten zusammenzutragen, erstellen die Teilnehmer in Zweiergruppen 30-minütige Referate, in denen grundlegende Themen wie z.B. Verfahrenstechniken der Abwasserreinigung und Abfallbehandlung, Kosten und Planung von technischen Anlagen aber auch regionale Randbedingungen (Klima, Wirtschaft, Infrastruktur, rechtliche Randbedingungen, Kultur, Religion etc.) den Teilnehmern vorgestellt werden. In einer zweitägigen Blockveranstaltung am Ende des Semesters entwickeln die Studierenden in Gruppenarbeit Entsorgungskonzepte für die jeweils ausgewählten Standorte in Teamarbeit entwickelt. Die Konzepte werden am Ende der Blockveranstaltung den anderen Teilnehmern des Seminars im Rahmen einer Präsentation vorgestellt sowie als schriftliche Ausarbeitung eingereicht.

Qualifikationsziel

Die Studierenden dieses Moduls sind in der Lage, Probleme aus den Bereichen internationale Abwasser- und Abfallwirt- schaft wissenschaftlich einzuordnen und zu lösen. Sie erwerben grundlegende Kenntnisse über die Lösung abfallund siedlungswasserwirtschaftlicher Problemstellungen in Schwellen- und Entwicklungsländern unter Berücksichtigung landesspeziefischer Aspekte. Die Befähigung zur Adaption geeigneter Konzepte und Technologien an vorgegebene Standorte sowie Kenntnisse über Stoffstrommanagement und Ressourcenschutz mit besonderem Bezug zur Globalisierung bilden ein weiteres Lernziel. Sie sind befähigt, im Team ingenieurtechnische Probleme auf wissenschaftlichem Niveau zu diskutieren, sich selbständig notwendiges weiteres Wissen anzueignen und werden in die Lage versetzt, unter Berücksichtigung der landesspeziefischen Rahmenbedingungen vorhandene Probleme zu analysieren und zu beurteilen sowie Lösungsstrategien zu erarbeiten und die zur Umsetzung erforderlichen organisatorischen (Regional Governance) und technischen Maßnahmen zu planen und auszuführen. Sie sind in der Lage diese erarbeiteten Lösungsvorschläge der Öffentlichkeit in klarer und eindeutiger Weise zu präsentieren. Durch die intensive Auseinandersetzung mit den jeweiligen Themen in Kleingruppen sind die Qualifikationsziele Teamarbeit, Diskusionsfähigkeit und rhetorische Fähigkeiten integraler Bestandteil dieses Moduls. In der Abschlussveranstaltung ist das Qualifikationsziel der jeweiligen Veranstaltung auch die inhaltlich kontroverse Auseinandersetzung mit den vorgetragenen Konzepten der übrigen Teilnehmer.

Literatur

Die relevante Fachliteratur kann je nach Aufgabenstellung variieren. Die erforderliche Literatur steht den Studierenden in

der Institutsbibliothek zur Verfügung.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Abfall- und Ressourcenwirtschaft			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Sied- lungswasserwirtschaft			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Die vorherige Teilnahme am Modul Abwasser- und Klärschlammbehandlung und/oder Abfall- und Ressourcenwirtschaft wird empfohlen.

Dieses Modul kann nur in der Vertiefung Siedlungswasserwirtschaft oder Abfallwirtschaft belegt werden. Teilnahmebeschränkung auf 40 Personen.

Anwesenheitspflicht

Für das Seminar besteht Anwesenheitspflicht in den 50 Stunden des Präsenzstudiums (Einführungsveranstaltung, Referatstermine, Abschlussveranstaltung). Bei entschuldigten Fehlzeiten (z.B. Krankheit, Kinderbetreuung u.ä.) wird eine individuelle Absprache getroffen, welche Ersatzleistungen erbracht werden können, um die Qualifikationsziele Teamarbeit, Diskusionsfähigkeit, rhetorische Fähigkeiten, wissenschaftliche Erarbeitung eines Entsorgungskonzeptes dennoch zu erreichen. Mögliche Fehlzeiten dürfen 15% des Präsenzstudiums nicht überschreiten, damit die Qualifikationsziele noch erreicht werden können.

Titel der Veranstaltung					
Internationale Abfallwirtscha	ft				
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache	
Dr. Andreas Haarstrick		1	Vorlesung	deutsch	
Titel der Veranstaltung					
Abfall-, Siedlungswasser- un	d Ressourcenwirtschaft in Entv	wicklungs- und Schw	ellenländern		

Abfall-, Siedlungswasser- und Ressourcenwirtschaft in Entwicklungs- und Schwellenländern					
Dozent/in Mitwirkende SWS Art LVA Sprache					
Thomas Dockhorn Dr. Andreas Haarstrick Sybille Karwat		3	Seminar	deutsch	

Modulname	Abfallanalytisches Praktikum für das	Umweltingenieurwesen	
Nummer	4398350	Modulversion	
Kurzbezeichnung	BAU-STD5-35	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Dr. Andreas Haarstrick
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Darstellung der Analysen in einen tens. Für das Praktikum besteht Anwes ums (Einführungsveranstaltung, L Mögliche Fehlzeiten dürfen 10 % Qualifikationsziele noch erreicht v	enheitspflicht in den 42 St aborversuche, Abschlussy des Präsenzstudiums nich	unden des Präsenzstudi- veranstaltung).
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

Das Praktikum ist in zwei Abschnitte unterteilt. Der erste Abschnitt umfasst die theoretischen Grundlagen der Abfallanalytik, die in 6 Vorlesungen mit je 2 SWS vermittelt werden. Der zweite Abschnitt umfasst den praktischen Teil mit der Probenaufbereitung und Analyse. Die Studierenden erarbeiten dabei anhand von Laborversuchen physikalische, chemische und biologische Grundlagen der Abfallcharakterisierung und erlernen verschiedenen Analysenverfahren in Verbindung mit konkreten Versuchen im Labormaßstab. Die Versuche werden in betreuten Kleingruppen durchgeführt und ausgewertet. Die Versuchsergebnisse werden am Ende des Praktikums unter den Gruppen ausgetauscht wissenschaftlich interpretiert und statistisch ausgewertet, im Rahmen einer Präsentation vorgestellt und als schriftliche Ausarbeitung eingereicht.

Qualifikationsziel

Die Studierenden sind in der Lage in Versuchen praktische Fragestellungen im Bereich der Abfallcharakterisierung und Stoffanalytik im Team zu bearbeiten und dabei verschiedene analytische Methoden zu beherrschen. Die erhaltenen Daten werden eigenständig und nach wissenschaftlicher Vorgehensweise diskutiert und interpretiert. Sie sind befähigt, sich selbständig notwendiges weiteres Wissen anzueignen und können im Team Lösungen für umweltrelevante Fragestellungen zu Themen wie kommunale und industrielle Abfallbehandlung und Gefährdungsrisiken finden. Durch die intensive Auseinandersetzung mit Praktikumsthemen in Kleingruppen sind die Qualifikationsziele Teamarbeit, Diskussionsfähigkeit und die Fähigkeit klar formulierter und wissenschaftlicher Darstellung von Problemstellung (Hypothese), Lösung und Ergebnis.

Literatur

Die erforderliche Literatur wird mit dem Praktikumsskript bekannt gegeben.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Abfall- und Ressourcenwirtschaft			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Die Versuchstermine des Praktikums finden nach Absprache im Institutslabor statt. Die Teilnahme an den Versuchsterminen der eigenen Gruppe ist Pflicht für die jeweiligen Gruppenteilnehmerinnen und –teilnehmer. Die Teilnehmerzahl ist auf 12 begrenzt.

Titel der Veranstaltung

Praktikum zu Abfall- und Ressourcenwirtschaft und Deponietechnik und Altlastensanierung

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
		4	Praktikum	deutsch

Modulname	Abwasser- und Klärschlammbehandlu	ing	
Nummer	4398270	Modulversion	
Kurzbezeichnung	BAU-STD-65	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	Institut für Siedlungswas- serwirtschaft
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Thomas Dockhorn
Arbeitsaufwand (h)			
Präsenzstudium (h)	70	Selbststudium (h)	110
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung	g (ca. 60 Min.)	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Verfahrenstechnik der Abwasserreinigung (VÜ)]

Vorstellung von Konzepten und Techniken zur mechanischen Abwasserreinigung, Berechnung von Rechenanlagen, Sandfängen und Flotationsanlagen, Erarbeitung von Gesamtkonzepten zur kommunalen Abwasserreinigung, Bemessung von Belebungsanlagen nach unterschiedlichen Verfahren, Berechnung von Belüftungssystemen, Vorstellung von Fällung und Flockung, Vermittlung der Grundlagen der Abwasseranalytik und der Methoden der Prozessüberwachung

[Klärschlammbehandlung und -beseitigung (VÜ)]

Konzepte zur Schlammbehandlung und -entsorgung, Vorstellung der Klärschlammbehandlungsverfahren zur Eindickung, Entwässerung, Stabilisierung, Trocknung und Desinfektion, Betrachtung thermischer und stofflicher Entsorgungsmöglichkeiten, rechtliche Rahmenbedingungen, neue Technologien zur Klärschlammminimierung und Wertstoffrückgewinnung

Qualifikationsziel

Die Studierenden erwerben ein breites, detailliertes und kritisches Verständnis über Ziele und Verfahren der kommunalen Abwasserreinigung, Klärschlammbehandlung und -entsorgung. Aufbauend auf den Grundlagen der Siedlungswasserwirtschaft haben sich die Studierenden die Kenntnisse zum Verständnis, zur Planung sowie zum Bau und Betrieb von entsprechenden Anlagen erarbeitet, so dass sie in der Lage sind, derartige Techniken eigenständig zu dimensionieren und realisieren. Sie können eigenständig forschungs- oder anwendungsorientierte Projekte im Bereich der Abwasser- und Schlammbehandlung durchführen und derartige Projekte in einem gesellschaftlichen, ethischen Zusammenhang kritisch beurteilen.

Literatur

Es stehen ausführliche Skripte zu den Veranstaltungen [Verfahrenstechnik der Abwasserreinigung] und [Klärschlammbehandlung] zur Verfügung.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Sied- lungswasserwirtschaft			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft			

ZUGEHÖRIGE LEHRVER	ANSTALTUNGEN			
Belegungslogik bei der Wahl	von Lehrveranstaltungen			
Anwesenheitspflicht				
<u>L</u>				
Titel der Veranstaltung				
Klärschlammbehandlung und	-beseitigung			
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Katrin Bauerfeld		2	Vorlesung/Übung	deutsch
Titel der Veranstaltung				
Verfahrenstechnik der Abwass	serreinigung			
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Katrin Bauerfeld Thomas Dockhorn		3	Vorlesung/Übung	deutsch

	-		
Modulname	Trinkwasseraufbereitung und Si	iedlungsentwässerung	
Nummer	4398300	Modulversion	
Kurzbezeichnung	BAU-STD-06	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Thomas Dockhorn
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Sied- lungswasserwirtschaft			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft			

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung					
Siedlungsentwässerung					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Andreas Hartmann Sören Hornig Xiao Xu		2	Vorlesung/Übung	deutsch	
Titel der Veranstaltung					
Titel der veranstattung					
Trinkwasseraufbereitung					
	Mitwirkende	SWS	Art LVA	Sprache	

Modulname	Trinkwasseraufbereitung, Wasserchemie und Siedlungsentwässerung			
Nummer	4398290	Modulversion		
Kurzbezeichnung	BAU-STD2-64	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung	Institut für Siedlungswas- serwirtschaft	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Thomas Dockhorn	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung staltungen	g (ca. 60 Min.) über die jewe	ils ausgewählten Lehrveran-	
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Trinkwasseraufbereitung(VÜ)]

Vermittlung der Anforderungen an Trinkwasser und Rohwasserqualitäten, grundsätzliche Verfahren der Trinkwasseraufbereitung, Entsäuerung, Flockung, Filtration, Enteisenung/Entmanganung, Elimination von persistenten organischen Stoffen (chem. Oxidation, Adsorption, auch in Kombination mit biol. Abbau), Enthärtung/Entsalzung (Fällung, Ionenaustausch, Umkehrosmose, biol. Verfahren), Entkeimung, Beispiele zur Dimensionierung von Aufbereitungsanlagen, Meerwasserentsalzung, internationale Trinkwasserfragen, Übung zur Dimensionierung eines Wasserwerkes

[Wasserchemie und Wasseranalytik (VÜ)]

Grundlagen organische Chemie, Wasser und seine Eigenschaften, Berechnungs- und Anwendungsbeispiele zu Lösungs- /Fällungsreaktionen und Säure-Base-Gleichgewichten, Probenahme und Probenaufbereitung für siedlungswasserwirtschaftliche Fragestellungen, Analytik trink- und abwasserspezifischer Kenngrößen (Summenparameter, Schnelltests und Routineanalytik), instrumentelle Spezialanalytik (Atom- und Massenspektrometrie, Chromatographie)

[Siedlungsentwässerung(VÜ)]

Die Veranstaltung besteht aus drei Vorlesungsblöcken und zwei Exkursionstermine, sowie einer Einführungsveranstaltung. Die Theorieveranstaltungen vermitteln das Vorwissen für die Exkursionen und sollen auch in Gruppendiskussionen auf die Exkursionen vorbereiten. Die Vorlesungsblöcke behandeln die Themen Kanalnetzhydraulik, Kanalnetzdimensionierung, Kanalnetzinspektion, Rohre, Rohrmaterialien, Sonderbauwerke, Trenn- und Mischkanalisation. In Ergänzung zur Vorlesung finden Exkursionen mit praktischen Übungen statt (Kanaleinstieg, Kanalbaustellenbesichtigung, Okerfahrt unter abwassertechnischen Gesichtspunkten).

Qualifikationsziel

[Trinkwasseraufbereitung]

Die Studierenden erhalten einen Überblick über das Fachgebiet Trinkwasser und erwerben vertiefte Kenntnisse über Verfahren der Trinkwasseraufbereitung. Anhand von Beispiele zu Trinkwassergewinnungs- und aufbereitungsanlagen werden Sie in die Lage versetzt, derartige Anlagen zu dimensionieren. Die Studierenden sind mit der Problematik der weltweiten Trinkwasserversorgung vertraut und sind in der Lage weitgehend eigenständig forschungs- und anwendungsorientierte Projekte im Bereich Trinkwasser durchzuführen.

[Wasserchemie und analytik]

Die Studierenden erwerben vertiefte Kenntnisse über die Zusammenhänge der Wasserchemie sowie der im Fach Siedlungswasserwirtschaft

erforderlichen Labor- und Online-Analytik. Die Studierenden werden in die Lage versetzt, trinkwasserchemische, abwasserchemische sowie biochemische Fragestellungen zu bearbeiten und Lösungsmöglichkeiten aufzuzeigen.

[Siedlungsentwässserung]

Die Studierenden erwerben vertiefte Kenntnisse über die Zusammenhänge in modernen Kanalisationsnetzen und sind in der Lage die hydraulischen sowie topographischen und betrieblichen Zusammenhänge zu analysieren und zu verste-hen. Die Studierenden werden in die Lage versetzt, entsprechende Berechnungen eigenständig durchzuführen, vorhandene Anwendersoftware zu benutzen und zu verstehen und die dabei erzielten Berechnungsergebnisse sachgerecht zu beurteilen. Sie sind in der Lage Netze zu dimensionieren sowie bestehende Netze zu beurteilen. Sie sind in der Lage Fragen der Abwasserableitung in Bezug auf Umweltschutz und gesellschaftliche und ethische Fragestellungen einzuordnen und dementsprechend wissenschaftlich fundierte Entscheidungen zu treffen.

Literatur

Es stehen ausführliche Skripte zu den Veranstaltungen Trinkwasseraufbereitung und Wasserchemie zur Verfügung, die Vorlesungspräsentationen Wasserchemie werden als Download zur Verfügung gestellt, Literatur für die Veranstaltung Siedlungsentwässerung wird in den Vorlesungen bekannt gegeben.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Von den angebotenen drei Lehrveranstaltungen (Vorlesung und Übung) sind zwei auszuwählen.

Anwesenheitspflicht

In der Veranstaltung Siedlungsentwässerung besteht Anwesenheitspflicht (Einführungsveranstaltung, Theorieunter-richt, Exkursionen). Der Theorieunterricht ist unabdingbare Voraussetzung für die wissenschaftliche Einordnung der Exkursionen. Die Teilnahme an den Exkursionen ist Pflicht (2 Exkursionen entsprechen 12 Stunden Präsenzzeit). Bei entschuldigten Fehlzeiten (z.B. Krankheit, Kinderbetreuung u.ä.) wird eine individuelle Absprache getroffen, welche Ersatzleistungen erbracht werden können, um die fehlende Präsenzzeit auszugleichen. Mögliche Fehlzeiten dürfen 15% der Präsenzzeit nicht überschreiten, damit die Qualifikationsziele noch erreicht werden können.

Titel der veranstattung						
Siedlungsentwässerung						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Andreas Hartmann Sören Hornig Xiao Xu		2	Vorlesung/Übung	deutsch		

Titel der Veranstaltung				
Wasserchemie und Wassera	nnalytik			
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Katrin Bauerfeld		2	Vorlesung/Übung	deutsch
Titel der Veranstaltung				
Trinkwasseraufbereitung				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Thomas Dockhorn Sören Hornig Hooman Mohammadi		2	Vorlesung/Übung	deutsch

Modulname	Laborpraktikum und Bemessung von Anlagen			
Nummer	4398280	Modulversion		
Kurzbezeichnung	BAU-STD3-3	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung	Institut für Siedlungswas- serwirtschaft	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Thomas Dockhorn	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Es werden Kenntnisse aus dem Modu setzt.	l "Abwasser- und Klärschlar	nmbehandlung" vorausge-	
Zu erbringende Prüfungsleistung/ Prüfungsform	Prüfungsleistung: Portfolio und Referat getrennt für jede Veranstaltung Das Portfolio umfasst für jede Veranstaltung eine zusammengestellte Leistungsmappe in der die Ergebnisse der Gruppenarbeit im Rahmen der Anlagendimensionierung (Bemessung und Auslegung von Anlagen) dargestellt und wissenschaftlich eingeordnet werden bzw. in der die Ergebnisse der Gruppenarbeit im Labor (Praktikum) protokolliert und wissenschaftlich ausgewertet werden. Die Erarbeitung der Portfolios erfolgt in selbstständiger Gruppenarbeit mit enger Betreuung durch die Institutsmitarbeiter. Die Ergebnisse der Gruppenarbeit werden außerdem am Ende des Semesters den Teilnehmern der Veranstaltung sowie dem Prüfenden und einem fachkundigen Beisitzer oder einer fachkundigen Beisitzerin in einem Referat vorgestellt. Die Abmeldung von der Portfolioprüfung und dem Referat ist bis zwei Wochen vor dem Referatstermin möglich. Die Referatster- mine werden in der Einführungsveranstaltung zu Beginn des Semesters festgelegt.			
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Bemessung und Auslegung von Anlagen (S)]

Anhand konkreter Fallbeispiele erarbeiten die Studierenden in Kleingruppen unter Anleitung die Dimensionierung und Bemessung unterschiedlicher Anlagen zur kommunalen und/oder industriellen Abwasser- und Klärschlammbehandlung. Die Entwicklung von Leistungsbeschreibungen und Erläuterungsberichten, Erstellung eines Lageplans, hydraulische Dimensionierung mit Längsschnitt und überschlägige Kostenkalkulation sind Bestandteil der Gruppenaufgabe. Das in den einzelnen Gruppen entwickelte Anlagenkonzept wird am Ende des Semesters in einer Präsentation vorgestellt und diskutiert, sowie als schriftliche Ausarbeitung eingereicht.

[Praktikum/Seminar zur Verfahrenstechnik der Abwasser-, Schlamm- und Wasserbehandlung (Ü)] Im Praktikum erarbeiten sich die Studierenden anhand von Laborversuchen wichtige physikalische, chemische und biologische Grundlagen der Abwasserreinigung und erlernen verschiedene Analyseverfahren anhand von konkreten Versuchen, z.B. Durchführung von Atmungsmessungen, Fällungs- und Flockungsversuche, Adsorptionsversuche, Faulversuche im Labormaßstab, Untersuchungen zu unterschiedlichen Entwässerungsmethoden. Die Versuche werden in betreuten Kleingruppen durchgeführt, anschließend ausgewertet und wissenschaftlich interpretiert. Die Versuchsergebnisse werden am Ende des Semesters den anderen Teilnehmern des Seminars im Rahmen einer Präsentation vorgestellt sowie als schriftliche Ausarbeitung eingereicht.

Qualifikationsziel

Die Studierenden dieses Moduls sind in der Lage, eigenständig forschungstechnische Projekte im Labor zu bearbeiten und im Team ingenieurtechnische Probleme auf wissenschaftlichem Niveau zu diskutieren. Sie sind befähigt, sich selbständig notwendiges weiteres Wissen anzueignen und können im Team Lösungen für umweltrelevante Fragestel-

lungen zu Themen wie kommunale und industrielle Abwasserreinigung, Klärschlammbehandlung, Anaerobtechnik und Biogasgewinnung finden. Sie können ihr bereits erworbenes Wissen auf dem Gebiet der Siedlungswasserwirtschaft zur Lösung von komplexen ingenieur- und umwelttechnischen Problemen einsetzen und sind auch in der Lage, diese erarbeiteten Lösungsvorschläge der Öffentlichkeit in klarer und eindeutiger Weise zu präsentieren. Durch die intensive Auseinandersetzung mit den jeweiligen Themen in Kleingruppen sind die Qualifikationsziele Teamarbeit, Diskursionsfähigkeit und rhetorische Fähigkeiten integraler Bestandteil dieses Moduls. In der Abschlussveranstaltung ist das Qualifikationsziel der jeweiligen Veranstaltung auch die inhaltlich kontroverse Auseinandersetzung mit den vorgetragenen Themen der übrigen Teilnehmer (Qualifikationsziele: rhetorische Fähigkeiten und Diskusionsfähigkeit), da die Studierenden ihre ingenieurtechnischen Konzepte jeweils auch den anderen Gruppen vorstellen und mit den Teilnehmern kritisch diskutieren.

Literatur

Die für die einzelnen Lehrveranstaltungen relevante Fachliteratur kann je nach Aufgabenstellung variieren. Die erforderliche Literatur steht den Studierenden in der Institutsbibliothek zur Verfügung und wird jeweils zu Beginn der Veranstaltungen bekannt gegeben.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Sied- lungswasserwirtschaft				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Die vorherige Teilnahme am Modul Abwasser- und Klärschlammbehandlung ist Voraussetzung für dieses Modul. Studierende anderer Universitäten/Fakultäten/Studiengänge sollen entsprechende Kenntnisse nachweisen.

Anwesenheitspflicht

Für die Veranstaltungen 'Bemessung und Auslegung von Anlagen' besteht Anwesenheitspflicht in den 16 Stunden des Präsenzstudiums (Einführungsveranstaltung, Abschlussveranstaltungen). Bei entschuldigten Fehlzeiten (z.B. Krankheit, Kinderbetreuung u.ä.) wird eine individuelle Absprache getroffen, welche Ersatzleistungen erbracht werden können, um die Qualifikationsziele Teamarbeit, Diskursfähigkeit und rhetorische Fähigkeiten dennoch zu erreichen. Mögliche Fehlzeiten dürfen 15% des Präsenzstudiums nicht überschreiten, damit die Qualifikationsziele noch erreicht werden können.

Für das Praktikum besteht Anwesenheitspflicht in den 40 Stunden des Präsenzstudiums (Einführungsveranstaltung, Laborversuche, Abschlussveranstaltung). Bei entschuldigten Fehlzeiten (z.B. Krankheit, Kinderbetreuung u.ä.) wird eine individuelle Absprache getroffen, welche Ersatzleistungen erbracht werden können, um die Qualifikationsziele Teamarbeit, Diskursfähigkeit, rhetorische Fähigkeiten, wissenschaftliche Auswertung der praktischen Laborarbeit dennoch zu erreichen. Mögliche Fehlzeiten dürfen 15% des Präsenzstudiums nicht überschreiten, damit die Qualifikationsziele noch erreicht werden können.

Titel der Veranstaltung

Bemessung und Auslegung von Anlagen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Thomas Dockhorn Michel Harder Sybille Karwat		2	Seminar	deutsch

Titel der Veranstaltung				
Praktikum/Seminar zur Verfahrens	stechnik der Abwasser-, Schlamm-	und Wasserbel	handlung	
Dozent/in Mitwirkende SWS Art LVA Sprach				
Thomas Dockhorn Michel Harder Sören Hornig Sybille Karwat Hooman Mohammadi		2	Praktikum	deutsch

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Vertiefungsfach Wasserwesen	
ECTS	18

Modulname	Hydrologie und Wasserwirtschaft		
Nummer	4310260	Modulversion	
Kurzbezeichnung	BAU-STD4-2	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Kai Schröter
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung	g (ca. 60 Min.)	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Hydrologie und Wasserwirtschaft (VÜ)]

Behandlung der hydrologischen Prozesse Abflussbildung, Abflusskonzentration und Wellenablauf; Integration der Prozesse in einem flächendetaillierten Niederschlag-Abfluss-Modell für Kurzzeit- und Langzeitsimulationen; Modellanwendungen am PC für die Einzelprozesse. Anwendung eines Niederschlag-Abfluss-Modells am PC auf ein Einzugsgebiet für Hochwasserschutzplanungen und für Wasserhaushaltsuntersuchungen; Bewertung der Ergebnisse; Ermittlung des Hochwasserschadenpotenzials ohne und mit Schutzmaßnahmen.

Qualifikationsziel

Die Studierenden erlangen Kenntnis über die Prozesse Abflussbildung, Abflusskonzentration und Wellenablauf der Hydrologie sowie deren Umsetzung in Simulationsmodelle. Sie werden befähigt, ein mesoskaliges Niederschlag-Abflussmodell, in dem alle Prozesse integriert sind, auf ein Einzugsgebiet anzuwenden, Ergebnisse zu bewerten und Hochwasserschutzplanungen durchzuführen. Sie erwerben die Grundlagen, eine ökonomische Bewertung von Hochwasserschutzmaßnahmen bezüglich Nutzen und Kosten durchzuführen.

Literatur

- -Dyck, S., Peschke, G. (1995): Grundlagen der Hydrologie. Verlag für Bauwesen, Berlin.
- -Maniak, U (2010): Hydrologie und Wasserwirtschaft. Eine Einführung für Ingenieure. Springer Verlag, Heidelberg -Fohrer, N. (Hrsg.), Bormann, H., Miegel, K., Casper, M., Bronstert, A., Schumann, A., Weiler, M. (2016): Hydrologie.

utb.basics, Haupt Verlag, Bern.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				

The der veranstaltung						
Hydrologie und Wasserwirtschaft						
Dozent/in Mitwirkende SWS Art LVA Sprache						
Günter Meon Hannes Müller-Thomy		4	Vorlesung/Übung	deutsch		

Modulname	Gewässerschutz - Modellierung				
Nummer	4310730	Modulversion			
Kurzbezeichnung	BAU-STD3-71	Sprache	deutsch		
Turnus		Lehreinheit			
Moduldauer	1	Einrichtung			
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Kai Schröter		
Arbeitsaufwand (h)					
Präsenzstudium (h)	56	Selbststudium (h)	124		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen	Es werden Grundkenntnisse der Gewässergüte vorausgesetzt.				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) oder mdl. Prüfung (ca. 60 Min.)				
Zu erbringende Studienleistung	Hausarbeit				
Zusammensetzung der Modulnote					

[Modellierung der Gewässergüte (VÜ)]

Gewässergüteparameter und deren Prozesse; Analysemethoden der Messdaten; Differenzialgleichungen zur Simulation eines einfachen vollständigen und unvollständigen Systems; Numerische Methoden; Wärmehaushalt; Modellierung der Gewässergüte; ; Anwendungen am Rechner

Qualifikationsziel

Die Studierenden erwerben eine fundierte Kenntnis der Interaktion von Wassermenge und Wasserqualität in fließenden und stehenden Gewässern. Sie werden qualifiziert, die Gewässergüte naturwissenschaftlich-technisch zu quantifizieren und mittels Modellalgorithmen zu beschreiben. Mithilfe von Modellanwendungen erlernen sie Lösungen zur Verbesserung der Gewässergüte.

Literatur

Steven C. Chapra, Surface Water-Quality Modeling, Waveland Press 2008 James L. Martin & Steven C. McCutcheon, Hydrodynamics and Transport for Water Quality Modeling, CRC Press, 1998

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN Belegungslogik bei der Wahl von Lehrveranstaltungen Es werden Grundkenntnisse der Gewässergüte vorausgesetzt. Anwesenheitspflicht

Titel der Veranstaltung						
Modellierung der Gewässergüte	Modellierung der Gewässergüte					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Johanna Schwenkel Stephanie Zeunert		4	Vorlesung/Übung	deutsch		

Modulname	Hydrogeologie und Grundwasserbewirtschaftung			
Nummer	4310270	Modulversion		
Kurzbezeichnung	BAU-STD4-2	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Matthias Schöniger	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mündliche P	rüfung (ca. 60 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Hydrogeologie und Grundwasserbewirtschaftung (VÜ)]

Allgemeine Grundlagen zur Hydrogeologie und Grundwasserbewirtschaftung, Kenntnisse zu Aufgaben der Hydrogeologie und Grundwasserbewirtschaftung für die nachhaltige Ressourcennutzung, Bewirtschaftungsziele nach §47 des WHG. Vorgestellt werden: numerische Grundwasserprogramme zur Berechnung von regionalen Grundwasserbewegungen, Transportprozessen mit einfachen Reaktionskinetiken, Modellgestützte Bewertung von mengenmäßigen und chemischen Grundwasserzuständen.

Qualifikationsziel

Die Studierenden erlangen Kenntnis über den Aufbau von regionalen Grundwasserkörpern, den Strömungs- und Transportprozesse im Untergrund sowie dem Grundwasserhaushalt. Sie eignen sich die Nutzung von Rechnern zur Simulation von Grundwasserbewegungen und Transportprozessen an und sind in der Lage, sich einen Überblick zur Bewertung wasserwirtschaftlicher Projekte nach Nutzen-Kosten-Kriterien und anderen Kriterien zu verschaffen. Außerdem lernen sie komplexe hydrogeologische Prozesse und die Modelltechnik zur Nachbildung dieser Prozesse kennen.

Literatur

Hill, M.C. & Tiedeman, C.T. (2006): Effective Groundwater Model Calibration. With Analysis of Data, Sensitivities, Predictions, and Uncertainty.- Wiley-Interscience

Rausch, R., Schäfer, W. & Wagner, C. (2002): Einführung in die Transportmodellierung im Grundwasser.- Gebr. Borntraeger

Mattheß, G. & Ubell, K. (2003): Allgemeine Hydrogeologie Grundwasserhaushalt.- Gebr. Borntraeger Skriptum und Simulationsprogramme

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Für dieses Modul werden GIS-Kenntnisse vorausgesetzt.			
Anwesenheitspflicht			

Titel der Veranstaltung						
Hydrogeologie und Grundwasserbewirtschaftung						
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		
Matthias Schöniger		4	Vorlesung/Übung	deutsch		

Modulname	Flussgebietsmanagement		
Nummer	4320090	Modulversion	
Kurzbezeichnung	BAU-STD2-3	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Kai Schröter
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Es werden Kenntnisse aus dem Modu	l "Hydrologie und Wasserwi	rtschaft" vorausgesetzt.
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung	g (ca. 60 Min.)	
Zu erbringende Studienleistung	Anerkennung zweier Hausarbeiten		
Zusammensetzung der Modulnote			

[Flussgebietsmanagement (VÜ)]

Flussgebietsmanagement (FGM) zur Umsetzung der EU-Wasserrahmenrichtlinie und der EU-Hochwasserschutzrichtlinie; Internationales FGM; Modellanwendungen zur Speicherbewirtschaftung; Hochwasserrisikomanagement.

[GIS - Anwendungen im Flussgebietsmanagement (VÜ)]

Geografische Informationen für die hydrologische und hydraulische Modellierung; digitale Karten, Vektor- und Rasterdaten; Verschneidungstechniken; Georeferenzierung; Makrosprachen und Programmierung.

Qualifikationsziel

Die Studierenden werden in die Lage versetzt, Flussgebietsmanagement nach Vorgaben der EU-Richtlinien zu betreiben. Die Studierenden werden mit computerbasierten Modellanwendungen zum Flussgebietsmanagement mit Fokus auf Speicherbewirtschaftung vertraut gemacht. Sie werden in die Lage versetzt, geographische Daten in Raster- und in Vektorform zu verarbeiten und zu analysieren. Sie können raumbezogene Fragestellungen lösen und die Ergebnisse in thematischen Karten darstellen.

Literatur

Skripten und Simulationsprogramme

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen					

ZUGEHORIGE LEHRVERANSTALTUNGEN						
Belegungslogik bei der Wahl von	Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht						
Titel der Veranstaltung						
Flussgebietsmanagement						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Günter Meon Tim Müller		2	Vorlesung/Übung	deutsch		
Titel der Veranstaltung						
GIS - Anwendungen im Flussgebietsmanagement						
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		
Gerhard Riedel		2	Vorlesung/Übung	deutsch		

Modulname	Ecohydrological Modelling of Catchments			
Nummer	4398800	Modulversion		
Kurzbezeichnung		Sprache	englisch	
Turnus	nur im Wintersemester	Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Kai Schröter	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen		`		
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung	g (ca. 30 Min.)		
Zu erbringende Studienleistung	Hausarbeit			
Zusammensetzung der Modulnote				

Komponenten eines ökohydrologischen Modellsystems

- Modellierung des Wasserhaushalts (Niederschlag, Evapotranspiration, Bodenwasser, Abflussbildung, Abflusskonzentration, Wellenablauf)
- Modellierung des Pflanzenwachstums
- Modellierung von Transport- und Umwandlungsprozessen von Stoffen (u.a. Sediment, Stickstoff, Phosphor) in der Landschaft und im Gewässer
- Anwendung eines ökohydrologischen Modells am PC auf ein mesoskaliges Einzugsgebiet
- Einfluss verschiedener Landnutzungs- und Bewirtschaftungsformen auf den Landschaftswasser und Nährstoffhaushalt
- Modellierung und Bewertung von Managementmaßnahmen zur Reduktion von Stoffausträgen aus der Landschaft (technisch und naturbasiert)
- Schnittstellen zur 2D-hydrodynamischenModellierung des Grundwassers und der Gewässergüte von Oberflächengewässern

Qualifikationsziel

Die Studierende erlangen fundierte Kenntnisse zu den in der Landschaft und im Gewässer stattfindenden Transportund Umwandlungsprozessen von Stoffen in einem Einzugsgebiet sowie ihrer mathematischen Beschreibung in einem ökohydrologischen Modellsystem. Sie werden befähigt, ein ökohydrologisches Modell für ein mesoskaliges Einzugsgebiet aufzubauen, die Modellausgaben aufzubereiten und zu analysieren und die Simulationsergebnisse zu bewerten. Sie erwerben Grundlagen in der Modellierung und Bewertung von Managementmaßnahmen zur Reduktion von Stoffausträgen aus dem Einzugsgebiet.

Literatur

- -Lorenz, Malte (2018): Ökohydrologische Modellierung, Skriptum zur gleichnamigen LV im MSc.-Fernstudium ProWater, koordiniert am LWI (Prof. G. Meon)
- -Wood, Paul J. (Hrsg., 2008): Hydroecology and Ecohydrology: Past, Present and Future, Wiley.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung					
Ecohydrological Modelling of Catchments					
Dozent/in Mitwirkende SWS Art LVA Sprache					
		4	Vorlesung/Übung	englisch	

Modulname	Naturnaher Wasserbau		
Nummer	4320020	Modulversion	
Kurzbezeichnung	BAU-STD2-5	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Jochen Aberle
Arbeitsaufwand (h)			
Präsenzstudium (h)	66	Selbststudium (h)	114
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) und Referat und mo	dl. Prüfung (ca. 30 Min.)	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Naturnaher Wasserbau (Master) (VÜ)]

Europäische Wasserrahmenrichtlinie, Morphologie von Fließgewässern, Hydraulik naturnaher Fließgewässer, Widerstandsverhalten ebener Gewässersohlen und morphologischer Makrostrukturen, Rauheiten und Widerstandsbeiwerte, Feststofftransport, morphologische Entwicklung von Fließgewässern, Gewässerunterhaltungs und entwicklungsmaßnahmen

[Gerinnehydraulik - naturnah (Master) (Ü)]

In praxisnahen Übungen wird der Einfluss von hydraulischen, morphologischen und morphodynamischen Faktoren auf das Abflussverhalten eines Fließgewässers vermittelt.

[Widerstandsverhalten von Bewuchs (Master) (V)]

Vermittlung von Ansätzen zur Beschreibung von Vegetationseigenschaften und der Charakterisierung des Widerstandsverhaltens von Bewuchs, Wahlpflichtfach als vertiefende Ergänzung zur Pflichtlehrveranstaltung "Naturnaher Wasserbau"

 $[Fließgew\"{a}sser\"{o}kologie~(Master)~(V)]$

Einführung in die Fließgewässerökologie und Bestimmungsmethoden der Gewässergüte und -strukturgüte

[Dynamik des kohäsiven Sediments (V)]

Einführung in die physikalischen Prozesse kohäsiver Sedimente in natürlichen Gewässern

Qualifikationsziel

Die Studierenden erlernen die Grundlagen zur Behandlung wesentlicher Aspekte des naturnahen Wasserbaus. Dieses betrifft insbesondere die Hydraulik und den Feststofftransport von Fließgewässern sowie ihre Wechselwirkung unter Berücksichtigung weiterer Einflüsse, wie z.B. Vegetation. Mit diesen Instrumentarien sind die Studierenden in der Lage, Ziele naturnaher Umgestaltungsmaßnahmen zu definieren, entsprechende Maßnahmen zu entwickeln und den Erfolg geplanter und bereits bestehender Umgestaltungsmaßnahmen zu bewerten. Die praxisnahe Ausbildung wird durch Übungen im Gelände unterstrichen. Neben wasserbaulichen werden auch ökologische Inhalte vermittelt, um die Studierenden auf die im Berufsleben geforderte interdisziplinäre Zusammenarbeit im Bereich des naturnahen Wasserbaus vorzubereiten.

Literatur

Literaturhinweise, Fachbücher, und Vorlesungsumdrucke

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasserbau				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Pflichtveranstaltungen:

[Naturnaher Wasserbau] (3 LP), [Gerinnehydraulik - naturnah] (2 LP)

Von den Wahlpflichtveranstaltungen:

[Widerstandsverhalten von Bewuchs] (1 LP),

[Gewässerökologie] (1 LP)

[Dynamik des kohäsiven Sediments] (1LP) ist eine zu wählen

Anwesenheitspflicht

Titel der Veranstaltung

Naturnaher Wasserbau (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jochen Aberle		3	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Gerinnehydraulik - naturnah (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jochen Aberle Katinka Koll		2	Übung	deutsch

Titel der Veranstaltung

Widerstandsverhalten von Bewuchs (Master)

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Jochen Aberle		1	Vorlesung	deutsch

Titel der Veranstaltung

Fließgewässerökologie (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Thomas Ols Eggers		1	Vorlesung	deutsch

Modulname	Konstruktiver Wasserbau		
Nummer	4320030	Modulversion	
Kurzbezeichnung	BAU-STD2-36	Sprache	
Turnus	in jedem Semester	Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Jochen Aberle
Arbeitsaufwand (h)			
Präsenzstudium (h)	62	Selbststudium (h)	118
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) und Referat und mo	dl. Prüfung (ca. 20 Min.)	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

Konstruktiver Wasserbau (VÜ)

Die Vorlesung beschäftigt sich mit der Bemessung hydraulischer Bauwerke in den Gebieten des Fluss- und Wasserkraftanlagenbaus. In der Vorlesung werden die Teilaspekte wasserbauliches Versuchswesen, Kreuzungsbauwerke, Wehranlagen, Energieumwandlungsanlagen, Wasserkraftanlagen und

Durchgängigkeitsbauwerke behandelt. Gerinnehydraulik konstruktiv (Ü)

Praktische Umsetzung des in der Vorlesung "Konstruktiver Wasserbau" vermittelten Wissens durch praktische Übungen. Dies wird durch die experimentelle Bearbeitung praxisnaher und/oder grundlegender Problemstellungen im Lehrlabor und Wasserbaulaboratorium erreicht.

Talsperren (V)

Das Wahlpflichtfach beinhaltet vertiefende und ergänzende Lehrinhalte zu der Pflichtlehrveranstaltung "Konstruktiver Wasserbau" im Hinblick auf Talsperren. Behandelt werden die Bemessungs- und Konstruktionsgrundlagen von Stauräumen, Staumauern, Staudämmen, Hochwasserentlastungs- und Entnahmeanlagen. Darüber hinaus wird das nachhaltige Sedimentmanagement von Stauräumen behandelt.

Stahlwasserbau und Offshore-Windkraftanlagen (V)

Die Studierenden erwerben Kenntnisse über typische Konstruktionen aus dem Bereich des Stahlwasserbaus und werden in die Lage versetzt, Konstruktionen aus dem Bereich des Stahlwasserbaus zu entwerfen und berechnen. Dabei werden auch die wesentlichen Normregelungen vermittelt.

Wasserbauliches Versuchswesen (V)

Die Studierenden erwerben tiefergehende Kenntnisse über das wasserbauliche Versuchswesen. Hierzu zählen die Dimensionsanalyse, Modellgesetze und Ähnlichkeiten, Modellbau, Modelle mit mobiler Sohle, Messgeräte und Feldmessungen.

Qualifikationsziel

Die Studierenden erlernen die Grundlagen der wesentlichen Aspekte des konstruktiven Wasserbaus und des wasserbaulichen Versuchswesens. Sie werden dazu befähigt, die Funktionsweise von hydraulischen Strukturen wie Wehranlagen, Talsperren, Wasserkraftanlagen, Durchgängigkeitsbauwerken und Kreuzungsbauwerke zu erläutern und diese Strukturen hydraulisch zu bemessen. Zudem können sie wasserbauliche Modellversuche selbstständig planen und

durchführen. Dadurch werden die Studierenden in die Lage versetzt, unter Berücksichtigung spezieller Randbedingungen geeignete Maßnahmen zur Lösung praktischer Fragestellungen zu entwickeln.

Literatur

Vorlesungsumdrucke und Fachbücher, wie z.B.:

- Chow, V. T. (1959). Open channel hydraulics. Singapore: McGraw-Hill.
- Giesecke, J.; Heimerl, S.; Mosonyi, E. (2014). Wasserkraftanalagen. Planung, Bau und Betrieb. 6. Auflage. Berlin: Springer Vieweg.
- Hager, W., Schleiss, A. J. Boes, R. M., Pfister, M. (2021). Hydraulic Engineering of Dams, CRC Press.
- Muste et al. (2017). Experimental Hydraulics: Methods, Instrumentation, Data Processing and Management, Two Volume Set; Routledge, Taylor and Francis Group.
- Patt, H.; Gonsowski, P. (2011). Wasserbau. 7., aktualisierte Auflage. Heidelberg, Springer.
- Strobl, T.; Zunic, F. (2006). Wasserbau. Berlin, Heidelberg, Springer.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasserbau				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Pflichtveranstaltungen:

- -[Konstruktiver Wasserbau] (4 LP),
- -[Gerinnehydraulik konstruktiv] (1 LP)

Von den Wahlpflichtveranstaltungen:

- -[Talsperren] (1 LP),
- -[Stahlwasserbau und Offshore-Windkraftanlagen] (1 LP)
- -[wasserbauliches Versuchswesen] (1 LP)

ist eine zu wählen

Die Module "Wasserkraftanlagen - Technologien und Modellierung" und "Konstruktiver Wasserbau" schließen sich gegenseitig aus.

Anwesenheitspflicht

Titel der Veranstaltung

Stahlwasserbau und Offshore-Windkraftanlagen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Michael Siems		1	Vorlesung	deutsch

Titel der Veranstaltung

Konstruktiver Wasserbau (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jochen Aberle		4	Vorlesung/Übung	deutsch

Titel der Veranstaltung					
Gerinnehydraulik - konstruktiv	Gerinnehydraulik - konstruktiv (Master)				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Jochen Aberle Francisco Nunez-Gonzalez		2	Übung	englisch deutsch	
Titel der Veranstaltung					
Talsperren (Master)					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Jochen Aberle		1	Vorlesung	deutsch	
Titel der Veranstaltung	Titel der Veranstaltung				
Physical Hydraulic Modelling					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Jochen Aberle		1	Vorlesung	englisch	

Modulname	Urban Ecohydrology		
Nummer	1514300	Modulversion	
Kurzbezeichnung		Sprache	
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Ilhan Özgen
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) oder mündliche Prüfung (30 Min.)		
Zu erbringende Studienleistung	Hausübung		
Zusammensetzung der Modulnote			

[Urban Ecohydrology (V)]

Die Vorlesung behandelt Themen der Ökohydrologie im urbanen Bereich: urbanes Grundwasser, Mess- und Modellierungstechniken, dezentrale (Hoch-)Wasserbewirtschaftung und grün-blaue Infrastruktur.

[Urban Ecohydrology (Ü)]

Die Übung besteht aus rechnerischen Übungen, die sich an den jeweiligen Themen der Vorlesung orientieren. Ein Teil der Übungsaufgaben wird mit der Programmiersprache "R" berechnet.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage:

- Grundlegende theoretische Kenntnisse von Ökosystemdienstleistungen auf den urbanen Wasserkreislauf anzuwenden
- Ökohydrologische Fragestellungen im urbanen Raum quantitativ zu bearbeiten
- Methoden der urbanen Ökohydrologie einzusetzen

Literatur

Baird & Wilby (2000) Eco-Hydrology, Routledge, Oxfordshire, UK.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung			

Urban Ecohydrology

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Mikael Gillefalk Ilhan Özgen		4	Vorlesung/Übung	englisch

Literaturhinweise

Baird & Wilby (2000) Eco-Hydrology, Routledge, Oxfordshire, UK

Modulname	Projektmanagement im Verkehrswasserbau		
Nummer	4398790	Modulversion	
Kurzbezeichnung		Sprache	
Turnus		Lehreinheit	
Moduldauer	2	Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Jochen Aberle
Arbeitsaufwand (h)			
Präsenzstudium (h)	72	Selbststudium (h)	108
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	3 Prüfungsleistungen: 2 Klausuren (je 60 Min.) oder 1 Klaus rat	sur (60 Min.) und 1 mdl. Prü	fung (15 Min.) und 1 Refe-
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Verkehrswasserbau im Binnenbereich (VÜ)]

Binnenschifffahrt; Verwaltung der Bundeswasserstraßen; Binnenwasserstraßen und Binnenschiffe; Fahrdynamik von Binnenschiffen; Fluss- und Stauregelung; Schleusen

 $[Projekt management\ im\ Verkehrswasserbau\ (V)]$

Planung und Umsetzung von Projekten im Verkehrswasserbau; Zuständigkeiten; Planungsstadien; Termin- und Ressourcenplanung; Ausschreibungen und Ausschreibungsmodelle; Risikomanagement; Berücksichtigung von Interessensgruppen; Optionen zur Prozessoptimierung

Qualifikationsziel

Die Studierenden erlangen fundiertes Wissen über die Binnenschifffahrt, die dafür benötigte verkehrswasserbauliche Infrastruktur und über das Projektmanagement zum Neubau, zur Erhaltung und zur Sanierung der Infrastrukturelemente aus der Sicht der Wasserstraßen- und Schifffahrtverwaltung. Sie erwerben die Fähigkeit, die Funktionsweise von verkehrswasser¬baulichen hydraulischen Strukturen zu erläutern und hydraulisch zu bemessen und erhalten tiefergehende Erkenntnisse über Methoden und Werkzeuge, mit denen verkehrs¬wasserbauliche Projekte in organisatorischer, rechtlicher, technischer, wirtschaftlicher und terminlicher Hinsicht zielorientiert abgewickelt werden.

Literatur

Präsentationsfolien der Vorlesungen

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasserbau			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Projektmanagement im Bauwesen kann entweder im Modul Realisierung und Finanzierung oder im Modul Projektmanagement im Verkehrswasserbau eingebracht werden.

Anwesenheitspflicht

Titel	der	V	eransta	ltung
-------	-----	---	---------	-------

Verkehrswasserbau im Binnenbereich

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jochen Aberle		2	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Projektmanagement im Verkehrswasserbau

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Tanja Kessel		2	Vorlesung	deutsch

Titel der Veranstaltung

Projektseminar im Verkehrswasserbau

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jochen Aberle		2	Seminar	deutsch
Tanja Kessel				

Modulname	Gewässerschutz-Messtechnik und Datenanalyse			
Nummer	4310970	Modulversion		
Kurzbezeichnung	BAU-STD3-71	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Kai Schröter	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.)			
Zu erbringende Studienleistung	Hausarbeit			
Zusammensetzung der Modulnote				

[Messtechnik für Wassermenge und Gewässergüte (P)]

Messtechnik für meteorologische und hydrologische Daten und deren Aufbereitung (Oberflächen- und Grundwasser); Bestimmung von Gewässergüte-Parametern (chemisch-physikalische Größen, biologische Indikatoren); Probenahme am Gewässer (Fluss, See) und Analyse im Labor; On-line-Messnetze; Auswertung der Messdaten.

[Datenauswertung für hydrologisch-hydraulische Simulationen (V)]

Prüfung, Aufbereitung und Auswertung von Daten als Grundlage für anwendungsspezifische Fragestellungen und zur Erstellung von Eingangsdaten und Parametern für Simulationsmodelle. In der LV werden die modellrelevanten Prozesse Niederschlag, Verdunstung, Bodenwasserbewegung und Abflussbildung behandelt. Die Lehrinhalte umfassen universell anwendbare Methoden wie z.B. Zeitreihenanalyse (Homogenität, Konsistenz), Regionalisierung und Extremwertanalyse sowie prozessspezifische Methoden wie z.B. Messfehlerkorrektur und Verwendung alternativer Datensätze im Bereich Niederschlag.

Qualifikationsziel

Die Studierenden erwerben vielfältige und fächerübergreifende Kenntnisse in der Datenanalyse und Programmierung von eigenen Analyse-Algorithmen. Es wird ein Verständnis über Datenstrukturen, -größenordnungen, und -plausibilitäten vermittelt. Die erworbenen Kenntnisse können auf unbekannte Disziplinen und andere Software übertragen werden.

Literatur

Skripten und Simulationsprogramme

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
maximal 12 Teilnehmer					
Anwesenheitspflicht					

Titel der Veranstaltung						
Messtechnik für Wassermenge und Gewässergüte						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Tim Müller Hannes Müller-Thomy Johanna Schwenkel Stephanie Zeunert		2	Praktikum	deutsch		

Titel der Veranstaltung						
Datenauswertung für hydrologisch-hydraulische Simulationen						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Hannes Müller-Thomy		2	Vorlesung/Übung	deutsch		

Modulname	Numerische Methoden im Grund- und Oberflächenwasser			
Nummer	4320040	Modulversion		
Kurzbezeichnung	BAU-STD2-3	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Jochen Aberle	
Arbeitsaufwand (h)				
Präsenzstudium (h)	66	Selbststudium (h)	114	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) und Referat und mo	dl. Prüfung (ca. 30 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Numerische Methoden im Grund- und Oberflächenwasser (Master) (VÜ)]

Allgemein: Modellkonzepte, Prinzipien der numerischen Lösung, Orts-, Zeit-Diskretisierung; Praktische Einführung in verschiedene Berechnungsverfahren Oberflächengewässer: hydraulische Grundlagen der Strömungsmodellierung; Turbulenzmodelle; Gitteraufbau; 1D bis 3D Berechnung; Ansätze zur Feststoffmodellierung; Strömungsvorgänge im Interstitial Grundwasser: Grundbegriffe; Fließgesetze; Methoden zur Bestimmung der Durchlässigkeit; Strömungsgleichungen; Grundwassermodellierung

[Gerinnehydraulik - numerisch (Master) (Ü)]

Einführung in verschiedene Berechnungsverfahren zur Modellierung von Oberflächengewässern; Übungen am PC mit der Modellierung von horizontal-ebenen und vertikal-ebenen Grundwassersystemen

[Hydraulik im Damm- und Deichbau (Master) (V)]

Wahlpflichtfach mit vertiefenden und ergänzenden Lehrinhalten zur Veranstaltung "Numerische Methoden im Grundund Oberflächenwasser" mit dem Themenschwerpunkt Dämme und Deiche

[Numerische Berechnung von Grundwasserströmungen im Damm- und Deichbau (Master) (VÜ)]

Grundlagen der Methode der Finiten Elemente und des Differenzenverfahrens, Entwicklung von Programmen für einfache eindimensionale Systeme, Praktische Anwendungen am PC mit der Modellierung von horizontal-ebenen und vertikal-ebenen Systemen

[Sedimenttransportmodellierung (Master) (V) (englisch)]

Introduction to computational methods for sediment transport processes / Einführung in numerische Berechnungsmethoden von Sedimenttransportprozessen

Qualifikationsziel

Die Studierenden erwerben vertiefte Kenntnisse über den theoretischen Hintergrund zur hydraulischen Berechnung von Oberflächengewässern und Grundwasserströmungen. Mit diesem Wissen können sie die Randbedingungen, Annahmen und Vereinfachungen, die der numerischen Modellierung von Strömungen zugrunde liegen, verstehen und entscheiden, welche Methoden/Modelle geeignet bzw. erforderlich sind, um eine Fragestellung zu bearbeiten. In praktischen Anwendungen werden die Studierenden an verschiedene numerische Programme herangeführt, wobei besonderer Wert auf die kritische Diskussion der Ergebnisse gelegt wird. Die Studierenden sind am Ende des Moduls in der

Lage für ein gegebenes Strömungsproblem die erforderlichen Informationen zusammenzustellen, das geeignete Programm auszuwählen und die Ergebnisse zu analysieren und zu interpretieren.

Literatur

Skript vorhanden

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasserbau					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Pflichtveranstaltungen: Numerische Methoden im Grund- und Oberflächenwasser (3 LP), Gerinnehydraulik - numerisch (2 LP)

Von den Wahlpflichtveranstaltungen:

Hydraulik im Damm- und Deichbau (1 LP),

Numerische Berechnung von Grundwasserströmungen (1 LP) oder Sedimenttransportmodellierung (1) ist eine zu wählen

Anwesenheitspflicht

Titel der Veranstaltung

Numerische Methoden im Grund- und Oberflächenwasser (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Katinka Koll		4	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Gerinnehydraulik - numerisch (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Katinka Koll		2	Übung	deutsch

Titel der Veranstaltung

Hydraulik im Damm- und Deichbau (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Katinka Koll		1	Vorlesung	deutsch

Titel der Veranstaltung						
Numerische Berechnung von Grundwasserströmungen im Damm- und Deichbau (Master)						
Dozent/in Mitwirkende SWS Art LVA Sprache						
Johann Buß		1	Vorlesung/Übung	deutsch		

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Vertiefungsfach Abfall- und Ressourcenwirtschaft	
ECTS	18

Modulname	Abfall- und Ressourcenwirtschaft		
Nummer	4398320	Modulversion	
Kurzbezeichnung	BAU-STD-65	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Kai Münnich
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) oder mündl. Prüfung (ca. 30 Min.)		
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

Abfallwirtschaftskonzepte; Erfassungslogistik; Anlagen- und Verfahrenstechnik (Schwerpunkt biologische Verfahren); Methoden zur Prozesssteuerung und -überwachung; Emissionsschutz; Produktentwicklung Sekundärrohstoffe; Methoden zur Qualitätssicherung von Sekundärrohstoffen; Bemessungsgrundlagen, Planung und Auslegung von Anlagen sowie der Abfallanalytik.

Qualifikationsziel

Die Studierenden erwerben vertiefende Kenntnisse über Aufgaben und Lösungsmethoden der kommunalen und industriellen Abfall- und Ressourcenwirtschaft sowie der stoffstrombezogenen Kreislaufwirtschaft. Der besondere Fokus liegt auf den biologischen Behandlungs- und Verwertungsverfahren für Siedlungsabfälle. Hierbei werden erforderliche Arbeitsschritte und Methoden zur Implementierung von Managementmaßnahmen und Anlagentechnologien erlernt.

Bewertungsmethoden zur Beschreibung und Beurteilung ökonomischer, ökologischer und sozialer Auswirkungen werden vermittelt und angewendet. Spezialkenntnisse im Bereich der Nutzung regenerativer Energien aus Siedlungsabfällen werden erworben. Die Studierenden werden in dieser Vorlesung dazu befähigt, ihr erworbenes Wissen zur Beurteilung von Abfallwirtschaftskonzepten zu nutzen sowie überschlägigen Bemessungen von ausgewählten Prozessschritten/- aggregaten durchzuführen.

Literatur

ausführliches Skript, PowerPoint Folien, Literaturempfehlungen

ugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Abfall- und Ressourcenwirtschaft			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft			

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

Titel der Veranstaltung				
Abfallverwertung und -behandlung				
Dozent/in Mitwirkende SWS Art LVA		Sprache		
Dr. Andreas Haarstrick		4	Vorlesung/Übung	deutsch

Modulname	Deponietechnik und Altlastensanierung		
Nummer	4398330	Modulversion	
Kurzbezeichnung	BAU-STD-79	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Kai Münnich
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung (jeweils ca. 30 Min.)		
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Landfill Mining, Deponiebau und Geotechnik der Abfälle (VÜ)]

Grundlagen der Abfallmechanik und der hydraulischen Eigenschaften von Abfällen; Interaktion der verschiedenen Größen; konstruktive Elemente von Deponien; Deponieemissionen sowie deren Monitoring; Langzeitverhalten von Deponiekörpern; Stellung und Nachnutzung von Deponien; Deponien in Schwellen- und Entwicklungsländern; Rechtliche Grund-lagen.

[Altlastenerkundung und -sanierung (VÜ)]

Schadsoffe im Boden und Grundwasser; Vorgehensweise zur Erkundung; Bodenluftmessungen; Entnahme von Boden-, Bo-denluft- und Grundwasserproben; Be- und Auswertung von Analysenergebnissen; Instu und Onsite/Offsite Sanierungs-techniken; Verfahren zur Grundwasserreinigung; Biologische, thermische und physikalische Bodenreinigung; Nachnutzung kontaminierter Standorte; Landfill Mining

Oualifikationsziel

Die Studierenden erwerben vertiefte Kenntnisse über den Bau und Betrieb von Hausmülldeponien. Dabei werden die Aspekte zur Stellung der Deponie in der Abfallwirtschaft, die rechtlichen Rahmenbedingungen, die Standortsuche, der technischen Installationen bis hin zur Nachsorge, des Monitorings und des Landfill Minings berücksichtigt. Weiterhin erlangen sie detaillierte Erkenntnisse zu den mechanischen Eigenschaften von Abfällen sowie dem Langzeitverhalten in Bezug auf Wasser- und Gasemissionen. Insgesamt wird ein Fokus auf die Situation in Schwellen- und Entwicklungsländern gelegt. Die Studierenden werden damit in die Lage versetzt, die wesentlichen dynamischen Prozesse einer Deponie zu verstehen und zu beurteilen und die erforderlichen Bauwerksbestandteile zu dimensionieren.

Die Studierenden erlangen fundierte Kenntnisse zur Ermittlung und Sanierung von Altlasten. Dabei werden die grundlegenden Aspekte zu möglichen Schadstoffen, Eintragsquellen und Erkundung des Bodens und des Grundwas-sers betrachtet. Die möglichen Techniken zur Sanierung kontaminierter Standorte (biologisch, chemisch und physikalisch) werden erlernt. Der Spezialfall der Sanierung von alten Hausmüllkippen wird ausführlich erarbeitet. Die Studierenden werden damit in die Lage versetzt, eine Altlastenverdachtsfläche zu beurteilen und eine geeignete Sanierungstechnik für den jeweils speziellen Fall auszuwählen.

Literatur

PowerPoint Folien, Literaturempfehlungen

Zugeordnet zu folgenden Studiengänge	eordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Abfall- und Ressourcenwirtschaft				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Das Modul kann im Studiengang Umweltingenieurwesen nur belegt werden, wenn das Modul "Grundlagen der Geotechnik und Altlastenerkundung" nicht belegt wird.

Anwesenheitspflicht

Titel der Veranstaltung

Altlastenerkundung, und -sanierung

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Kai Münnich		2	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Landfill Mining, Deponiebau und Geotechnik der Abfälle

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Kai Münnich		2	Vorlesung/Übung	deutsch

Modulname	Mechanische und thermische Abfallbehandlung und Luftreinhaltung			
Nummer	4398340	Modulversion		
Kurzbezeichnung	BAU-STD-82	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	2	Einrichtung		
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Kai Münnich	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mündl. Prüfu	ing (jeweils ca. 30 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Mechanische und thermische Behandlung von Abfällen (VÜ)]

Die Vorlesung "Mechanische und thermische Behandlung von Abfällen" vermittelt Wissen zur thermochemischen Konversion von Siedlungsabfällen. Sie konzentriert sich auf Hausmüll, Gewerbeabfälle, Klärschlamm und Sonderabfall. Beschrieben wird der Weg von der mechanischen Vorbereitung über die Konversion bis zur Gasreinigung; Bemessungsgrundlagen, Planung und Auslegung von Anlagen. Neben technischen Aspekten werden Rechts- und Genehmigungsaspekte behandelt.

[Technologien und Konzepte zur Luftreinhaltung und Klimaschutz (VÜ)]

Kenntnis über abluftrelevante Rechtsvorschriften, baulich- und betriebliche Anforderungen, diverse Abluftbehandlungstechnologien, Erfassungs- und Analytik-Verfahren sowie der Fähigkeit zur konzeptionellen und planerischen Auslegung einzelner Bauteile.

Qualifikationsziel

Die Studierenden erlangen fundierte Kenntnisse über Verfahren zur mechanischen und thermischen Behandlung von Abfällen. Hierbei werden die relevanten Grundlagen des Abfallrechtes, insbesondere mit den gesetzlichen Vorschriften zur thermischen Abfallbehandlung, berücksichtigt. Weiterhin werden detaillierte Kenntnisse über Müllverbrennungsanlagen, die thermische Nutzung von Abfällen in industriellen Prozessen sowie in Biomassekraftwerken mit den jeweilig vorgeschalteten Aufbereitungsketten vermittelt. Die Lehrveranstaltung befähigt die Studierenden, Leistungsdaten von Verbrennungsanlagen zu berechnen sowie die grobe Auslegung von Anlagen vorzunehmen.

Die Studierenden erwerben grundlegende Kenntnisse über Technologien und Konzepte zur Emissionsvermeidung und - verminderung sowie zur Luftreinhaltung mit einer Fokussierung auf die Sektoren Abfall, Abwasser und Energieerzeu- gung. Die Studierenden sind in der Lage, Gesamtlösungen zu entwickeln, zu planen, umzusetzen/auszuführen und zu betreiben. Weiterhin können sie regionale und überregionale ökologische Zusammenhänge erkennen, analysieren und bewerten, um diese Erkenntnisse bei den planerischen Aufgaben zu berücksichtigen.

Literatur

PowerPoint Folien, Literaturempfehlungen.

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Abfall- und Ressourcenwirtschaft					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

- -Teilnahmebeschränkung auf 40 Personen.
- -Dieses Modul kann nur in der Vertiefung Abfallwirtschaft oder Siedlungswasserwirtschaft belegt werden.

Anwesenheitspflicht

Titel der Veranstaltung

Mechanische und thermische Behandlung von Abfällen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Andreas Haarstrick		2	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Technologien und Konzepte zur Luftreinhaltung und Klimaschutz

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Andreas Haarstrick		2	Vorlesung/Übung	deutsch

Modulname	Internationale Abwasser- und Abfallwirtschaft			
Nummer	4398310	Modulversion		
Kurzbezeichnung	BAU-STD-79	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung	Institut für Siedlungswas- serwirtschaft	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Thomas Dockhorn	
Arbeitsaufwand (h)				
Präsenzstudium (h)	50	Selbststudium (h)	130	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Es werden Kenntnisse aus dem Modu "Abfall- und Ressourcenwirtschaft" v		nmbehandlung" und / oder	
Zu erbringende Prüfungsleistung/ Prüfungsform	Portfolio und Referat über das ganze Modul Die Studierenden erarbeiten in Kleingruppen 30-minütige Referate zu ausgewählten Themen, die zusammen mit der Vorlesung als Vorbereitung für die Abschlussveranstaltung dienen. Das Portfolio umfasst eine zusammengestellte Leistungsmappe in der die Ergebnisse der Gruppenarbeit zur Konzepterstellung im Rahmen der Abschlussveranstaltung dargestellt und wissenschaftlich eingeordnet werden. Die Erarbeitung der Portfolios erfolgt in selbstständiger Gruppenarbeit mit enger Betreuung durch die Institutsmitarbeiter/innen. Die Ergebnisse der Gruppenarbeit werden außerdem am Ende der Abschlussveranstaltung den Teilnehmenden sowie dem Prüfenden und einem fachkundigen Beisitzer oder einer fachkundigen Beisitzerin in einer Präsentation vorgestellt und als schriftliche Ausarbeitung eingereicht. Die Abmeldung von der Portfolioprüfung ist bis zwei Wochen vor der Abschlussveranstaltung möglich. Die Referatstermine und der Termin für die Abschlussveranstaltung werden in der Einführungsveranstaltung zu Beginn des Semesters festgelegt.			
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Internationale Abfallwirtschaft (V)]

Die einstündige Vorlesung stellt die Besonderheiten der Abfallbehandlung im internationalen Kontext auch in Entwicklungs- und Schwellenländern dar und dient somit der Einführung in das Thema des dazugehörigen Seminars Abfall-, Siedlungswasser- und Ressourcenwirtschaft in Entwicklungs- und Schwellenländern.

[Abfall-, Siedlungswasser- und Ressourcenwirtschaft in Entwicklungs- und Schwellenländern (S)]

Die Teilnehmer arbeiten eigenständig in Gruppen, mit dem Ziel ein kommunales Entsorgungskonzept zur Abwasserreinigung und Abfallbehandlung für Standorte aus unterschiedlichen Regionen der Welt zu erstellen. Um die verschiedenen relevanten Informationen zu den Standorten zusammenzutragen, erstellen die Teilnehmer in Zweiergruppen 30-minütige Referate, in denen grundlegende Themen wie z.B. Verfahrenstechniken der Abwasserreinigung und Abfallbehandlung, Kosten und Planung von technischen Anlagen aber auch regionale Randbedingungen (Klima, Wirtschaft, Infrastruktur, rechtliche Randbedingungen, Kultur, Religion etc.) den Teilnehmern vorgestellt werden. In einer zweitägigen Blockveranstaltung am Ende des Semesters entwickeln die Studierenden in Gruppenarbeit Entsorgungskonzepte für die jeweils ausgewählten Standorte in Teamarbeit entwickelt. Die Konzepte werden am Ende der Blockveranstaltung den anderen Teilnehmern des Seminars im Rahmen einer Präsentation vorgestellt sowie als schriftliche Ausarbeitung eingereicht.

Qualifikationsziel

Die Studierenden dieses Moduls sind in der Lage, Probleme aus den Bereichen internationale Abwasser- und Abfallwirt- schaft wissenschaftlich einzuordnen und zu lösen. Sie erwerben grundlegende Kenntnisse über die Lösung abfallund siedlungswasserwirtschaftlicher Problemstellungen in Schwellen- und Entwicklungsländern unter Berücksichtigung landesspeziefischer Aspekte. Die Befähigung zur Adaption geeigneter Konzepte und Technologien an vorgegebene Standorte sowie Kenntnisse über Stoffstrommanagement und Ressourcenschutz mit besonderem Bezug zur Globalisierung bilden ein weiteres Lernziel. Sie sind befähigt, im Team ingenieurtechnische Probleme auf wissenschaftlichem Niveau zu diskutieren, sich selbständig notwendiges weiteres Wissen anzueignen und werden in die Lage versetzt, unter Berücksichtigung der landesspeziefischen Rahmenbedingungen vorhandene Probleme zu analysieren und zu beurteilen sowie Lösungsstrategien zu erarbeiten und die zur Umsetzung erforderlichen organisatorischen (Regional Governance) und technischen Maßnahmen zu planen und auszuführen. Sie sind in der Lage diese erarbeiteten Lösungsvorschläge der Öffentlichkeit in klarer und eindeutiger Weise zu präsentieren. Durch die intensive Auseinandersetzung mit den jeweiligen Themen in Kleingruppen sind die Qualifikationsziele Teamarbeit, Diskusionsfähigkeit und rhetorische Fähigkeiten integraler Bestandteil dieses Moduls. In der Abschlussveranstaltung ist das Qualifikationsziel der jeweiligen Veranstaltung auch die inhaltlich kontroverse Auseinandersetzung mit den vorgetragenen Konzepten der übrigen Teilnehmer.

Literatur

Die relevante Fachliteratur kann je nach Aufgabenstellung variieren. Die erforderliche Literatur steht den Studierenden in

der Institutsbibliothek zur Verfügung.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Abfall- und Ressourcenwirtschaft				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Sied- lungswasserwirtschaft				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Die vorherige Teilnahme am Modul Abwasser- und Klärschlammbehandlung und/oder Abfall- und Ressourcenwirtschaft wird empfohlen.

Dieses Modul kann nur in der Vertiefung Siedlungswasserwirtschaft oder Abfallwirtschaft belegt werden. Teilnahmebeschränkung auf 40 Personen.

Anwesenheitspflicht

Für das Seminar besteht Anwesenheitspflicht in den 50 Stunden des Präsenzstudiums (Einführungsveranstaltung, Referatstermine, Abschlussveranstaltung). Bei entschuldigten Fehlzeiten (z.B. Krankheit, Kinderbetreuung u.ä.) wird eine individuelle Absprache getroffen, welche Ersatzleistungen erbracht werden können, um die Qualifikationsziele Teamarbeit, Diskusionsfähigkeit, rhetorische Fähigkeiten, wissenschaftliche Erarbeitung eines Entsorgungskonzeptes dennoch zu erreichen. Mögliche Fehlzeiten dürfen 15% des Präsenzstudiums nicht überschreiten, damit die Qualifikationsziele noch erreicht werden können.

Titel der Veranstaltung						
Internationale Abfallwirtschaft						
Dozent/in	Dozent/in Mitwirkende SWS Art LVA Sprache					
Dr. Andreas Haarstrick		1	Vorlesung	deutsch		
Titel der Veranstaltung						
Abfall-, Siedlungswasser- und Res	ssourcenwirtschaft in Entwicklung	gs- und Schwe	llenländern			

Mitwirkende

Dozent/in

Thomas Dockhorn

Sybille Karwat

Dr. Andreas Haarstrick

SWS

3

Art LVA

Seminar

Sprache

deutsch

Modulname	Abfallanalytisches Praktikum für das Umweltingenieurwesen				
Nummer	4398350	Modulversion			
Kurzbezeichnung	BAU-STD5-35	Sprache	deutsch		
Turnus	nur im Sommersemester	Lehreinheit			
Moduldauer	1	Einrichtung			
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Dr. Andreas Haarstrick		
Arbeitsaufwand (h)					
Präsenzstudium (h)		Selbststudium (h)			
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	Darstellung der Analysen in einem Team-Vortrag und Abgabe eines Analysegutachtens. Für das Praktikum besteht Anwesenheitspflicht in den 42 Stunden des Präsenzstudiums (Einführungsveranstaltung, Laborversuche, Abschlussveranstaltung). Mögliche Fehlzeiten dürfen 10 % des Präsenzstudiums nicht überschreiten, damit die Qualifikationsziele noch erreicht werden können.				
Zu erbringende Studienleistung					
Zusammensetzung der Modulnote					

Das Praktikum ist in zwei Abschnitte unterteilt. Der erste Abschnitt umfasst die theoretischen Grundlagen der Abfallanalytik, die in 6 Vorlesungen mit je 2 SWS vermittelt werden. Der zweite Abschnitt umfasst den praktischen Teil mit der Probenaufbereitung und Analyse. Die Studierenden erarbeiten dabei anhand von Laborversuchen physikalische, chemische und biologische Grundlagen der Abfallcharakterisierung und erlernen verschiedenen Analysenverfahren in Verbindung mit konkreten Versuchen im Labormaßstab. Die Versuche werden in betreuten Kleingruppen durchgeführt und ausgewertet. Die Versuchsergebnisse werden am Ende des Praktikums unter den Gruppen ausgetauscht wissenschaftlich interpretiert und statistisch ausgewertet, im Rahmen einer Präsentation vorgestellt und als schriftliche Ausarbeitung eingereicht.

Oualifikationsziel

Die Studierenden sind in der Lage in Versuchen praktische Fragestellungen im Bereich der Abfallcharakterisierung und Stoffanalytik im Team zu bearbeiten und dabei verschiedene analytische Methoden zu beherrschen. Die erhaltenen Daten werden eigenständig und nach wissenschaftlicher Vorgehensweise diskutiert und interpretiert. Sie sind befähigt, sich selbständig notwendiges weiteres Wissen anzueignen und können im Team Lösungen für umweltrelevante Fragestellungen zu Themen wie kommunale und industrielle Abfallbehandlung und Gefährdungsrisiken finden. Durch die intensive Auseinandersetzung mit Praktikumsthemen in Kleingruppen sind die Qualifikationsziele Teamarbeit, Diskussionsfähigkeit und die Fähigkeit klar formulierter und wissenschaftlicher Darstellung von Problemstellung (Hypothese), Lösung und Ergebnis.

Literatur

Die erforderliche Literatur wird mit dem Praktikumsskript bekannt gegeben.

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Abfall- und Ressourcenwirtschaft					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Die Versuchstermine des Praktikums finden nach Absprache im Institutslabor statt. Die Teilnahme an den Versuchsterminen der eigenen Gruppe ist Pflicht für die jeweiligen Gruppenteilnehmerinnen und –teilnehmer. Die Teilnehmerzahl ist auf 12 begrenzt.

Titel der Veranstaltung

Praktikum zu Abfall- und Ressourcenwirtschaft und Deponietechnik und Altlastensanierung

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
		4	Praktikum	deutsch

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Vertiefungsfach Siedlungswasserwirtschaft	
ECTS	18

Modulname	Abwasser- und Klärschlammbehandlung			
Nummer	4398270	Modulversion		
Kurzbezeichnung	BAU-STD-65	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung	Institut für Siedlungswas- serwirtschaft	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Thomas Dockhorn	
Arbeitsaufwand (h)				
Präsenzstudium (h)	70	Selbststudium (h)	110	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung	g (ca. 60 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Verfahrenstechnik der Abwasserreinigung (VÜ)]

Vorstellung von Konzepten und Techniken zur mechanischen Abwasserreinigung, Berechnung von Rechenanlagen, Sandfängen und Flotationsanlagen, Erarbeitung von Gesamtkonzepten zur kommunalen Abwasserreinigung, Bemessung von Belebungsanlagen nach unterschiedlichen Verfahren, Berechnung von Belüftungssystemen, Vorstellung von Fällung und Flockung, Vermittlung der Grundlagen der Abwasseranalytik und der Methoden der Prozessüberwachung

[Klärschlammbehandlung und -beseitigung (VÜ)]

Konzepte zur Schlammbehandlung und -entsorgung, Vorstellung der Klärschlammbehandlungsverfahren zur Eindickung, Entwässerung, Stabilisierung, Trocknung und Desinfektion, Betrachtung thermischer und stofflicher Entsorgungsmöglichkeiten, rechtliche Rahmenbedingungen, neue Technologien zur Klärschlammminimierung und Wertstoffrückgewinnung

Qualifikationsziel

Die Studierenden erwerben ein breites, detailliertes und kritisches Verständnis über Ziele und Verfahren der kommunalen Abwasserreinigung, Klärschlammbehandlung und -entsorgung. Aufbauend auf den Grundlagen der Siedlungswasserwirtschaft haben sich die Studierenden die Kenntnisse zum Verständnis, zur Planung sowie zum Bau und Betrieb von entsprechenden Anlagen erarbeitet, so dass sie in der Lage sind, derartige Techniken eigenständig zu dimensionieren und realisieren. Sie können eigenständig forschungs- oder anwendungsorientierte Projekte im Bereich der Abwasser- und Schlammbehandlung durchführen und derartige Projekte in einem gesellschaftlichen, ethischen Zusammenhang kritisch beurteilen.

Literatur

Es stehen ausführliche Skripte zu den Veranstaltungen [Verfahrenstechnik der Abwasserreinigung] und [Klärschlammbehandlung] zur Verfügung.

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Sied- lungswasserwirtschaft					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft					

ZUGEHÖRIGE LEHRVERAN	ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von	on Lehrveranstaltungen					
Anwesenheitspflicht						
Titel der Veranstaltung						
Klärschlammbehandlung und -be	seitigung					
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		
Katrin Bauerfeld		2	Vorlesung/Übung	deutsch		
Titel der Veranstaltung						
Verfahrenstechnik der Abwasser	reinigung					
Dozent/in Mitwirkende SWS Art LVA Sprache						
Katrin Bauerfeld Thomas Dockhorn		3	Vorlesung/Übung	deutsch		

	-					
Modulname	Trinkwasseraufbereitung und Siedlungsentwässerung					
Nummer	4398300	Modulversion				
Kurzbezeichnung	BAU-STD-06	Sprache	deutsch			
Turnus	nur im Sommersemester	Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften			
Moduldauer		Einrichtung				
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Thomas Dockhorn			
Arbeitsaufwand (h)						
Präsenzstudium (h)		Selbststudium (h)				
Zwingende Voraussetzungen						
Empfohlene Voraussetzungen						
Zu erbringende Prüfungsleistung/ Prüfungsform						
Zu erbringende Studienleistung						
Zusammensetzung der Modulnote						
Inhalte						
Qualifikationsziel						
Literatur						

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Sied- lungswasserwirtschaft				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung						
Siedlungsentwässerung						
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		
Andreas Hartmann Sören Hornig Xiao Xu		2	Vorlesung/Übung	deutsch		
Titel der Veranstaltung						
Trinkwasseraufbereitung						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Thomas Dockhorn Sören Hornig Hooman Mohammadi		2	Vorlesung/Übung	deutsch		

Modulname	Laborpraktikum und Bemessung von Anlagen				
Nummer	4398280	Modulversion			
Kurzbezeichnung	BAU-STD3-3	Sprache	deutsch		
Turnus		Lehreinheit			
Moduldauer	1	Einrichtung	Institut für Siedlungswas- serwirtschaft		
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Thomas Dockhorn		
Arbeitsaufwand (h)					
Präsenzstudium (h)	56	Selbststudium (h)	124		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen	Es werden Kenntnisse aus dem Modul "Abwasser- und Klärschlammbehandlung" vorausgesetzt.				
Zu erbringende Prüfungsleistung/ Prüfungsform	Prüfungsleistung: Portfolio und Referat getrennt für jede Veranstaltung Das Portfolio umfasst für jede Veranstaltung eine zusammengestellte Leistungsmappe in der die Ergebnisse der Gruppenarbeit im Rahmen der Anlagendimensionierung (Bemessung und Auslegung von Anlagen) dargestellt und wissenschaftlich eingeordnet werden bzw. in der die Ergebnisse der Gruppenarbeit im Labor (Praktikum) protokolliert und wissenschaftlich ausgewertet werden. Die Erarbeitung der Portfolios erfolgt in selbstständiger Gruppenarbeit mit enger Betreuung durch die Institutsmitarbeiter. Die Ergebnisse der Gruppenarbeit werden außerdem am Ende des Semesters den Teilnehmern der Veranstaltung sowie dem Prüfenden und einem fachkundigen Beisitzer oder einer fachkundigen Beisitzerin in einem Referat vorgestellt. Die Abmeldung von der Portfolioprüfung und dem Referat ist bis zwei Wochen vor dem Referatstermin möglich. Die Referatstermine werden in der Einführungsveranstaltung zu Beginn des Semesters festgelegt.				
Zu erbringende Studienleistung					
Zusammensetzung der Modulnote					

[Bemessung und Auslegung von Anlagen (S)]

Anhand konkreter Fallbeispiele erarbeiten die Studierenden in Kleingruppen unter Anleitung die Dimensionierung und Bemessung unterschiedlicher Anlagen zur kommunalen und/oder industriellen Abwasser- und Klärschlammbehandlung. Die Entwicklung von Leistungsbeschreibungen und Erläuterungsberichten, Erstellung eines Lageplans, hydraulische Dimensionierung mit Längsschnitt und überschlägige Kostenkalkulation sind Bestandteil der Gruppenaufgabe. Das in den einzelnen Gruppen entwickelte Anlagenkonzept wird am Ende des Semesters in einer Präsentation vorgestellt und diskutiert, sowie als schriftliche Ausarbeitung eingereicht.

[Praktikum/Seminar zur Verfahrenstechnik der Abwasser-, Schlamm- und Wasserbehandlung (Ü)] Im Praktikum erarbeiten sich die Studierenden anhand von Laborversuchen wichtige physikalische, chemische und biologische Grundlagen der Abwasserreinigung und erlernen verschiedene Analyseverfahren anhand von konkreten Versuchen, z.B. Durchführung von Atmungsmessungen, Fällungs- und Flockungsversuche, Adsorptionsversuche, Faulversuche im Labormaßstab, Untersuchungen zu unterschiedlichen Entwässerungsmethoden. Die Versuche werden in betreuten Kleingruppen durchgeführt, anschließend ausgewertet und wissenschaftlich interpretiert. Die Versuchsergebnisse werden am Ende des Semesters den anderen Teilnehmern des Seminars im Rahmen einer Präsentation vorgestellt sowie als schriftliche Ausarbeitung eingereicht.

Qualifikationsziel

Die Studierenden dieses Moduls sind in der Lage, eigenständig forschungstechnische Projekte im Labor zu bearbeiten und im Team ingenieurtechnische Probleme auf wissenschaftlichem Niveau zu diskutieren. Sie sind befähigt, sich selbständig notwendiges weiteres Wissen anzueignen und können im Team Lösungen für umweltrelevante Fragestel-

lungen zu Themen wie kommunale und industrielle Abwasserreinigung, Klärschlammbehandlung, Anaerobtechnik und Biogasgewinnung finden. Sie können ihr bereits erworbenes Wissen auf dem Gebiet der Siedlungswasserwirtschaft zur Lösung von komplexen ingenieur- und umwelttechnischen Problemen einsetzen und sind auch in der Lage, diese erarbeiteten Lösungsvorschläge der Öffentlichkeit in klarer und eindeutiger Weise zu präsentieren. Durch die intensive Auseinandersetzung mit den jeweiligen Themen in Kleingruppen sind die Qualifikationsziele Teamarbeit, Diskursionsfähigkeit und rhetorische Fähigkeiten integraler Bestandteil dieses Moduls. In der Abschlussveranstaltung ist das Qualifikationsziel der jeweiligen Veranstaltung auch die inhaltlich kontroverse Auseinandersetzung mit den vorgetragenen Themen der übrigen Teilnehmer (Qualifikationsziele: rhetorische Fähigkeiten und Diskusionsfähigkeit), da die Studierenden ihre ingenieurtechnischen Konzepte jeweils auch den anderen Gruppen vorstellen und mit den Teilnehmern kritisch diskutieren.

Literatur

Die für die einzelnen Lehrveranstaltungen relevante Fachliteratur kann je nach Aufgabenstellung variieren. Die erforderliche Literatur steht den Studierenden in der Institutsbibliothek zur Verfügung und wird jeweils zu Beginn der Veranstaltungen bekannt gegeben.

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS		
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft					
Master Umweltingenieurwesen PO 3	Vertiefungsfach Sied- lungswasserwirtschaft					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Die vorherige Teilnahme am Modul Abwasser- und Klärschlammbehandlung ist Voraussetzung für dieses Modul. Studierende anderer Universitäten/Fakultäten/Studiengänge sollen entsprechende Kenntnisse nachweisen.

Anwesenheitspflicht

Für die Veranstaltungen 'Bemessung und Auslegung von Anlagen' besteht Anwesenheitspflicht in den 16 Stunden des Präsenzstudiums (Einführungsveranstaltung, Abschlussveranstaltungen). Bei entschuldigten Fehlzeiten (z.B. Krankheit, Kinderbetreuung u.ä.) wird eine individuelle Absprache getroffen, welche Ersatzleistungen erbracht werden können, um die Qualifikationsziele Teamarbeit, Diskursfähigkeit und rhetorische Fähigkeiten dennoch zu erreichen. Mögliche Fehlzeiten dürfen 15% des Präsenzstudiums nicht überschreiten, damit die Qualifikationsziele noch erreicht werden können.

Für das Praktikum besteht Anwesenheitspflicht in den 40 Stunden des Präsenzstudiums (Einführungsveranstaltung, Laborversuche, Abschlussveranstaltung). Bei entschuldigten Fehlzeiten (z.B. Krankheit, Kinderbetreuung u.ä.) wird eine individuelle Absprache getroffen, welche Ersatzleistungen erbracht werden können, um die Qualifikationsziele Teamarbeit, Diskursfähigkeit, rhetorische Fähigkeiten, wissenschaftliche Auswertung der praktischen Laborarbeit dennoch zu erreichen. Mögliche Fehlzeiten dürfen 15% des Präsenzstudiums nicht überschreiten, damit die Qualifikationsziele noch erreicht werden können.

Titel der Veranstaltung

Bemessung und Auslegung von Anlagen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Thomas Dockhorn Michel Harder Sybille Karwat		2	Seminar	deutsch

Titel der Veranstaltung					
Praktikum/Seminar zur Verfahrens	Praktikum/Seminar zur Verfahrenstechnik der Abwasser-, Schlamm- und Wasserbehandlung				
Dozent/in Mitwirkende SWS Art LVA Sprache					
Thomas Dockhorn Michel Harder Sören Hornig Sybille Karwat Hooman Mohammadi		2	Praktikum	deutsch	

Modulname	Internationale Abwasser- und Abfallwirtschaft				
Nummer	4398310	Modulversion			
Kurzbezeichnung	BAU-STD-79	Sprache	deutsch		
Turnus		Lehreinheit			
Moduldauer	1	Einrichtung	Institut für Siedlungswas- serwirtschaft		
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Thomas Dockhorn		
Arbeitsaufwand (h)					
Präsenzstudium (h)	50	Selbststudium (h)	130		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen	Es werden Kenntnisse aus dem Modu "Abfall- und Ressourcenwirtschaft" v		nmbehandlung" und / oder		
Zu erbringende Prüfungsleistung/ Prüfungsform	Portfolio und Referat über das ganze Modul Die Studierenden erarbeiten in Kleingruppen 30-minütige Referate zu ausgewählten Themen, die zusammen mit der Vorlesung als Vorbereitung für die Abschlussveranstaltung dienen. Das Portfolio umfasst eine zusammengestellte Leistungsmappe in der die Ergebnisse der Gruppenarbeit zur Konzepterstellung im Rahmen der Abschlussveranstaltung dargestellt und wissenschaftlich eingeordnet werden. Die Erarbeitung der Portfolios erfolgt in selbstständiger Gruppenarbeit mit enger Betreuung durch die Institutsmitarbeiter/innen. Die Ergebnisse der Gruppenarbeit werden außerdem am Ende der Abschlussveranstaltung den Teilnehmenden sowie dem Prüfenden und einem fachkundigen Beisitzer oder einer fachkundigen Beisitzerin in einer Präsentation vorgestellt und als schriftliche Ausarbeitung eingereicht. Die Abmeldung von der Portfolioprüfung ist bis zwei Wochen vor der Abschlussveranstaltung möglich. Die Referatstermine und der Termin für die Abschlussveranstaltung werden in der Einführungsveranstaltung zu Beginn des Semesters festgelegt.				
Zu erbringende Studienleistung					
Zusammensetzung der Modulnote					

[Internationale Abfallwirtschaft (V)]

Die einstündige Vorlesung stellt die Besonderheiten der Abfallbehandlung im internationalen Kontext auch in Entwicklungs- und Schwellenländern dar und dient somit der Einführung in das Thema des dazugehörigen Seminars Abfall-, Siedlungswasser- und Ressourcenwirtschaft in Entwicklungs- und Schwellenländern.

[Abfall-, Siedlungswasser- und Ressourcenwirtschaft in Entwicklungs- und Schwellenländern (S)]

Die Teilnehmer arbeiten eigenständig in Gruppen, mit dem Ziel ein kommunales Entsorgungskonzept zur Abwasserreinigung und Abfallbehandlung für Standorte aus unterschiedlichen Regionen der Welt zu erstellen. Um die verschiedenen relevanten Informationen zu den Standorten zusammenzutragen, erstellen die Teilnehmer in Zweiergruppen 30-minütige Referate, in denen grundlegende Themen wie z.B. Verfahrenstechniken der Abwasserreinigung und Abfallbehandlung, Kosten und Planung von technischen Anlagen aber auch regionale Randbedingungen (Klima, Wirtschaft, Infrastruktur, rechtliche Randbedingungen, Kultur, Religion etc.) den Teilnehmern vorgestellt werden. In einer zweitägigen Blockveranstaltung am Ende des Semesters entwickeln die Studierenden in Gruppenarbeit Entsorgungskonzepte für die jeweils ausgewählten Standorte in Teamarbeit entwickelt. Die Konzepte werden am Ende der Blockveranstaltung den anderen Teilnehmern des Seminars im Rahmen einer Präsentation vorgestellt sowie als schriftliche Ausarbeitung eingereicht.

Qualifikationsziel

Die Studierenden dieses Moduls sind in der Lage, Probleme aus den Bereichen internationale Abwasser- und Abfallwirt- schaft wissenschaftlich einzuordnen und zu lösen. Sie erwerben grundlegende Kenntnisse über die Lösung abfallund siedlungswasserwirtschaftlicher Problemstellungen in Schwellen- und Entwicklungsländern unter Berücksichtigung landesspeziefischer Aspekte. Die Befähigung zur Adaption geeigneter Konzepte und Technologien an vorgegebene Standorte sowie Kenntnisse über Stoffstrommanagement und Ressourcenschutz mit besonderem Bezug zur Globalisierung bilden ein weiteres Lernziel. Sie sind befähigt, im Team ingenieurtechnische Probleme auf wissenschaftlichem Niveau zu diskutieren, sich selbständig notwendiges weiteres Wissen anzueignen und werden in die Lage versetzt, unter Berücksichtigung der landesspeziefischen Rahmenbedingungen vorhandene Probleme zu analysieren und zu beurteilen sowie Lösungsstrategien zu erarbeiten und die zur Umsetzung erforderlichen organisatorischen (Regional Governance) und technischen Maßnahmen zu planen und auszuführen. Sie sind in der Lage diese erarbeiteten Lösungsvorschläge der Öffentlichkeit in klarer und eindeutiger Weise zu präsentieren. Durch die intensive Auseinandersetzung mit den jeweiligen Themen in Kleingruppen sind die Qualifikationsziele Teamarbeit, Diskusionsfähigkeit und rhetorische Fähigkeiten integraler Bestandteil dieses Moduls. In der Abschlussveranstaltung ist das Qualifikationsziel der jeweiligen Veranstaltung auch die inhaltlich kontroverse Auseinandersetzung mit den vorgetragenen Konzepten der übrigen Teilnehmer.

Literatur

Die relevante Fachliteratur kann je nach Aufgabenstellung variieren. Die erforderliche Literatur steht den Studierenden in

der Institutsbibliothek zur Verfügung.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Abfall- und Ressourcenwirtschaft				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Ver- und Entsorgungswirtschaft				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Sied- lungswasserwirtschaft				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Die vorherige Teilnahme am Modul Abwasser- und Klärschlammbehandlung und/oder Abfall- und Ressourcenwirtschaft wird empfohlen.

Dieses Modul kann nur in der Vertiefung Siedlungswasserwirtschaft oder Abfallwirtschaft belegt werden. Teilnahmebeschränkung auf 40 Personen.

Anwesenheitspflicht

Für das Seminar besteht Anwesenheitspflicht in den 50 Stunden des Präsenzstudiums (Einführungsveranstaltung, Referatstermine, Abschlussveranstaltung). Bei entschuldigten Fehlzeiten (z.B. Krankheit, Kinderbetreuung u.ä.) wird eine individuelle Absprache getroffen, welche Ersatzleistungen erbracht werden können, um die Qualifikationsziele Teamarbeit, Diskusionsfähigkeit, rhetorische Fähigkeiten, wissenschaftliche Erarbeitung eines Entsorgungskonzeptes dennoch zu erreichen. Mögliche Fehlzeiten dürfen 15% des Präsenzstudiums nicht überschreiten, damit die Qualifikationsziele noch erreicht werden können.

Titel der Veranstaltung						
Internationale Abfallwirtschaft						
Dozent/in Mitwirkende SWS Art LVA Sprache						
Dr. Andreas Haarstrick		1	Vorlesung	deutsch		
Titel der Veranstaltung						
Titel der Veranstaltung						
	ssourcenwirtschaft in Entwicklungs	- und Schwelle	enländern			
	ssourcenwirtschaft in Entwicklungs Mitwirkende	- und Schwelle	enländern Art LVA	Sprache		

Dr. Andreas Haarstrick

Sybille Karwat

$Technische\ Universit\"{a}t\ Braunschweig\ |\ Modulhandbuch:\ \underline{Umweltingenieurwesen\ (Master)}$

Vertiefungsfach Hydrologie, Wasserwirtschaft und Gewässerschutz	
ECTS	18

Modulname	Hydrologie und Wasserwirtschaft		
Nummer	4310260	Modulversion	
Kurzbezeichnung	BAU-STD4-2	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Kai Schröter
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung	g (ca. 60 Min.)	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Hydrologie und Wasserwirtschaft (VÜ)]

Behandlung der hydrologischen Prozesse Abflussbildung, Abflusskonzentration und Wellenablauf; Integration der Prozesse in einem flächendetaillierten Niederschlag-Abfluss-Modell für Kurzzeit- und Langzeitsimulationen; Modellanwendungen am PC für die Einzelprozesse. Anwendung eines Niederschlag-Abfluss-Modells am PC auf ein Einzugsgebiet für Hochwasserschutzplanungen und für Wasserhaushaltsuntersuchungen; Bewertung der Ergebnisse; Ermittlung des Hochwasserschadenpotenzials ohne und mit Schutzmaßnahmen.

Qualifikationsziel

Die Studierenden erlangen Kenntnis über die Prozesse Abflussbildung, Abflusskonzentration und Wellenablauf der Hydrologie sowie deren Umsetzung in Simulationsmodelle. Sie werden befähigt, ein mesoskaliges Niederschlag-Abflussmodell, in dem alle Prozesse integriert sind, auf ein Einzugsgebiet anzuwenden, Ergebnisse zu bewerten und Hochwasserschutzplanungen durchzuführen. Sie erwerben die Grundlagen, eine ökonomische Bewertung von Hochwasserschutzmaßnahmen bezüglich Nutzen und Kosten durchzuführen.

Literatur

- -Dyck, S., Peschke, G. (1995): Grundlagen der Hydrologie. Verlag für Bauwesen, Berlin.
- -Maniak, U (2010): Hydrologie und Wasserwirtschaft. Eine Einführung für Ingenieure. Springer Verlag, Heidelberg -Fohrer, N. (Hrsg.), Bormann, H., Miegel, K., Casper, M., Bronstert, A., Schumann, A., Weiler, M. (2016): Hydrologie.

utb.basics, Haupt Verlag, Bern.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

Titel del veranstattung						
Hydrologie und Wasserwirtschaft						
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		
Günter Meon Hannes Müller-Thomy		4	Vorlesung/Übung	deutsch		

Modulname	Hydrogeologie und Grundwasserbewirtschaftung			
Nummer	4310270	Modulversion		
Kurzbezeichnung	BAU-STD4-2	Sprache	deutsch	
Turnus		Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Matthias Schöniger	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mündliche P	rüfung (ca. 60 Min.)		
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				

[Hydrogeologie und Grundwasserbewirtschaftung (VÜ)]

Allgemeine Grundlagen zur Hydrogeologie und Grundwasserbewirtschaftung, Kenntnisse zu Aufgaben der Hydrogeologie und Grundwasserbewirtschaftung für die nachhaltige Ressourcennutzung, Bewirtschaftungsziele nach §47 des WHG. Vorgestellt werden: numerische Grundwasserprogramme zur Berechnung von regionalen Grundwasserbewegungen, Transportprozessen mit einfachen Reaktionskinetiken, Modellgestützte Bewertung von mengenmäßigen und chemischen Grundwasserzuständen.

Qualifikationsziel

Die Studierenden erlangen Kenntnis über den Aufbau von regionalen Grundwasserkörpern, den Strömungs- und Transportprozesse im Untergrund sowie dem Grundwasserhaushalt. Sie eignen sich die Nutzung von Rechnern zur Simulation von Grundwasserbewegungen und Transportprozessen an und sind in der Lage, sich einen Überblick zur Bewertung wasserwirtschaftlicher Projekte nach Nutzen-Kosten-Kriterien und anderen Kriterien zu verschaffen. Außerdem lernen sie komplexe hydrogeologische Prozesse und die Modelltechnik zur Nachbildung dieser Prozesse kennen.

Literatur

Hill, M.C. & Tiedeman, C.T. (2006): Effective Groundwater Model Calibration. With Analysis of Data, Sensitivities, Predictions, and Uncertainty.- Wiley-Interscience

Rausch, R., Schäfer, W. & Wagner, C. (2002): Einführung in die Transportmodellierung im Grundwasser.- Gebr. Borntraeger

Mattheß, G. & Ubell, K. (2003): Allgemeine Hydrogeologie Grundwasserhaushalt.- Gebr. Borntraeger Skriptum und Simulationsprogramme

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Für dieses Modul werden GIS-Kenntnisse vorausgesetzt.	
Anwesenheitspflicht	

Titel der Veranstaltung					
Hydrogeologie und Grundwasserbewirtschaftung					
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache	
Matthias Schöniger		4	Vorlesung/Übung	deutsch	

Modulname	Flussgebietsmanagement				
Nummer	4320090	Modulversion			
Kurzbezeichnung	BAU-STD2-3	Sprache	deutsch		
Turnus		Lehreinheit			
Moduldauer	1	Einrichtung			
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Kai Schröter		
Arbeitsaufwand (h)					
Präsenzstudium (h)	56	Selbststudium (h)	124		
Zwingende Voraussetzungen					
Empfohlene Voraussetzungen	Es werden Kenntnisse aus dem Modul "Hydrologie und Wasserwirtschaft" vorausgesetzt.				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung (ca. 60 Min.)				
Zu erbringende Studienleistung	Anerkennung zweier Hausarbeiten				
Zusammensetzung der Modulnote					

[Flussgebietsmanagement (VÜ)]

Flussgebietsmanagement (FGM) zur Umsetzung der EU-Wasserrahmenrichtlinie und der EU-Hochwasserschutzrichtlinie; Internationales FGM; Modellanwendungen zur Speicherbewirtschaftung; Hochwasserrisikomanagement.

[GIS - Anwendungen im Flussgebietsmanagement (VÜ)]

Geografische Informationen für die hydrologische und hydraulische Modellierung; digitale Karten, Vektor- und Rasterdaten; Verschneidungstechniken; Georeferenzierung; Makrosprachen und Programmierung.

Qualifikationsziel

Die Studierenden werden in die Lage versetzt, Flussgebietsmanagement nach Vorgaben der EU-Richtlinien zu betreiben. Die Studierenden werden mit computerbasierten Modellanwendungen zum Flussgebietsmanagement mit Fokus auf Speicherbewirtschaftung vertraut gemacht. Sie werden in die Lage versetzt, geographische Daten in Raster- und in Vektorform zu verarbeiten und zu analysieren. Sie können raumbezogene Fragestellungen lösen und die Ergebnisse in thematischen Karten darstellen.

Literatur

Skripten und Simulationsprogramme

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				

ZUGEHORIGE LEHRVERANSTALTUNGEN						
Belegungslogik bei der Wahl von	Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht						
Titel der Veranstaltung						
Flussgebietsmanagement						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Günter Meon Tim Müller		2	Vorlesung/Übung	deutsch		
Titel der Veranstaltung						
GIS - Anwendungen im Flussgebietsmanagement						
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		
Gerhard Riedel		2	Vorlesung/Übung	deutsch		

Modulname	Gewässerschutz - Messtechnik und diffuser Stoffeintrag			
Nummer	4310740	Modulversion		
Kurzbezeichnung	inaktiv	Sprache	deutsch	
Turnus		Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften	
Moduldauer		Einrichtung		
SWS / ECTS	0 / 6,0	Modulverantwortliche/r		
Arbeitsaufwand (h)				
Präsenzstudium (h)		Selbststudium (h)		
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform				
Zu erbringende Studienleistung				
Zusammensetzung der Modulnote				
Inhalte				
Qualifikationsziel				
Literatur				

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				

ZUGEHÖRIGE LEHRVE	ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wa	hl von Lehrveranstaltungen			·		
Anwesenheitspflicht						
Titel der Veranstaltung						
Messtechnik für Wassermen	ge und Gewässergüte					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Tim Müller Hannes Müller-Thomy Johanna Schwenkel Stephanie Zeunert		2	Praktikum	deutsch		
Titel der Veranstaltung						
Datenauswertung für hydrologisch-hydraulische Simulationen						
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache		
Hannes Müller-Thomy	ller-Thomy 2 Vorlesung/Übung deutsch					

Modulname	Gewässerschutz - Modellierung		
Nummer	4310730	Modulversion	
Kurzbezeichnung	BAU-STD3-71	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Kai Schröter
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Es werden Grundkenntnisse der Gewä	issergüte vorausgesetzt.	
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) oder mdl. Prüfung (ca. 60 Min.)		
Zu erbringende Studienleistung	Hausarbeit		
Zusammensetzung der Modulnote			

[Modellierung der Gewässergüte (VÜ)]

Gewässergüteparameter und deren Prozesse; Analysemethoden der Messdaten; Differenzialgleichungen zur Simulation eines einfachen vollständigen und unvollständigen Systems; Numerische Methoden; Wärmehaushalt; Modellierung der Gewässergüte; ; Anwendungen am Rechner

Qualifikationsziel

Die Studierenden erwerben eine fundierte Kenntnis der Interaktion von Wassermenge und Wasserqualität in fließenden und stehenden Gewässern. Sie werden qualifiziert, die Gewässergüte naturwissenschaftlich-technisch zu quantifizieren und mittels Modellalgorithmen zu beschreiben. Mithilfe von Modellanwendungen erlernen sie Lösungen zur Verbesserung der Gewässergüte.

Literatur

Steven C. Chapra, Surface Water-Quality Modeling, Waveland Press 2008 James L. Martin & Steven C. McCutcheon, Hydrodynamics and Transport for Water Quality Modeling, CRC Press, 1998

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN Belegungslogik bei der Wahl von Lehrveranstaltungen Es werden Grundkenntnisse der Gewässergüte vorausgesetzt. Anwesenheitspflicht

Titel der Veranstaltung						
Modellierung der Gewässergüte	Modellierung der Gewässergüte					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Johanna Schwenkel Stephanie Zeunert		4	Vorlesung/Übung	deutsch		

Modulname	Ecohydrological Modelling of Catchments			
Nummer	4398800	Modulversion		
Kurzbezeichnung		Sprache	englisch	
Turnus	nur im Wintersemester	Lehreinheit		
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Kai Schröter	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen		`		
Empfohlene Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (120 Min.) oder mdl. Prüfung	g (ca. 30 Min.)		
Zu erbringende Studienleistung	Hausarbeit			
Zusammensetzung der Modulnote				

Komponenten eines ökohydrologischen Modellsystems

- Modellierung des Wasserhaushalts (Niederschlag, Evapotranspiration, Bodenwasser, Abflussbildung, Abflusskonzentration, Wellenablauf)
- Modellierung des Pflanzenwachstums
- Modellierung von Transport- und Umwandlungsprozessen von Stoffen (u.a. Sediment, Stickstoff, Phosphor) in der Landschaft und im Gewässer
- Anwendung eines ökohydrologischen Modells am PC auf ein mesoskaliges Einzugsgebiet
- Einfluss verschiedener Landnutzungs- und Bewirtschaftungsformen auf den Landschaftswasser und Nährstoffhaushalt
- Modellierung und Bewertung von Managementmaßnahmen zur Reduktion von Stoffausträgen aus der Landschaft (technisch und naturbasiert)
- Schnittstellen zur 2D-hydrodynamischenModellierung des Grundwassers und der Gewässergüte von Oberflächengewässern

Qualifikationsziel

Die Studierende erlangen fundierte Kenntnisse zu den in der Landschaft und im Gewässer stattfindenden Transportund Umwandlungsprozessen von Stoffen in einem Einzugsgebiet sowie ihrer mathematischen Beschreibung in einem ökohydrologischen Modellsystem. Sie werden befähigt, ein ökohydrologisches Modell für ein mesoskaliges Einzugsgebiet aufzubauen, die Modellausgaben aufzubereiten und zu analysieren und die Simulationsergebnisse zu bewerten. Sie erwerben Grundlagen in der Modellierung und Bewertung von Managementmaßnahmen zur Reduktion von Stoffausträgen aus dem Einzugsgebiet.

Literatur

- -Lorenz, Malte (2018): Ökohydrologische Modellierung, Skriptum zur gleichnamigen LV im MSc.-Fernstudium ProWater, koordiniert am LWI (Prof. G. Meon)
- -Wood, Paul J. (Hrsg., 2008): Hydroecology and Ecohydrology: Past, Present and Future, Wiley.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Titel der Veranstaltung					
Ecohydrological Modelling of Catchments					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
		4	Vorlesung/Übung	englisch	

Modulname	Urban Ecohydrology		
Nummer	1514300	Modulversion	
Kurzbezeichnung		Sprache	
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Ilhan Özgen
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) oder mündliche Prü	ifung (30 Min.)	
Zu erbringende Studienleistung	Hausübung		
Zusammensetzung der Modulnote			

[Urban Ecohydrology (V)]

Die Vorlesung behandelt Themen der Ökohydrologie im urbanen Bereich: urbanes Grundwasser, Mess- und Modellierungstechniken, dezentrale (Hoch-)Wasserbewirtschaftung und grün-blaue Infrastruktur.

[Urban Ecohydrology (Ü)]

Die Übung besteht aus rechnerischen Übungen, die sich an den jeweiligen Themen der Vorlesung orientieren. Ein Teil der Übungsaufgaben wird mit der Programmiersprache "R" berechnet.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage:

- Grundlegende theoretische Kenntnisse von Ökosystemdienstleistungen auf den urbanen Wasserkreislauf anzuwenden
- Ökohydrologische Fragestellungen im urbanen Raum quantitativ zu bearbeiten
- Methoden der urbanen Ökohydrologie einzusetzen

Literatur

Baird & Wilby (2000) Eco-Hydrology, Routledge, Oxfordshire, UK.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN
Belegungslogik bei der Wahl von Lehrveranstaltungen
Anwesenheitspflicht
Titel der Veranstaltung
Urban Ecohydrology

, ,				
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Mikael Gillefalk		4	Vorlesung/Übung	englisch
Ilhan Özgen				

Literaturhinweise

Baird & Wilby (2000) Eco-Hydrology, Routledge, Oxfordshire, UK

Modulname	Gewässerschutz-Messtechnik und Datenanalyse		
Nummer	4310970	Modulversion	
Kurzbezeichnung	BAU-STD3-71	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	Kai Schröter
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen		`	
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.)		
Zu erbringende Studienleistung	Hausarbeit		
Zusammensetzung der Modulnote			

[Messtechnik für Wassermenge und Gewässergüte (P)]

Messtechnik für meteorologische und hydrologische Daten und deren Aufbereitung (Oberflächen- und Grundwasser); Bestimmung von Gewässergüte-Parametern (chemisch-physikalische Größen, biologische Indikatoren); Probenahme am Gewässer (Fluss, See) und Analyse im Labor; On-line-Messnetze; Auswertung der Messdaten.

[Datenauswertung für hydrologisch-hydraulische Simulationen (V)]

Prüfung, Aufbereitung und Auswertung von Daten als Grundlage für anwendungsspezifische Fragestellungen und zur Erstellung von Eingangsdaten und Parametern für Simulationsmodelle. In der LV werden die modellrelevanten Prozesse Niederschlag, Verdunstung, Bodenwasserbewegung und Abflussbildung behandelt. Die Lehrinhalte umfassen universell anwendbare Methoden wie z.B. Zeitreihenanalyse (Homogenität, Konsistenz), Regionalisierung und Extremwertanalyse sowie prozessspezifische Methoden wie z.B. Messfehlerkorrektur und Verwendung alternativer Datensätze im Bereich Niederschlag.

Qualifikationsziel

Die Studierenden erwerben vielfältige und fächerübergreifende Kenntnisse in der Datenanalyse und Programmierung von eigenen Analyse-Algorithmen. Es wird ein Verständnis über Datenstrukturen, -größenordnungen, und -plausibilitäten vermittelt. Die erworbenen Kenntnisse können auf unbekannte Disziplinen und andere Software übertragen werden.

Literatur

Skripten und Simulationsprogramme

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Hydrolo- gie, Wasserwirtschaft und Gewässerschutz				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
maximal 12 Teilnehmer		
Anwesenheitspflicht		

Titel der Veranstaltung				
Messtechnik für Wassermenge und Gewässergüte				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Tim Müller Hannes Müller-Thomy Johanna Schwenkel Stephanie Zeunert		2	Praktikum	deutsch

Titel der Veranstaltung				
Datenauswertung für hydrologisch-hydraulische Simulationen				
Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Hannes Müller-Thomy		2	Vorlesung/Übung	deutsch

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Vertiefungsfach Wasserbau	
ECTS	18

Modulname	Naturnaher Wasserbau		
Nummer	4320020	Modulversion	
Kurzbezeichnung	BAU-STD2-5	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Jochen Aberle
Arbeitsaufwand (h)			
Präsenzstudium (h)	66	Selbststudium (h)	114
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) und Referat und mo	dl. Prüfung (ca. 30 Min.)	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Naturnaher Wasserbau (Master) (VÜ)]

Europäische Wasserrahmenrichtlinie, Morphologie von Fließgewässern, Hydraulik naturnaher Fließgewässer, Widerstandsverhalten ebener Gewässersohlen und morphologischer Makrostrukturen, Rauheiten und Widerstandsbeiwerte, Feststofftransport, morphologische Entwicklung von Fließgewässern, Gewässerunterhaltungs und entwicklungsmaßnahmen

[Gerinnehydraulik - naturnah (Master) (Ü)]

In praxisnahen Übungen wird der Einfluss von hydraulischen, morphologischen und morphodynamischen Faktoren auf das Abflussverhalten eines Fließgewässers vermittelt.

[Widerstandsverhalten von Bewuchs (Master) (V)]

Vermittlung von Ansätzen zur Beschreibung von Vegetationseigenschaften und der Charakterisierung des Widerstandsverhaltens von Bewuchs, Wahlpflichtfach als vertiefende Ergänzung zur Pflichtlehrveranstaltung "Naturnaher Wasserbau"

 $[Fließgew\"{a}sser\"{o}kologie~(Master)~(V)]$

Einführung in die Fließgewässerökologie und Bestimmungsmethoden der Gewässergüte und -strukturgüte

[Dynamik des kohäsiven Sediments (V)]

Einführung in die physikalischen Prozesse kohäsiver Sedimente in natürlichen Gewässern

Qualifikationsziel

Die Studierenden erlernen die Grundlagen zur Behandlung wesentlicher Aspekte des naturnahen Wasserbaus. Dieses betrifft insbesondere die Hydraulik und den Feststofftransport von Fließgewässern sowie ihre Wechselwirkung unter Berücksichtigung weiterer Einflüsse, wie z.B. Vegetation. Mit diesen Instrumentarien sind die Studierenden in der Lage, Ziele naturnaher Umgestaltungsmaßnahmen zu definieren, entsprechende Maßnahmen zu entwickeln und den Erfolg geplanter und bereits bestehender Umgestaltungsmaßnahmen zu bewerten. Die praxisnahe Ausbildung wird durch Übungen im Gelände unterstrichen. Neben wasserbaulichen werden auch ökologische Inhalte vermittelt, um die Studierenden auf die im Berufsleben geforderte interdisziplinäre Zusammenarbeit im Bereich des naturnahen Wasserbaus vorzubereiten.

Literatur

Literaturhinweise, Fachbücher, und Vorlesungsumdrucke

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion Bereich Pflichtform Sem. Auswahl ECTS				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasserbau			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Pflichtveranstaltungen:

[Naturnaher Wasserbau] (3 LP), [Gerinnehydraulik - naturnah] (2 LP)

Von den Wahlpflichtveranstaltungen:

[Widerstandsverhalten von Bewuchs] (1 LP),

[Gewässerökologie] (1 LP)

[Dynamik des kohäsiven Sediments] (1LP) ist eine zu wählen

Anwesenheitspflicht

Titel der Veranstaltung

Naturnaher Wasserbau (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jochen Aberle		3	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Gerinnehydraulik - naturnah (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jochen Aberle Katinka Koll		2	Übung	deutsch

Titel der Veranstaltung

Widerstandsverhalten von Bewuchs (Master)

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Jochen Aberle		1	Vorlesung	deutsch

Titel der Veranstaltung

Fließgewässerökologie (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Thomas Ols Eggers		1	Vorlesung	deutsch

Modulname	Numerische Methoden im Grund- und	l Oberflächenwasser	
Nummer	4320040	Modulversion	
Kurzbezeichnung	BAU-STD2-3	Sprache	deutsch
Turnus		Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Jochen Aberle
Arbeitsaufwand (h)			
Präsenzstudium (h)	66	Selbststudium (h)	114
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) und Referat und mo	dl. Prüfung (ca. 30 Min.)	
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Numerische Methoden im Grund- und Oberflächenwasser (Master) (VÜ)]

Allgemein: Modellkonzepte, Prinzipien der numerischen Lösung, Orts-, Zeit-Diskretisierung; Praktische Einführung in verschiedene Berechnungsverfahren Oberflächengewässer: hydraulische Grundlagen der Strömungsmodellierung; Turbulenzmodelle; Gitteraufbau; 1D bis 3D Berechnung; Ansätze zur Feststoffmodellierung; Strömungsvorgänge im Interstitial Grundwasser: Grundbegriffe; Fließgesetze; Methoden zur Bestimmung der Durchlässigkeit; Strömungsgleichungen; Grundwassermodellierung

[Gerinnehydraulik - numerisch (Master) (Ü)]

Einführung in verschiedene Berechnungsverfahren zur Modellierung von Oberflächengewässern; Übungen am PC mit der Modellierung von horizontal-ebenen und vertikal-ebenen Grundwassersystemen

[Hydraulik im Damm- und Deichbau (Master) (V)]

Wahlpflichtfach mit vertiefenden und ergänzenden Lehrinhalten zur Veranstaltung "Numerische Methoden im Grundund Oberflächenwasser" mit dem Themenschwerpunkt Dämme und Deiche

[Numerische Berechnung von Grundwasserströmungen im Damm- und Deichbau (Master) (VÜ)]

Grundlagen der Methode der Finiten Elemente und des Differenzenverfahrens, Entwicklung von Programmen für einfache eindimensionale Systeme, Praktische Anwendungen am PC mit der Modellierung von horizontal-ebenen und vertikal-ebenen Systemen

[Sedimenttransportmodellierung (Master) (V) (englisch)]

Introduction to computational methods for sediment transport processes / Einführung in numerische Berechnungsmethoden von Sedimenttransportprozessen

Qualifikationsziel

Die Studierenden erwerben vertiefte Kenntnisse über den theoretischen Hintergrund zur hydraulischen Berechnung von Oberflächengewässern und Grundwasserströmungen. Mit diesem Wissen können sie die Randbedingungen, Annahmen und Vereinfachungen, die der numerischen Modellierung von Strömungen zugrunde liegen, verstehen und entscheiden, welche Methoden/Modelle geeignet bzw. erforderlich sind, um eine Fragestellung zu bearbeiten. In praktischen Anwendungen werden die Studierenden an verschiedene numerische Programme herangeführt, wobei besonderer Wert auf die kritische Diskussion der Ergebnisse gelegt wird. Die Studierenden sind am Ende des Moduls in der

Lage für ein gegebenes Strömungsproblem die erforderlichen Informationen zusammenzustellen, das geeignete Programm auszuwählen und die Ergebnisse zu analysieren und zu interpretieren.

Literatur

Skript vorhanden

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasserbau				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Pflichtveranstaltungen: Numerische Methoden im Grund- und Oberflächenwasser (3 LP), Gerinnehydraulik - numerisch (2 LP)

Von den Wahlpflichtveranstaltungen:

Hydraulik im Damm- und Deichbau (1 LP),

Numerische Berechnung von Grundwasserströmungen (1 LP) oder Sedimenttransportmodellierung (1) ist eine zu wählen

Anwesenheitspflicht

Titel der Veranstaltung

Numerische Methoden im Grund- und Oberflächenwasser (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Katinka Koll		4	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Gerinnehydraulik - numerisch (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Katinka Koll		2	Übung	deutsch

Titel der Veranstaltung

Hydraulik im Damm- und Deichbau (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Katinka Koll		1	Vorlesung	deutsch

Titel der Veranstaltung				
Numerische Berechnung von Grundwasserströmungen im Damm- und Deichbau (Master)				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Johann Buß		1	Vorlesung/Übung	deutsch

Modulname	Konstruktiver Wasserbau		
Nummer	4320030	Modulversion	
Kurzbezeichnung	BAU-STD2-36	Sprache	
Turnus	in jedem Semester	Lehreinheit	
Moduldauer	1	Einrichtung	
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	Jochen Aberle
Arbeitsaufwand (h)			
Präsenzstudium (h)	62	Selbststudium (h)	118
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Min.) und Referat und mdl. Prüfung (ca. 20 Min.)		
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote		·	

Konstruktiver Wasserbau (VÜ)

Die Vorlesung beschäftigt sich mit der Bemessung hydraulischer Bauwerke in den Gebieten des Fluss- und Wasserkraftanlagenbaus. In der Vorlesung werden die Teilaspekte wasserbauliches Versuchswesen, Kreuzungsbauwerke, Wehranlagen, Energieumwandlungsanlagen, Wasserkraftanlagen und

Durchgängigkeitsbauwerke behandelt. Gerinnehydraulik konstruktiv (Ü)

Praktische Umsetzung des in der Vorlesung "Konstruktiver Wasserbau" vermittelten Wissens durch praktische Übungen. Dies wird durch die experimentelle Bearbeitung praxisnaher und/oder grundlegender Problemstellungen im Lehrlabor und Wasserbaulaboratorium erreicht.

Talsperren (V)

Das Wahlpflichtfach beinhaltet vertiefende und ergänzende Lehrinhalte zu der Pflichtlehrveranstaltung "Konstruktiver Wasserbau" im Hinblick auf Talsperren. Behandelt werden die Bemessungs- und Konstruktionsgrundlagen von Stauräumen, Staumauern, Staudämmen, Hochwasserentlastungs- und Entnahmeanlagen. Darüber hinaus wird das nachhaltige Sedimentmanagement von Stauräumen behandelt.

Stahlwasserbau und Offshore-Windkraftanlagen (V)

Die Studierenden erwerben Kenntnisse über typische Konstruktionen aus dem Bereich des Stahlwasserbaus und werden in die Lage versetzt, Konstruktionen aus dem Bereich des Stahlwasserbaus zu entwerfen und berechnen. Dabei werden auch die wesentlichen Normregelungen vermittelt.

Wasserbauliches Versuchswesen (V)

Die Studierenden erwerben tiefergehende Kenntnisse über das wasserbauliche Versuchswesen. Hierzu zählen die Dimensionsanalyse, Modellgesetze und Ähnlichkeiten, Modellbau, Modelle mit mobiler Sohle, Messgeräte und Feldmessungen.

Qualifikationsziel

Die Studierenden erlernen die Grundlagen der wesentlichen Aspekte des konstruktiven Wasserbaus und des wasserbaulichen Versuchswesens. Sie werden dazu befähigt, die Funktionsweise von hydraulischen Strukturen wie Wehranlagen, Talsperren, Wasserkraftanlagen, Durchgängigkeitsbauwerken und Kreuzungsbauwerke zu erläutern und diese Strukturen hydraulisch zu bemessen. Zudem können sie wasserbauliche Modellversuche selbstständig planen und

durchführen. Dadurch werden die Studierenden in die Lage versetzt, unter Berücksichtigung spezieller Randbedingungen geeignete Maßnahmen zur Lösung praktischer Fragestellungen zu entwickeln.

Literatur

Vorlesungsumdrucke und Fachbücher, wie z.B.:

- Chow, V. T. (1959). Open channel hydraulics. Singapore: McGraw-Hill.
- Giesecke, J.; Heimerl, S.; Mosonyi, E. (2014). Wasserkraftanalagen. Planung, Bau und Betrieb. 6. Auflage. Berlin: Springer Vieweg.
- Hager, W., Schleiss, A. J. Boes, R. M., Pfister, M. (2021). Hydraulic Engineering of Dams, CRC Press.
- Muste et al. (2017). Experimental Hydraulics: Methods, Instrumentation, Data Processing and Management, Two Volume Set; Routledge, Taylor and Francis Group.
- Patt, H.; Gonsowski, P. (2011). Wasserbau. 7., aktualisierte Auflage. Heidelberg, Springer.
- Strobl, T.; Zunic, F. (2006). Wasserbau. Berlin, Heidelberg, Springer.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasserbau				
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Pflichtveranstaltungen:

- -[Konstruktiver Wasserbau] (4 LP),
- -[Gerinnehydraulik konstruktiv] (1 LP)

Von den Wahlpflichtveranstaltungen:

- -[Talsperren] (1 LP),
- -[Stahlwasserbau und Offshore-Windkraftanlagen] (1 LP)
- -[wasserbauliches Versuchswesen] (1 LP)

ist eine zu wählen

Die Module "Wasserkraftanlagen - Technologien und Modellierung" und "Konstruktiver Wasserbau" schließen sich gegenseitig aus.

Anwesenheitspflicht

Titel der Veranstaltung

Stahlwasserbau und Offshore-Windkraftanlagen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Michael Siems		1	Vorlesung	deutsch

Titel der Veranstaltung

Konstruktiver Wasserbau (Master)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jochen Aberle		4	Vorlesung/Übung	deutsch

Titel der Veranstaltung					
Gerinnehydraulik - konstruktiv (Master)					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Jochen Aberle Francisco Nunez-Gonzalez		2	Übung	englisch deutsch	
Titel der Veranstaltung					
Talsperren (Master)					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Jochen Aberle		1	Vorlesung	deutsch	
Titel der Veranstaltung					
Physical Hydraulic Modelling					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Jochen Aberle		1	Vorlesung	englisch	

Modulname	Projektmanagement im Verkehrswass	erbau	
Nummer	4398790	Modulversion	
Kurzbezeichnung		Sprache	
Turnus		Lehreinheit	
Moduldauer	2	Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortliche/r	Jochen Aberle
Arbeitsaufwand (h)			
Präsenzstudium (h)	72	Selbststudium (h)	108
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	3 Prüfungsleistungen: 2 Klausuren (je 60 Min.) oder 1 Klausur (60 Min.) und 1 mdl. Prüfung (15 Min.) und 1 Referat		
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			

[Verkehrswasserbau im Binnenbereich (VÜ)]

Binnenschifffahrt; Verwaltung der Bundeswasserstraßen; Binnenwasserstraßen und Binnenschiffe; Fahrdynamik von Binnenschiffen; Fluss- und Stauregelung; Schleusen

[Projektmanagement im Verkehrswasserbau (V)]

Planung und Umsetzung von Projekten im Verkehrswasserbau; Zuständigkeiten; Planungsstadien; Termin- und Ressourcenplanung; Ausschreibungen und Ausschreibungsmodelle; Risikomanagement; Berücksichtigung von Interessensgruppen; Optionen zur Prozessoptimierung

Qualifikationsziel

Die Studierenden erlangen fundiertes Wissen über die Binnenschifffahrt, die dafür benötigte verkehrswasserbauliche Infrastruktur und über das Projektmanagement zum Neubau, zur Erhaltung und zur Sanierung der Infrastrukturelemente aus der Sicht der Wasserstraßen- und Schifffahrtverwaltung. Sie erwerben die Fähigkeit, die Funktionsweise von verkehrswasser¬baulichen hydraulischen Strukturen zu erläutern und hydraulisch zu bemessen und erhalten tiefergehende Erkenntnisse über Methoden und Werkzeuge, mit denen verkehrs¬wasserbauliche Projekte in organisatorischer, rechtlicher, technischer, wirtschaftlicher und terminlicher Hinsicht zielorientiert abgewickelt werden.

Literatur

Präsentationsfolien der Vorlesungen

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasserbau			
Master Umweltingenieurwesen PO 3	Vertiefungsfach Wasser- wesen			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Projektmanagement im Bauwesen kann entweder im Modul Realisierung und Finanzierung oder im Modul Projektmanagement im Verkehrswasserbau eingebracht werden.

Anwesenheitspflicht

Titel	der	V	eransta	ltung
-------	-----	---	---------	-------

Verkehrswasserbau im Binnenbereich

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jochen Aberle		2	Vorlesung/Übung	deutsch

Titel der Veranstaltung

Projektmanagement im Verkehrswasserbau

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Tanja Kessel		2	Vorlesung	deutsch

Titel der Veranstaltung

Projektseminar im Verkehrswasserbau

Dozent/in	Mitwirkende	SWS	Art LVA	Sprache
Jochen Aberle Tanja Kessel		2	Seminar	deutsch

Technische Universität Braunschweig	Modulhandbuch:	Umweltingenieurwesen	(Master)

Schlüsselqualifikationen	
ECTS	6

Modulname	Schlüsselqualifikationen		
Nummer	4301040	Modulversion	
Kurzbezeichnung	BAU-STD2-04	Sprache	deutsch
Turnus		Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften
Moduldauer	1	Einrichtung	
SWS / ECTS	6 / 6,0	Modulverantwortliche/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)	84	Selbststudium (h)	96
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Die Prüfungsmodalitäten sind abhän nen sind den jeweiligen Lehrveranstaltungen zu e		staltungen. Die Informatio-
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			

Qualifikationsziel

I. Übergeordneter Bezug: Einbettung des Studienfachs Die Studierenden werden befähigt, Ihr Studienfach in gesellschaftliche, historische, rechtliche oder berufsorientierende Bezüge einzuordnen (je nach Schwerpunkt der Veranstaltung). Sie sind in der Lage, übergeordnete fachliche Verbindungen und deren

Bedeutung zu erkennen, zu analysieren und zu bewerten. Die Studenten erwerben einen Einblick in

Vernetzungsmöglichkeiten des Studienfaches und Anwendungsbezüge ihres Studienfaches im Berufsleben.

II. Wissenschaftskulturen

Die Studierenden

- lernen Theorien und Methoden anderer, fachfremder Wissenschaftskulturen kennen,
- lernen sich interdisziplinär mit Studierenden aus fachfremden Studiengebieten auseinanderzusetzen und zu arbeiten,
- können aktuelle Kontroversen aus einzelnen Fachwissenschaften diskutieren und bewerten,
- erkennen die Bedeutung kultureller Rahmenbedingungen auf verschiedene Wissenschaftsverständnisse und Anwendungen,
- kennen genderbezogene Sichtweisen auf verschiedene Fachgebiete und die Auswirkung von Geschlechterdifferenzen.
- können sich intensiv mit Anwendungsbeispielen aus fremden Fachwissenschaften auseinandersetzen.

Literatur

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Auswahl	ECTS	
Master Umweltingenieurwesen PO 3	Schlüsselqualifikationen				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Aus Vortragsreihen des Bauingenieurwesens sind 4 SWS (2 LP) zu belegen. Aus dem Pool überfachlicher Qualifikationen der TU Braunschweig müssen 4 LP belegt werden.

Anwesenheitspflicht

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Studienarbeit	
ECTS	6

Modulname	Studienarbeit		
Nummer	4302280	Modulversion	
Kurzbezeichnung	BAU-STD-28	Sprache	deutsch
Turnus		Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 6,0	Modulverantwortliche/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion Bereich Pflichtform Sem. Auswahl ECT			ECTS	
Master Umweltingenieurwesen PO 3	Studienarbeit			

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Technische Universität Braunschweig | Modulhandbuch: Umweltingenieurwesen (Master)

Masterarbeit	
ECTS	24

Modulname	Masterarbeit		
Nummer	4302260	Modulversion	
Kurzbezeichnung	BAU-STD-26	Sprache	deutsch
Turnus		Lehreinheit	Fakultät Architektur, Bauingenieurwesen und Umweltwissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 24,0	Modulverantwortliche/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote			
Inhalte			
Qualifikationsziel			
	•	·	
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion Bereich Pflichtform Sem. Auswahl ECTS			ECTS	
Master Umweltingenieurwesen PO 3	Masterarbeit			

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	