

Beschreibung des Studiengangs

Biologie (Master) PO 3

Datum: 07.11.2025

Inhaltsverzeichnis

Master Biologie	
Systembiologie und Bioinformatik - Wahlpflichtbereich	
Medizinische Biotechnologie	
Grundlagen der Proteinstrukturanalyse	
Pathologic Metabolism in Human Diseases – Focusing on Immune Cells	
Molekulare Biochemie	
Python for Life Scientists	
Metabolism in a Box: A Virtual Grant Challenge	
Systemsbiology: Modeling of Biochemical Networks	
Flexi-Modul	
Alternativ-Modul	
Alternativ-Modul2	24
Systembiologie und Bioinformatik - Schwerpunkt	
Immunmetabolismus	
Angewandte Bioinformatik: Biomarker zur Diagnose	
Mass Spectrometry for Biologists and Biochemists - a Basic Introduction	31
Software-Entwicklung zu biologischen Fragestellungen	
Mikrobielle Proteomik	
Current Topics in Nutrition and Metabolism	
Forschungspraktikum	
Forschungspraktikum	43
Flexi-Modul	45
Alternativ-Modul	47
Alternativ-Modul2	49
Molekulare Biodiversität - Wahlpflichtbereich	
Phytopathologie	
Molekulare mikrobielle Evolution und Diversität	
Genetik und Molekularbiologie filamentöser Pilze	
Struktur und Funktion mikrobieller Lebensgemeinschaften	
Python for Life Scientists	
Flexi-Modul	
Alternativ-Modul	
Alternativ-Modul2	67
Molekulare Biodiversität - Schwerpunkt	
Mikrobielle Wirkstoffproduzenten - Die Myxobakterien	
Mikrobielle Wirkstoffproduzenten - Biotechnologische Aspekte der Actinobacteria	
Pflanzen- und Bodenassoziierte Mikroorganismen: Diversita#t, Anpassung, Pathogen	
Hormonelle Regulation pflanzlicher Entwicklungsprozesse	
Forschungspraktikum	
Forschungspraktikum	
Flexi-Modul	
Alternativ-Modul	
Alternativ-Modul2	88
Mikrobiologie und Infektionsbiologie - Wahlpflichtbereich	
Entry-Modul "Engineering for Health" und "Alignment Internship"	
Molekulare Mikrobiologie	
Virologie	
Molekulare Infektionsbiologie	
Zelluläre Mikrobiologie	
Klinische Mikrobiologie	
Molekulare Zellbiologie des mikrobiellen Wachstums	104 106
MOJEKUJATE MIKTODIELIE EVOLUTION UND 171/ELSTAT	7116

Struktur und Funktion mikrobieller Lebensgemeinschaften	109
Metabolism in a Box: A Virtual Grant Challenge	111
Flexi-Modul	114
Alternativ-Modul	116
Alternativ-Modul2	118
Mikrobiologie und Infektionsbiologie - Schwerpunkt	
Molekulare Immunologie	120
Molekulare Infektionsepidemiologie	123
Funktionelle Genomforschung in der Infektionsbiologie	125
Sophisticated Imaging	
Klimawandel und wasserbedingte Infektionen	
Pflanzen- und Bodenassoziierte Mikroorganismen: Diversita#t, Anpassung, P	
Immunmetabolismus	
Angewandte Bioinformatik: Biomarker zur Diagnose	
Mikrobielle Proteomik	
Forschungspraktikum	
Forschungspraktikum	
Flexi-Modul	
Alternativ-Modul	
Alternativ-Modul2	152
Zellbiologie und Neurobiologie - Wahlpflichtbereich	
Zellbiologie der Entwicklung und Funktion des zentralen Nervensystems	
Pflanzliche Zelltechnik - Gentransfer und Bioimaging	
Flexi-Modul	
Alternativ-Modul	
Alternativ-Modul2	164
Zellbiologie und Neurobiologie - Schwerpunkt	
Gewebsentwicklung und Pathogenese	
Physical Biology of the Cell	
Genetik, Zellbiologie und Modellierung neurologischer Erkrankungen	171
Physiologie und Pathophysiologie humaner Erkrankungen	
Molekulare Humangenetik	
Sophisticated Imaging	
Forschungspraktikum	
Forschungspraktikum	
Flexi-Modul	
Alternativ-Modul	
Alternativ-Modul2	190
Methodik-Modul	
Methodik-Modul	192
Überfachliche Qualifikation	
Wahlveranstaltung aus dem Pool-Modell der TU BS	194
Abschlussmodul	_
Mastararhait	100

Systembiologie und Bioinformatik - Wahlpflichtbereich ECTS

Modulname	Medizinische Biotechnologie			
Nummer	1303630 Bio-SB 21	Modulversion		
Kurzbezeichnung	SB 21	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	2 Semester (Start VL im WiSe, nachfolgend zugehöriges P im SoSe)	Einrichtung		
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Michael Hust	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	112	Selbststudium (h)	188	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	Bio-MB04 (Bachelor-Modul)			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Referat (30 min.) - Referat (20 min.)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Inhalte

Vorlesung:

Historische Einführung, Crash-Kurs Immunologie, Aufbau und Funktion von Antikörpern, Generierung von Antikörpern u.a. Phagen Display, Anwendung von Antikörpern in Forschung und Diagnostik, Antikörperbasierten Therapien und die medizinischen Hintergründe der Erkrankungen, Antikörper-Engineering, andere Biologicals, Vakzine.

Praktikum:

Es werden folgende Experimente durchgeführt: Selektion eines rekombinanten Antikörperfragments gegen ein biomedizinisches Zielprotein mittels Phagen-Display, Produktion von Antikörpern in transienten Säugetierzellkultursystemen, Aufreinigung und biochemische Analyse der produzierten Antikörper.

Qualifikationsziel

- rekombinante Proteine, insbesondere Antikörper, ihr molekulares Design, ihre Generierung und Produktion, das Molecular Engineering, sowie ihre Relevanz für Anwendungen in Forschung, Diagnostik und Therapie zu erklären.
- Krankheiten, bei denen Antikörper eingesetzt werden, und deren molekularen Aspekte zu beschreiben und das therapeutische Konzept dieser Wirkstoffe zu erläutern. Neben Antikörpern werden andere Biologicals und Vakzine behandelt.
- zahlreiche Aspekte der Medizin zu verstehen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.

- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

Dübel et al. Rekombinante Antikörper, Springer Spektrum 2019

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion Bereich Pflichtform Sem. Auswahl					
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Medizinische Biotechnologie für Masterstudierende (Bio-BB 21, Bio-SB 21, Bt-MP 02)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Stefan Dübel Prof. Dr. Michael Hust Dr. Maren Schubert		2,0	Vorlesung	deutsch

Titel der Veranstaltung

Molekulare Biotechnologie für Fortgeschrittene (Bio-BB 21, Bio-SB 21, Bt-MP 02)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Stefan Dübel Prof. Dr. Michael Hust Dr. Maren Schubert		6,0	Praktikum	deutsch

Modulname	Grundlagen der Proteinstrukturanalyse			
Nummer	1303640 Bio-SB 22	Modulversion		
Kurzbezeichnung	SB 22	Sprache	englisch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer		Einrichtung		
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Prof. Dr. Wulf Blanken- feldt	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Erfolgreiche Teilnahme am Seminar - Referat (45 min.) (in Zweier- bzw. Dreier-Gruppen)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Proteinstrukturen, allg. Strukturprinzipien, Methoden zur Strukturaufklärung, Proteinkristallisation, Kristall-charakterisierung, Röntgendatensammlung, Phasenproblem und Lösungsmöglichkeiten, Modellbau und Verfeinerung, Proteinstrukturinterpretation.

Praktikum:

Proteinkristallisation, Diffraktionsdatensammlung, Proteinstrukturanalyse (Molekularer Ersatz), Modellbau, Verfeinerung und Validierung, Proteinstrukturanalyse und -interpretation.

Seminar:

aktuelle Veröffentlichungen mit strukturbiologischem Bezug.

Qualifikationsziel

- Faktoren zu benennen, die zur Ausbildung stabiler dreidimensionaler Strukturen in Proteinen führen.
- Methoden und Prinzipien der zur Aufklärung von dreidimensionalen Strukturen verwendeten Methoden zu benennen.
- wesentliche Arbeitsschritte der Strukturaufklärung mit kristallografischen Methoden zu benennen und deren Hintergrund zu erklären.
- die Qualität von publizierten Proteinstrukturen zu beurteilen.
- weiterführende Experimente und Methoden zur Verwendung von struktureller Information vorzuschlagen.
- wissenschaftliche Studien mit strukturbiologischem Aspekt zu planen.
- den Inhalt wissenschaftlicher Veröffentlichungen zu erschließen.
- die Qualität wissenschaftlicher Veröffentlichungen kritisch zu analysieren.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effi-zient mit verschiedenen Zielgruppen zu kommunizieren.

- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

- Rupp, Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology, Garland Science
- Rhodes, Crystallography Made Crystal Clear, Academic Press
- Klostermeier & Rudolph, Biophysical Chemistry, CRC Press

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Grundlagen der Strukturbiologie (Bio-BB 22, Bio-SB 22, Bt-MM 05, AM-A-7)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Wulf Blankenfeldt		1,0	Vorlesung	englisch

Titel der Veranstaltung

Proteinstrukturanalyse (Bio-BB 22, Bio-SB 22, AM-A-7)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Wulf Blankenfeldt			Seminar	englisch

Titel der Veranstaltung

Proteinstrukturanalyse (Grundlagen) (Bio-BB 22, Bio-SB 22, Bt-MM 05, AM-A-7)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Wulf Blankenfeldt			Praktikum	

Modulname	Pathologic Metabolism in Human Diseases – Focusing on Immune Cells			
Nummer	1303990 Bio-SB 23	Modulversion		
Kurzbezeichnung	SB 23	Sprache	englisch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Dr. Wei He	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	100	Selbststudium (h)	200	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Studienarbeit			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Erfolgreiche Teilnahme am Seminar			
Zusammensetzung der Modulnote	U I I I I I I I I I I I I I I I I I I I			
Inhalte				

Seminar:

Die Seminare geben zunächst einen Überblick über den Zellstoffwechsel verschiedener Immunzellen und die unterschiedlichen metabolischen Anpassungen von Immunzellen an physiologische und pathologische Zustände. Anschließend bieten die Seminare eine tiefere Einführung in den pathologischen Stoffwechsel von Immunzellen im Zusammenhang mit Krebserkrankungen und Adipositas-assoziierten Komplikationen wie Insulinresistenz und Typ-2-Diabetes. Die Seminare vermitteln zudem aktuelles Wissen zu den wichtigsten Omics-Technologien zur Entdeckung metabolischer Targets bei menschlichen Erkrankungen. Darüber hinaus werden Fähigkeiten zur Entwicklung eigener Strategien für auf dem Immunzellstoffwechsel basierende Therapien vermittelt.

Praktischer Kurs:

Die Studierenden analysieren vorgegebene Omics-Datensätze aus veröffentlichten Forschungsarbeiten zu Krebserkrankungen und Adipositas/Typ-2-Diabetes. Sie führen außerdem Laborexperimente mit In-vitro-Modellen durch, die Krebserkrankungen und Adipositas/Typ-2-Diabetes nachahmen, gefolgt von einer Analyse der krankheitsassoziierten Stoffwechselveränderungen.

Qualifikationsziel

- allgemeines Wissen über den Stoffwechsel verschiedener Immunzellen zu erlangen.
- verschiedene Anpassungen des Stoffwechsels unter physiologischen und pathologischen Bedingungen zu verstehen und wie diese Anpassungen zu funktionellen Veränderungen in Immunzellen beitragen.
- am Beispiel von Adipositas/Typ-2-Diabetes und Krebserkrankungen ein tiefgreifendes Verständnis des pathologischen Stoffwechsels von Immunzellen zu erlangen, und Datensätze aus diesen -omics zu analysieren.
- die wichtigsten Omics-Methoden zu verstehen, die zur Entdeckung metabolischer Zielmoleküle bei menschlichen Erkrankungen eingesetzt werden.

- eine eigene Perspektive auf eine auf dem Stoffwechsel von Immunzellen basierende therapeutische Strategie zu entwickeln.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

will be announced in the seminar

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich			

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Pathologic metabolism in human diseases (Bio-BB 38, Bio-SB 23)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Wei He			Vorlesung	englisch

Titel der Veranstaltung

Pathologic metabolism in human diseases (Bio-BB 38, Bio-SB 23)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Wei He			Seminar	englisch

Titel der Veranstaltung					
Pathologic metabolism in human diseases (Bio-BB 38, Bio-SB 23)					
Dozent/in Mitwirkende SWS Art LVA Sprache					
Dr. Wei He			Übung	englisch	
Titel der Veranstaltung					
Pathologic metabolism in hum	an diseases (Bio-BB 38, Bio-SB	23)			
Dozent/in Mitwirkende SWS Art LVA Sprache					
Dr. Wei He			Praktikum	englisch	

Modulname	Molekulare Biochemie		
Nummer	1399660 Bio-BB 24 / Bio-SB 24	Modulversion	
Kurzbezeichnung	BB 24 / SB 24	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswis- senschaften
Moduldauer	2 Semester (Start VL im SoSe, nachfolgend zugehöriges P im WiSe)	Einrichtung	
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Dr. Tobias Kruse
Arbeitsaufwand (h)	300		
Präsenzstudium (h)	112	Selbststudium (h)	188
Zwingende Voraussetzungen	keine		
Empfohlene Voraussetzungen	keine		
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)		
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Referat (1, 30 min.)		
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.	

Vorlesung "Biochemie für Masterstudierende":

Grundlegende und weiterführende Fragestellungen der modernen Biochemie als Bindeglied zwischen Zellbiologie, Genetik und Mikrobiologie.

Praktikum:

Es werden Methoden der Molekularbiologie und Biochemie vermittelt, die bei der strukturellen Charakterisierung von Bio-Makromolekülen ihre Anwendung finden. Der Fokus liegt dabei auf der Proteinkristallographie. Am Beispiel von Proteinen aus dem Molybdänstoffwechsel des Ascomyceten Neurospora crassa, des Cyanobakteriums Cyanothece species sowie der Grünalge Volvox carteri werden folgende Methoden erlernt:

- Heterologe Expression von Neurospora, Cyanothece und Volvox Genen in E. coli
- Reinigung der rekombinanten Proteine mittels chromatographischer Methoden im analytischen und präparativen Maßstab
- Biophysikalische und spektroskopische Charakterisierung der Proteine
- Biochemische Charakterisierung rekombinanter Proteine
- HPLC-gestützte Metaboliten Analyse
- Enzymbasierte Nachweismethoden
- Kristallisation der Proteine zur Röntgenstrukturanalyse
- Sammlung und Prozessierung kristallographischer Daten, Lösung des Phasenproblems und Berechnung der Elektronendichte
- Interpretation der Elektronendichte und Modellbau
- Vergleich der Proteinstrukturen durch in silco-Methoden
- Einführung in die Benutzung der weltweiten Proteindatenbank (wwPDB)

Qualifikationsziel

- theoretische und praktische Kenntnisse in der molekularen Biochemie als Grundlage für weiterführende Lehrveranstaltungen in Biochemie, Zellbiologie und Mikrobiologie zu erlangen.
- eine spezielle wissenschaftliche Fragestellung experimentell zu bearbeiten (wie werden Experimente sinnvoll geplant, durchgeführt und ausgewertet; wie werden die erhaltenen Ergebnisse dokumentiert und kritisch interpretiert?).
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

aktuelle Publikationen (englisch) zur molekularen Biochemie

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich				
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich				

••		
71 ICEHORICE	LEHRVERANS	TAI TIINGEN
LUGLIGINIGE	LLI IIV V LIVAIVOI	ALIUNULIN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Molekulare Biochemie (Bio-BB 24, Bio-SB 24)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Tobias Kruse			Vorlesung	deutsch

Titel der Veranstaltung

Molekulare Biochemie (Bio-BB 24, Bio-SB 24)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Jörn Krauße Dr. Tobias Kruse			Praktikum	deutsch

Modulname	Python for Life Scientists			
Nummer	1303960 Bio-SB 25	Modulversion		
Kurzbezeichnung	SB 25	Sprache	englisch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Tim Kacprow- ski	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	120	Selbststudium (h)	180	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Erstellung und Dokumentation eines Computer- bzw. Softwareprogramms (1)			
Zu erbringende Studienleistung	- 50% der einzureichenden Programmierprojekte müssen bestanden werden - Teamprojekt muss erfolgreich abgegeben werden			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	Die Modulnote entspricht der Note der Prüfungsleistung.		

Seminar:

Das Seminar ist eine Einführung in Python, die explizit auf Studierende der Lebenswissenschaften ausgerichtet ist und keinerlei Vorkenntnisse zum Programmieren vorraussetzt. Insbesondere werden gängige Pakete zum organisieren, analysieren und visualisieren von Daten behandelt, wie z.B. matplotlib, numpy, scipy, und pandas. Die Planung, Ausführung, Dokumentation und Ablage von Programmierprojekten, insbesondere mit geeigneten Versionsverwaltungswerkzeugen wird vermittelt.

Übung:

Die Studierenden lernen das Schreiben von Pythoncode durch zahlreiche Übungen. Häufig auftretende Herausforderungen mit Bezug zu Daten in den Lebenswissenschaften werden mit diesen Übungen behandelt. Studierende lernen die effektive Verwendung von Künstlicher Intelligenz für die Entwicklung von Pythonscripten. Abschließend werden Studierende mit einem individuellen Programmierprojekt gefordert, dessen Lösung die selbstständige Anwendung der vorher gelernten Qualifikationen erfordert. Dieses Projekt muss zunächst geplant und nach Abschluss mit einer entsprechenden Dokumentation in der Versionsverwaltung abgegeben werden. Zusätzlich werden die Studierenden in kleineren Teams Teamprojekte bearbeiten um auch die Herausforderungen kollaborativen Programmierens meistern zu können.

Qualifikationsziel

- ein Programmierprojekt zur Beantwortung einer biologischen Fragestellung zu planen.
- Scripte für die Analyse eigener Datensätze zu schreiben.
- eine Dokumentation zu eigenen Scripten zu erstellen und diese abzulegen.
- künstliche Intelligenz als Unterstützung bei der Scriptentwicklung zu verwenden.
- erfolgreich und eigenständig in einem Team zu arbeiten.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- die grundlegenden Features eines Versionsverwaltungswerkzeuges für die Codeentwicklung sowohl alleine als auch im Team einsetzen zu können.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.

- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.

Literatur

Webseiten

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich				
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Python for Life Scientists (Bio-BB 34, Bio-GE 36, Bio-SB 25)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Tim Kacprowski Prof. Dr. Boas Pucker Simone Scharke			Seminar	englisch deutsch

Titel der Veranstaltung

Python for Life Scientists (Bio-BB 34, Bio-GE 36, Bio-SB 25)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Tim Kacprowski Prof. Dr. Boas Pucker Simone Scharke			Übung	englisch deutsch

Modulname	Metabolism in a Box: A Virtual Grant Challenge			
Nummer	1398840 Bio-BB 23 / Bio-IB 30 / Bio-SB 26	Modulversion		
Kurzbezeichnung	BB 23 / IB 30 / SB 26	Sprache	englisch deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r	Thekla Cordes	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	160	Selbststudium (h)	140	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Portfolio			
Zu erbringende Studienleistung	- Experimentelle Arbeit			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

In dem Modul werden Kenntnisse über den mitochondrialen Stoffwechsel und dessen Einfluss auf Krankheiten, wie beispielsweise Krebs, Inflammation, und neurodegenerative Erkrankungen, vermittelt. Das Ziel ist es, ein breit gefächertes Spektrum des Metabolismus zu erlernen, um komplexe Krankheitsmechanismen zu verstehen. Das Modul wird dafür als virtuelle Grant challenge angeboten, in dem ein Forschugsprojekt ausgearbeitet, dokumentiert, presentiert, und diskutiert wird.

Das Modul wird als Flipped Classroom angeboten, wobei sich die Studierende aktiv in den Ablaufplan integrieren. Dabei wird jeder Studierende ein Experte in einer metabolischen Technik, die für das Forschen an metabolischen Krankheiten relevant ist. Die Studierenden werden anschliessend in Kleingruppen mit unterschiedlichen Expertenwissen an einem metabolischen Krankheitsbild forschen. Die Studierende werden ein Forschungsprojektplan entwicken und das wissenschaftliche Arbeiten virtuell anwenden. Ziel ist es, menschliche Stoffwechselwege bei bestimmten Krankheiten zu identifizieren, die anschliessend mit Pharmazeutika behandelt werden könnten.

Die Studierende werden den aktuellen Stand von metabolischen Zusammenhängen anhand von wissenschaftlichen Texten und Vorlesungen erlernen, sowie wissenschaftliche Experimente selber planen, durchführen und darstellen.

Basierend auf den Ergebnissen, werden wir zudem wissenschaftliche Texte verfassen und kritisch diskutieren. Wir werden uns auch mit internationalen Studierenden austauschen. Im Prakikum werden die erlernten Aspekte des Metabolismus und wie Krankheiten durch metabolische Prozesse beeinflusst werden praktisch vertieft.

Das Modul wird durch die Stiftung Innovation in der Hochschullehre mit dem Projekt ProDiGi unterstützt (Promoting Digital education through Global Interconnection, https://www.tubraunschweig.de/lehreundmedienbildung/angebote/internationale-lehre/prodigi/gefoerderte-projekte). Unser Modul wird in einem virtuellen Wissenschaftsraum (online) und auf Englisch stattfinden, um digitale und internationale Erfahrungen zu fördern.

Qualifikationsziel

Nach Abschluss des Modules sind die Studierende in der Lage

- den Einfluss von metabolischen Prozessen auf die Zellfunktionen und Krankheitsprozesse zu erklären und nachzuvollziehen.

- metabolische Analysemethoden zu recherchieren und auf unterschiedliche Krankheitsbilder anzuwenden.
- einen Projektplan zu entwickeln, um metabolische Krankheiten mit unterschiedlichen Techniken zu charakterisieren.
- wissenschaftliche Ergebnisse zu präsentieren, diskutieren, und dokumentieren
- kritisches Feedback zu wissenschaftlichen Arbeiten zu geben.
- eigenständig ein Forschungsprojekt in einer "realen" wissenschaftlichen Umgebung durchzuführen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

wird in der Vorlesung bekannt gegeben

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich				
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich				
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich				

••		
ZUGEHORIGE L	END//ED v vic.	TAI TIINICENI
LUGETURIGE L	CURADA VADA	IALIUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Metabolism in a Box: A Virtual Grant Challenge (Bio-BB 23, Bio-IB 30, Bio-SB 26)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Thekla Cordes			Vorlesung	englisch deutsch

Titel der Veranstaltung

Metabolism in a Box: A Virtual Grant Challenge (Bio-BB 23, Bio-IB 30, Bio-SB 26)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Thekla Cordes			Praktikum	englisch deutsch

Titel der Veranstaltung				
Metabolism in a Box: A Virtual Grant Challenge (Bio-BB 23, Bio-IB 30, Bio-SB 26)				
Dozent/in Mitwirkende SWS Art LVA Sprache				
Thekla Cordes			Übung	englisch deutsch

Modulname	Systemsbiology: Modeling of Biochemical Networks			
Nummer	1303720 Bio-SB 27	Modulversion		
Kurzbezeichnung	SB 27	Sprache	englisch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r	Prof. Dr. Karsten Hiller	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	160	Selbststudium (h)	140	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (ca. 30 min)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Die Vorlesung legt die wesentlichen theoretischen Grundlagen für die im Praktikum angewendeten Methoden. Ein Schwerpunkt bildet die Analyse und Simulation von biochemischen Netzwerken, sowie aktuelle OMICS-Technologien.

Ergänzend werden Anwendungsbeispiele aus der aktuellen Forschung besprochen.

In der begleitenden Übung werden die theoretischen Grundlagen durch konkrete Anwendungsbeispiele vertieft.

Praktikum:

Die Studierenden entwickeln ein metabolisches Modell für den Zell-Metabolismus. Zusammen mit experimentellen Daten wird das Modell dazu benutzt intrazelluläre Stoffwechselflüsse zu simulieren.

Qualifikationsziel

Nach Abschluss des Modules sind die Studierende in der Lage

- die mathematischen Grundlagen zur Simulation biochemischer Netzwerke darzustellen.
- die Bedeutung des Stoffwechsels in Bezug auf systembiologische Forschung zu erläutern.
- Stoffwechselflüsse zu simulieren.
- GC-MS Daten auszuwerten und zu interpretieren.
- die Bedeutung von interdisziplinärer Forschung zu erkennen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

- wird in der Vorlesung bekannt gegeben

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	
Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.	
Titel der Veranstaltung	

Titel der Veranstaltung					
Systembiologie (Bio-BB 30, Bio-SB 27, CB 08, Bt-MZ 04, Bt-MM 07, Bt-MB 09)					
Dozent/in	t/in Mitwirkende SWS Art LVA Sprache				
Dr. Davina Hiller			Vorlesung/Übung	deutsch	

Titel der Veranstaltung				
Systembiologie (Bio-BB 30, Bio	-SB 27)			
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Davina Hiller			Praktikum	deutsch

Modulname	Flexi-Modul		
Nummer	1301360	Modulversion	
Kurzbezeichnung	BL-STD2-36	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	10 / ,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.	
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			

Technische Universität Braunschweig | Modulhandbuch: Biologie (Master)

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Modulname	Alternativ-Modul		
Nummer	1301130	Modulversion	
Kurzbezeichnung	BL-STD2-13	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich			

Technische Universität Braunschweig | Modulhandbuch: Biologie (Master)

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Modulname	Alternativ-Modul2		
Nummer	1301380	Modulversion	
Kurzbezeichnung	BL-STD2-38	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswis- senschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt			

Technische Universität Braunschweig | Modulhandbuch: Biologie (Master)

Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Systembiologie und Bioinformatik - Schwerpunkt ECTS

Modulname	Immunmetabolismus				
Nummer	1398590 Bio-BB 31 / Bio-SB 31	Modulversion			
Kurzbezeichnung	BB 31 / SB 31	Sprache	englisch deutsch		
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswis- senschaften		
Moduldauer	1	Einrichtung			
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Karsten Hiller		
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	112	Selbststudium (h)	188		
Zwingende Voraussetzungen	keine				
Empfohlene Voraussetzungen	keine				
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (1)				
Zu erbringende Studienleistung	- erfolgreiche Teilnahme am Seminar - Experimentelle Arbeit				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.				

Seminar

Im Seminar beschäftigen sich die Studierenden zunächst mit der Biochemie des Zentralstoffwechsels von Makrophagen und wie dieser mit Hilfe von Isotopen-Markierungs-Experimenten und Modellierung studiert werden kann. Hier spielen insbesondere Makrophagen spezifische Mechanismen wie Itakonsäure, ROS, NO und Glutathion eine Rolle. Dabei wird auch ein Überblick über verfügbare experimentelle Modelle erarbeitet (primäre Zellen aus Maus und Mensch, Zellkultur Modelle). Dann werden unterschiedliche experimentelle Methoden entwickelt, die eine Co-Kultivierung von pathogenen Bakterien mit Makrophagen ermöglichen.

Die Studierenden entwickeln ein eigenes Konzept für das folgende Praktikum um verschiedene Fragestellungen im Bereich Immunmetabolismus zu beantworten. Das Konzept wird mit Hilfe von verschiedenen Lehr- und Lernmethoden erstellt und präsentiert.

Praktikum:

Im Praktikum setzen die Studierenden dann ihr theoretisch ermitteltes Wissen selbstständig um. Dabei werden pathogene Bakterien mit Makrophagen zusammen kultiviert und mithilfe von metabolischen Messungen der Einfluss der Infektion auf die Makrophagen bestimmt. Zusätzlich wird die antibakterielle Effizienz der Makrophagen ermittelt und dabei untersucht, in wie weit eine metabolische Modulation des Stoffwechsels der Makrophagen die antimikrobielle Effizienz beeinflusst. Folgende Techniken werden dabei praktisch erlernt: Kultivierung von Makrophagen und Co-Kultivierung mit Bakterien, Metaboliten Extraktion, Respirationsmessungen mit Seahorse Analyzer, GC-MS Messungen und die dazugehörige Datenanalyse, metabolische Flussanalyse mit stabilen Isotopen, Assays zur Bestimmung der antimikrobiellen Aktivität von Makrophagen.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- die Bedeutung des Stoffwechsels von Immunzellen während einer Infektion/Inflammation zu erläutern.

- moderne analytische Techniken wie Isotopen Markierung, Massenspektrometrie und metabolische Flussanalyse anzuwenden.
- GC-MS Daten auszuwerten und zu interpretieren.
- den Energiestoffwechsel mit Hilfe von Respirationsmessungen zu interpretieren.
- Konzepte zu entwickeln, um systembiologische Fragestellungen mit Hilfe von verschiedenen Methoden zu beantworten.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt				
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt				
Master Data Science PO 1	Data Science in Anwendungen - Biologie, Chemie und Phar- mazie				
Master Data Science PO 2	Data Science in Anwendungen - Biologie, Chemie und Phar- mazie				
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt				
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Data-Driven Biology				

 \uparrow

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung						
Immunmetabolismus (Bio-BB 31, Bio-SB 31, AM-C-2)						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Prof. Dr. Karsten Hiller Dr. Kerstin Schmidt-Hohagen			Seminar	englisch deutsch		
			,			

Titel der Veranstaltung						
Immunmetabolismus (Bio-BB 31, Bio-SB 31, AM-C-2)						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Prof. Dr. Karsten Hiller Dr. Kerstin Schmidt-Hohagen			Praktische Übung	englisch deutsch		

Modulname	Angewandte Bioinformatik: Biomarker zur Diagnose				
Nummer	1303600 Bio-SB 32	Modulversion			
Kurzbezeichnung	SB 32	Sprache	englisch		
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften		
Moduldauer	1	Einrichtung			
SWS / ECTS	/ 10,0	Modulverantwortli- che/r	Prof. Dr. Karsten Hiller		
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	188	Selbststudium (h)	112		
Zwingende Voraussetzungen	keine				
Empfohlene Voraussetzungen	eine				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)				
Zu erbringende Studienleistung	- Erfolgreiche Teilnahme am Seminar - Experimentelle Arbeit				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.				

Seminar und Übung:

1-wöchiger Kurs "Einführung in R"

Integriertes Seminar, Workshop und Praktikum (semesterbegleitend, 4h pro Woche):

Seminar, Workshop: Einführung in die MS basierte Metabolomuntersuchung, Verständnis der geeigneten Auswahl von Maßeinheiten, um vergleichbare Messungen zu ermöglichen, erlernen der Bedeutung der Rückführbarkeit von Messergebnissen sowie die Schätzung der Messunsicherheit und wie sie bei der Dateninterpretation verwendet werden sollte. Zudem Einführung in Algorithmen zur statistischen Biomarkerbestimmung, Korrektur für multiples Testen, Theorie zur logistischen Regression und zu neuronalen Netzen, Normalisierung von Daten. Erlernen der Bedeutung der Qualitätskontrolle für die Sicherung der Messergebnisse. Design einer cross-over Interventionsstudie.

Praktikum:

Isolierung von Metaboliten aus Speichel und/oder Bluttropfen und massenspektrometrische Analyse. Die Messmethode wird dann für ausgesuchte Metabolite optimiert und durch Isotopenverdünnung quantifizierbar gemacht. Es werden Methoden zur Optimierung der Probenentnahme, Prozessierung und Auswertung dabei erlernt. Am Ende wird eine Biomarkersignatur bestimmt, die z.B. basierend auf einer Speichelprobe ermitteln kann, ob es sich bei dem Donor um Fall oder Kontrolle handelt.

Qualifikationsziel

- einfache Cross-over Interventionsstudien durchzuführen und Proben zu entnehmen.
- Metabolomanalysen in humanen Speichel- und Blutproben durchzuführen und massenspektrometrisch zu messen.
- die gemessenen Rohdaten bioinformatisch zu analysieren und daraus quantitative und semiquantitative Metabolitmengen abzuleiten.
- die Daten mit Algorithmen des maschinellen Lernens (logistische Regression, neuronale Netze) auf Biomarkersignaturen zu untersuchen.
- ausgewählte Biomarker Metabolite mit hoher Präzision und Reproduzierbarkeit zu messen.
- grundlegende Konzepte der Metrologie und Standardisierung anzuwenden.
- statistische Analysen in R durchzuführen.

- die Bedeutung der Standardisierung für die Durchführung von Experimenten zu erkennen.
- die Bedeutung des Konzepts von klinischen Cross-over Interventionsstudien für die Bewertung von Medikamenten zu verstehen.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Wird in der Veranstaltung bekannt gegeben

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Data-Driven Biology				
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Angewandte Bioinformatik: Biomarker zur Diagnose (Bio-BB 32, Bio-SB 32, AM-C-3)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Karsten Hiller Prof. Dr. Thomas Naake Prof. Dr. Gavin O' Connor			Seminar	englisch

Titel der Veranstaltung

Angewandte Bioinformatik: Biomarker zur Diagnose (Bio-BB 32, Bio-SB 32, AM-C-3)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Karsten Hiller Prof. Dr. Thomas Naake Prof. Dr. Gavin O' Connor			Praktikum	englisch

Modulname	Mass Spectrometry for Biologists and Biochemists - a Basic Introduction					
Nummer	1303820 Bio-SB 33	Modulversion				
Kurzbezeichnung	SB 33	Sprache	englisch deutsch			
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften			
Moduldauer	1	Einrichtung				
SWS / ECTS	/ 10,0	Modulverantwortli- che/r	Prof. Dr. Karsten Hiller			
Arbeitsaufwand (h)	300					
Präsenzstudium (h)	127	Selbststudium (h)	173			
Zwingende Voraussetzungen	keine					
Empfohlene Voraussetzungen	keine	eine				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)					
Zu erbringende Studienleistung	- Erfolgreiche Teilnahme am Seminar - Experimentelle Arbeit					
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.					

Seminar:

Einführung in den grundlegenden Aufbau und die Funktionsweise von modernen Massenspektrometern. Erlernen des Funktionsprinzips von verschiedenen MS Plattformen. Auswahl von bestimmten Kombinationen von Ionenquelle und Analysator abhängig von der zu bearbeitenden biologischen Fragestellung. Erlernen des Prinzips der Strukturvorhersage und der Peptidsequenzierung. Verständnis für die Auswahl von geeigneten instrumentellen Experimenten für quantitative Messungen. Erlernen der Qualitätskontrolle für die Sicherung der Messergebnisse.

Workshops:

Die Workshops werden zur Vertiefung und Anwendung der erlernten Methoden zur manuellen Interpretation von Massenspektren genutzt. Sie beinhalten Beispiele von kleinen Metaboliten sowie die manuelle Interpretation von Produkt Ionen Spektren für die Peptidsequenzierung.

Praktikum:

Die Studierenden werden intensive experimentelle Erfahrung in der Probenvorbereitung sowie in der Bedienung und des Tunings von Massenspektrometern für die Datengenerierung sammeln. Dies beinhaltet sowohl die Derivatisierung und Entsalzung sowie die Auswahl von MS-geeigneten Puffern während der Probenvorbereitung. Die Studierenden werden erlernen wie qualitativ gute EI und Produktionen Spektren aufgenommen und identifiziert werden, die für die Identifizierung von kleinen Molekülen und Proteinen verwendet werden können. Zudem werden sie Verständnis dafür bekommen, welches Instrument am besten für die Erstellung von quantitativen Messungen geeignet ist.

Qualifikationsziel

- die grundlegende Arbeitsweise von einer Auswahl der meist verwendeten Massenspektrometrie Plattformen für Biologen/Biochemiker zu verstehen.
- die am besten geeignete MS Plattform und die zugehörige Auftrennungstechnologie für die Identifizierung und Quantifizierung verschiedener Biomoleküle auszuwählen.
- die Hauptmerkmale eines Massenspektrums zu identifizieren und eine grundlegende Spektreninterpretation durchzuführen um die Struktur von einfachen kleinen organischen Molekülen zu bestimmen.

- den Nutzen, die Vorteile und Limitierungen von MS Plattformen für die Generierung von "Omics" Daten zu verstehen.
- grundlegende Produkt Ionen Spektren zu erhalten und eine manuelle Spektren Interpretation durchzuführen um Peptidsequenzen zu identifizieren.
- "Omics" Protokolle für die MS Daten Generierung zu verwenden, die für die Proteinidentifizierung mit bioinformatischen Tools verwendet werden können.
- akkurate Proteinguantifizierung durchzuführen.
- das experimentelle Design und die Vorteile von Massenspektrometrie für quantitative Messungen zu verstehen.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Wird in der Veranstaltung bekannt gegeben

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Mass Spectrometry for Biologists and Biochemists - a Basic Introduction (Bio-BB 33, Bio-SB 33)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Karsten Hiller			Seminar	englisch deutsch

Titel der Veranstaltung

Mass Spectrometry for Biologists and Biochemists - a Basic Introduction (Bio-BB 33, Bio-SB 33)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Karsten Hiller			Praktikum	englisch deutsch

Modulname	Software-Entwicklung zu biologischen Fragestellungen			
Nummer	1398910 Bio-BB 36 / Bio-GE 34 / Bio-SB 34	Modulversion		
Kurzbezeichnung	BB 36 / GE 34 / SB 34	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Prof. Dr. Melanie Brink- mann Prof. Dr. Andre Fleißner	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	112	Selbststudium (h)	188	
Zwingende Voraussetzungen	Erfolgreiche Teilnahme am Modul MB02 Bioinformatik des Bachelor-Studiengangs Biologie oder nachgewiesener 1-wöchiger Programmier-Kurs in Python oder ver- gleichbar			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Erstellung und Dokumentation eines Rechnerprogramms (Benotetes Software-Projekt)			
Zu erbringende Studienleistung	- Referat (1, ca. 30 min) - Erfolgreiche Teilnahme am Seminar			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Die Studierenden üben die Verwendung von Algorithmen, die für die Forschung im Bereich Lebenswissenschaften interessant sind. Verwendet wird die Programmiersprache Python mit der ergänzenden Bibliothek Biopython.

Als Anwendungsbeispiele dienen Genetische/Evolutionäre Algorithmen und der Einsatz von Neuronalen Netzwerken in der Proteinstruktur-Vorhersage. Der Kurs ist speziell für Studierende der Biologie und Biotechnologie gedacht, die - aufbauend auf ihre Programmierkenntnisse aus dem Bachelor-Studium (Python-Programmierkurs) - verschiedene Forschungsbereiche der Bioinformatik intensiv kennenlernen möchten: Wie kann man, analog zu Experimenten im Labor, wissenschaftliche Hypothesen durch Entwicklung spezieller Software testen? Welche technischen Probleme kann man durch Algorithmen lösen, die dem Bereich der Biologie entlehnt sind? Es werden zunächst theoretische Hintergrundinformationen vermittelt, der Schwerpunkt liegt jedoch auf dem angeleiteten Bearbeiten von Software-Projekten zu den einzelnen Themenbereichen. Abschließend werden die Ergebnisse diskutiert.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- Software-Projekte zu biologischen Fragestellungen in der Programmiersprache Python zu bearbeiten.
- genetische Algorithmen zu verstehen und zu verwenden.
- die Herausforderungen der Protein-Strukturvorhersage zu erkennen, zu beschreiben und in Teilen programmtechnisch nachzuvollziehen.
- den Einsatz von Neuronalen Netzwerken in der Künstlichen Intelligenz zu erklären und einfache Neuronale Netzwerke selber zu programmieren.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.

Literatur

Wird in der Vorlesung bekannt gegeben.

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Genetik (GE) - Schwerpunkt				
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt				
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt				

ZUGEHORIGE LEHRVER	RANSTALTUNGEN
--------------------	---------------

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Software-Entwicklung zu biologischen Fragestellungen (Bio-BB 36, Bio-GE 34, Bio-SB 34)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Anja Schulz Prof. Dr. Miguel Vences			Vorlesung/Übung	deutsch

Titel der Veranstaltung

Software-Entwicklung zu biologischen Fragestellungen (Bio-BB 36, Bio-GE 34, Bio-SB 34)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Anja Schulz Prof. Dr. Miguel Vences			Seminar	deutsch

Modulname	Mikrobielle Proteomik				
Nummer	1301290 Bio-MI 26 / Bio-SB 35	Modulversion			
Kurzbezeichnung	MI 26 / SB 35	Sprache	englisch		
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften		
Moduldauer	1	Einrichtung			
SWS / ECTS	6 / 10,0	Modulverantwortli- che/r	Prof. Dr. Susanne Engelmann		
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	148	Selbststudium (h)	152		
Zwingende Voraussetzungen	keine				
Empfohlene Voraussetzungen	keine				
Zu erbringende Prüfungsleistung/ Prüfungsform	Referat (ca. 40 min)				
Zu erbringende Studienleistung	- Experimentelle Arbeit - Erfolgreiche Teilnahme am Seminar - Praktikumsprotokoll (1) - Referat (ca. 30 min)				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.				

Vorlesung:

Die Vorlesung "Mikrobielle Proteomik" bietet einen Überblick über die Methoden der Proteomik und deren Anwendung in der Mikrobiologie. Aufbauend auf einer Einführung in die Methoden zur Identifizierung und Quantifizierung von Proteinen in hochkomplexen Proteingemischen werden moderne experimentelle Ansätze zur qualitativen und quantitativen Charakterisierung der Gesamtheit der Proteine (Proteom) eines Mikroorganismus oder einer Lebensgemeinschaft von Mikroorganismen (Metaproteom) am Beispiel aktueller Veröffentlichungen und eigener Forschungsarbeiten vorgestellt. Zusätzlich werden Möglichkeiten zum Nachweis von Proteinmodifikationen und zur Darstellung von Proteinkomplexen aufgezeigt.

Praktikum:

Im Praktikum "Mikrobielle Proteomik" sollen die Studierenden unter Anleitung die in der Vorlesung vermittelten Methoden zur Beantwortung einer Fragstellung auf dem Gebiet der Physiologie von Mikroorganismen, der Infektionsbiologie bzw. der Aufklärung der Wirkweise antibakterieller Naturstoffe anwenden.

Seminar:

Im Seminar "Mikrobielle Proteomik" sind die Studierenden angehalten, aktuelle Veröffentlichungen über Forschungsarbeiten im Fachgebiet selbstständig zu analysieren, in einem Kurzvortrag zu präsentieren und kritisch zu hinterfragen und zu diskutieren.

Qualifikationsziel

- die Grundprinzipien der Methoden der Proteomik zu beschreiben und Vor- und Nachteile der Methoden kritisch zu bewerten.
- Proteine aus komplexen Proteingemischen zu identifizieren und zu quantifizieren.
- umfangreiche Datensätze zu analysieren und die erhaltenen Ergebnisse visuell darzustellen.
- Konzeption von Experimenten zur umfassenden Beantwortung einer wissenschaftlichen Fragestellung.
- kritische mit den Vor- und Nachteilen einer Methode und den erhaltenen Ergebnissen auseinanderzusetzen.

- Ergebnisse in einen wissenschaftlichen Kontext einzuordnen.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

- H. Rehm und T. Letzel, Der Experimentator Proteinbiochemie/Proteomics
- F. Lottspeich und J. W. Engels, Bioanalytik
- aktuelle englischsprachige Fachliteratur

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Data-Driven Biology				
Englischsprachige Lehrveranstaltungen PO 0	Biologie (Master)				
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt				
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Mikrobielle Proteomik (Bio-MI 26, Bio-SB 35, AM-C-9)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Susanne Engelmann Dr. Martin Kucklick			Vorlesung	englisch

Titel der Veranstaltung

Mikrobielle Proteomik (Bio-MI 26, Bio-SB 35, AM-C-9)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Susanne Engelmann			Seminar	englisch

Titel der Veranstaltung						
Mikrobielle Proteomik (Bio-MI 2	6, Bio-SB 35, AM-C-9)					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Prof. Dr. Susanne Engelmann Dr. Martin Kucklick			Praktikum	englisch		

Modulname	Current Topics in Nutrition and Metabolism					
Nummer	1398980 Bio-BB 37 / Bio-SB 36 Modulversion					
Kurzbezeichnung	BB 37 / SB 36	SB 37 / SB 36 Sprache englisch				
Turnus	nur im Wintersemester	nur im Wintersemester Lehreinheit Fakultät für Lebenswissenschaften				
Moduldauer	1	1 Einrichtung				
SWS / ECTS	9 / 10,0 Modulverantwortli- che/r Prof. Dr. Karsten Hiller					
Arbeitsaufwand (h)	300					
Präsenzstudium (h)	Selbststudium (h) 188					
Zwingende Voraussetzungen	keine					
Empfohlene Voraussetzungen	keine					
Zu erbringende Prüfungsleistung/ Prüfungsform	Referat (1, ca. 30 min.)					
Zu erbringende Studienleistung	- Erfolgreiche Teilnahme am Seminar und Praktikum - Laborjournal - Übungsaufgaben (3)					
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.				

Höhepunkte:

Dieses Modul betont die Interaktion und Zusammenarbeit zwischen Studierenden aus Brasilien und Deutschland und ermöglicht es ihnen, das Ernährungsverhalten und seine Auswirkungen auf die Gesundheit in verschiedenen Ländern und Kulturen zu untersuchen und zu vergleichen.

Vorlesung:

Die Vorlesungen geben einen umfassenden Überblick über den aktuellen Wissensstand auf dem Gebiet der Ernährung und des Stoffwechsels. Zu den Themen gehören der zentrale Kohlenstoffstoffwechsel, die Ernährungsbiochemie und die neuesten Entwicklungen in der Wechselwirkung zwischen Ernährung, Stoffwechsel und Entzündungen. Jede Vorlesung soll den Studierenden ein tiefes Verständnis dafür vermitteln, wie klassische Prinzipien mit modernen wissenschaftlichen Erkenntnissen und technologischen Fortschritten verknüpft werden.

Seminar:

In den Seminaren werden aktuelle Veröffentlichungen und neue wissenschaftliche Erkenntnisse auf dem Gebiet der Ernährung und des Stoffwechsels eingehend diskutiert. Die Studenten werden sich an kritischen Analysen und Debatten beteiligen, die ihnen helfen, ihr Verständnis zu festigen und theoretisches Wissen auf praktische Szenarien anzuwenden.

Diese Sitzungen zielen darauf ab, die Fähigkeit der Studenten zu verbessern, komplexe Konzepte effektiv zu kommunizieren.

Workshop:

Workshops sind interaktive Sitzungen, in denen Studierende der Universität São Paulo und der TU Braunschweig gemeinsam an praktischen Übungen und Seminarvorbereitungen arbeiten. Diese Workshops fördern die interkulturelle Interaktion und Teamarbeit und ermöglichen es den Studierenden, das Ernährungsverhalten und die Gesundheitsergebnisse in verschiedenen Ländern und Kulturen zu untersuchen und zu vergleichen. Diese Aktivität fördert die praktische Anwendung theoretischer Konzepte in einem internationalen Umfeld.

Praktischer Kurs:

Die praktischen Kurse vermitteln praktische Erfahrungen in fortgeschrittenen Techniken, die in der Ernährungs- und Stoffwechselforschung eingesetzt werden. Diese Kurse beinhalten die Verwendung von Massenspektrometrie, Gensequenzierung und Datenanalyse mit R. Die praktischen Kurse sind so konzipiert, dass sie das theoretische Wissen durch erfahrungsbasiertes Lernen festigen, wobei Professoren beider Universitäten beteiligt sind und die Finanzierung der internationalen Mobilität vorausgesetzt wird. Diese Sitzungen

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- aktuelle Informationen zwischen Ernährung, Stoffwechsel und Gesundheit zusammenhängend zu verstehen.
- das Zusammenspiel zwischen Ernährung, Stoffwechsel und Entzündungen unter Berücksichtigung aktueller Veröffentlichungen zu diskutieren.
- neue wissenschaftlicher Erkenntnisse in Bezug auf klassischen Prinzipien der Ernährungsbiochemie und -physiologie sowie neue Entwicklungen bei den Methoden zur Beurteilung der Beziehung zwischen Ernährung, Ernährung und Stoffwechsel zu verstehen und zu diskutieren.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

Will be provided during the course

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS		
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt					
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt					

ZUGEHORIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel c	der V	erans	tal	tunç	g
---------	-------	-------	-----	------	---

Current Topics in Nutrition and Metabolism (Bio-BB 37, Bio-SB 36)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Karsten Hiller			Vorlesung	englisch

Titel der Veranstaltung							
Current Topics in Nutrition and Metabolism (Bio-BB 37, Bio-SB 36)							
Dozent/in	Mitwirkende	sws	Art LVA	Sprache			
Prof. Dr. Karsten Hiller			Übung	englisch			
Titel der Veranstaltung							
Current Topics in Nutrition and Metabolism (Bio-BB 37, Bio-SB 36)							
Dozent/in	Mitwirkende	sws	Art LVA	Sprache			
Prof. Dr. Karsten Hiller			Praktikum	englisch			

Modulname	Forschungspraktikum				
Nummer	1303410	Modulversion			
Kurzbezeichnung	FP	Sprache	englisch deutsch		
Turnus	in jedem Semester Lehreinheit Fakultät für Lebenswissenschaften				
Moduldauer	1	Einrichtung			
SWS / ECTS	10 / 10,0 Modulverantwortli- che/r				
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	126 Selbststudium (h) 174				
Zwingende Voraussetzungen	keine				
Empfohlene Voraussetzungen	Wahlpflichtmodule des gewählten Fachgebiets				
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (ca. 30 min.)				
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Erfolgreiche Teilnahme am Seminar				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.				

Mitarbeit an verschiedenen aktuellen Forschungsprojekten.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- aufbauend auf Kenntnissen von Wahlpflichtmodulen der Systembiologie und Bioinformatik in einem Laborpraktikum durch Mitarbeit an einem Forschungsprojekt aktuelle Fragestellungen mit dem Einsatz moderner Methoden zu lösen.
- eine wissenschaftliche Fragestellung in einem Team zu beantworten.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

Aktuelle Publikationen aus verschiedenen Bereichen der Biowissenschaften, in Englisch

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt					

Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	
Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.	

Modulname	Forschungspraktikum				
Nummer	1303420	1303420 Modulversion			
Kurzbezeichnung	FP	Sprache	englisch deutsch		
Turnus	in jedem Semester	n jedem Semester Lehreinheit Fakultät für Lebenswissenschaften			
Moduldauer	1	Einrichtung			
SWS / ECTS	10 / 10,0 Modulverantwortli- che/r				
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	126 Selbststudium (h) 174				
Zwingende Voraussetzungen	keine				
Empfohlene Voraussetzungen	Wahlpflichtmodule des gewählten Fachgebiets				
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (ca. 30 min.)				
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Erfolgreiche Teilnahme am Seminar				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	Die Modulnote entspricht der Note der Prüfungsleistung.			

Mitarbeit an verschiedenen aktuellen Forschungsprojekten.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- aufbauend auf Kenntnissen von Wahlpflichtmodulen der Systembiologie und Bioinformatik in einem Laborpraktikum durch Mitarbeit an einem Forschungsprojekt aktuelle Fragestellungen mit dem Einsatz moderner Methoden zu lösen.
- eine wissenschaftliche Fragestellung in einem Team zu beantworten.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

Aktuelle Publikationen aus verschiedenen Bereichen der Biowissenschaften, in Englisch

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion Bereich Pflichtform Sem. Auswahl ECTS				ECTS
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt			

Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	
Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.	

Modulname	Flexi-Modul		
Nummer	1301360	Modulversion	
Kurzbezeichnung	BL-STD2-36	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	10 / ,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.	
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

Modulname	Alternativ-Modul		
Nummer	1301130	Modulversion	
Kurzbezeichnung	BL-STD2-13	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich			

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			

Modulname	Alternativ-Modul2		
Nummer	1301380	Modulversion	
Kurzbezeichnung	BL-STD2-38	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			
		,	

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich				
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich				
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt				
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich				
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt				
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich				
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt				
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt				

Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Molekulare Biodiversität - Wahlpflichtbereich ECTS

Modulname	Phytopathologie			
Nummer	1398850 Bio-ZB 20 / Bio-BD 21	Modulversion		
Kurzbezeichnung	ZB 20 / BD 21	Sprache	englisch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Adam Schikora	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	184	Selbststudium (h)	116	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Referate (1, jeweils ca. 60 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Erfolgreiche Teilnahme am Seminar			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Inhalte

Vorlesung:

Die Vorlesung wird semesterbegleitend angeboten in Form von Doppelstunden. Wir werden Interaktionen zwischen pathogenen Mikroorganismen und Pflanzen besprechen. Interaktionen mit bakteriellen, pilzlichen Mikroorganismen aber auch mit Viren und Nematoden die Krankheiten in Pflanzen hervorrufen, werden Teil der Diskussion sein. Wichtige Fragen, z.B. wie differenzieren Pflanzen zwischen dem Selbst und anderen Organismen oder was definiert Schaderreger, werden erläutert. Diversifizierung und Anpassungsfähigkeit von pflanzlichen Pathogenen an die pflanzlichen Abwehrmechanismen und deren mögliche Manipulation, wird besprochen. Zusätzlich werden mikrobielle und molekulare Nachweistechniken zu Untersuchungen der strukturellen und funktionellen Diversität von Pflanzen-assoziierten Mikroorganismen diskutiert.

Seminar:

Seminare werden während des Praktikums gehalten. Vorstellung von Publikationen zum jeweiligen Forschungsthema, das im Rahmen des Praktikums bearbeitet wird, sowie eine kritische Auseinandersetzung sollen ein Teil sein.

Praktikum:

4-Wochen-Praktikum am JKI Institut für Epidemiologie und Pathogendiagnostik in dem die Studierenden in Gruppenarbeit einer bestimmten Fragestellung nachgehen. Thema wird die Pflanze als Holobiont sein. Die komplexen Interaktionen zwischen Pflanzen-assoziierten Bakterien, Pilzen, Nematoden und Viren und deren Einfluss auf die jeweils andere Organismen-Gruppe, direkt aber vor allem indirekt d.h. über die induzierte Resistenz (ISR) sollen anhand von Beispielen erforscht werden. Die Isolation von bakteriellen Stämmen aus Pflanzen und deren Charakterisierung werden ebenso erlernt, wie biochemische Methoden zur Charakterisierung der pflanzlichen Signaltransduktion. Verschiedene mikroskopische Methoden zur Darstellung der Infektionen aber auch taxonomische Methoden und molekulare Techniken

runden die praktischen Arbeiten ab: DNA bzw. RNA Extraktion, PCR, qPCR, und enzymatische Assays, werden benutzt.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- Kenntnisse zur Diversität von pflanzlichen Pathogenen vorzuweisen, sie erhalten Einblicke in molekularen Mechanismen der Interaktionen zwischen Pflanze und deren Pathogen, Erken-nung von non-self und Antwort der Pflanze auf die Präsenz von diversen (pathogenen) Mik-roorganismen: Bakterien und Pilzen aber auch Viren und Nematoden.
- Methoden zur Erfassung der Biodiversita#t von mikrobiellen Lebensgemeinschaften in Pflan-zen anzuwenden.
- Methoden zur Erfassung der Interaktionen zwischen Pflanzen und Mikroorganismen anzu-wenden.
- an einem jeweils aktuellen Forschungsprojekt mitzuarbeiten, Experimente zu planen, durch-zuführen und auszuwerten.
- die Vorteile und Limitierungen der verschiedenen Methoden zu diskutieren.
- im Team die Ergebnisse des Praktikums auszuwerten und im Rahmen eines Abschlusskol-loquiums zu präsentieren.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effi-zient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

aktuelle englischsprachige Publikationen und Lehrbücher der Phytopathologie

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS		
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich					
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Phytopathologie (Bio-ZB 20, Bio-BD 21)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Adam Schikora			Vorlesung	deutsch

Titel der Veranstaltung						
Phytopathologie (Bio-ZB 20, B	io-BD 21)					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Prof. Dr. Adam Schikora			Seminar	deutsch		
Titel der Veranstaltung	Titel der Veranstaltung					
Phytopathologie (Bio-ZB 20, B	io-BD 21)					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Prof. Dr. Adam Schikora			Praktikum	deutsch		

Modulname	Molekulare mikrobielle Evolution und Diversität			
Nummer	1399900 Bio-MI 22 / Bio-BD 22	Modulversion		
Kurzbezeichnung	MI 22 / BD 22	Sprache	englisch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Dr. Jörn Petersen	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Voraussetzungen und Modellvorstellung zur Entstehung der prokaryotischen und eukaryotischen Zelle und der Vielzelligkeit, Chemofossilien und Biomarker, Analyse fossiler DNA, Enzyme und Isotopenzusammensetzung, phylogenetische Ansätze, Methoden der vergleichenden Genomanalyse, Populationsgenetik und Artentstehung bei Prokaryoten, Entstehung von Symbiose und Pathogenität, Methoden der Quantifizierung von Diversität, funktionelle Diversität von bakteriellen Gemeinschaften und Relevanz für globale Stoffkreisläufe, das polyphasische Artkonzept der Prokaryoten, Archivierung und Organisation von Sequenzen und Diversitätsdaten in Datenbanken, Bioinformatik der modernen Diversitätsforschung, biotechnologisches Nutzungspotential der mikrobiellen Diversität, Rolle von biologischen Ressourcenzentren für die mikrobielle Systematik und Bioökonomie.

Praktikum:

Im praktischen Teil arbeiten die Studierenden anwendungsorientiert und in enger individueller Betreuung durch Wissenschaftler des Institutes an aktuell laufenden molekularmikrobiologischen Forschungsprojekten. Die erlernten Methoden umfassen molekular-biologische Techniken (PCR, Klonierung), bioinformatisches Arbeiten (Annotationsübungen, Methoden des Sequenzvergleichs und der Phylogenie), chemotaxonomische Methoden (Fettsäurespektren, Zellwandbestandteile), molekularbiologische Methoden zur Quantifizierung mikrobieller Diversität (FISH, fingerprinting, Hochdurchsatzsequenzierung), Epifluoreszenzmikroskopie, moderne Methoden der gezielten Kultivierung und Hochdurchsatz-Kultivierung neuartiger Bakterien, und Konservierung von Bakterienkulturen.

Qualifikationsziel

- die kulturunabhängige Erfassung und Analyse funktioneller Diversität (u.a. durch Feldme-thoden) von Mikroorganismen im ökologischen Kontext zu interpretieren.
- eigene bakterielle Isolate in Reinkultur zu bringen, deren 16S rRNA Gen Sequenz zu be-stimmen und taxonomisch einzuordnen.

- bioinformatisch die Abschätzung mikrobieller Diversität anhand eines Illumina Hochdurch-satzdatensatzes von 16S rRNA Gensequenzen durchzuführen.
- Bakterien physiologisch und chemotaxonomisch experimentell zu charakterisieren.
- phylogenetische Analysen durchzuführen und korrekt zu interpretieren.
- morphologische, physiologische und phylogenetische Diversität im Kontext zu Genomse-quenzen zu analysieren.
- eine Abschätzung von Mutationsraten anhand eines Fluktuationstestes durchzuführen und deren Ergebnisse populationsgenetisch zu bewerten.
- die Rolle akzessorischer Gene unter natürlichen Bedingungen (Plasmidcuring, Konkurrenz-experiment) zu analysieren.
- heterogene Daten aus eigenen Experimenten, Literaturrecherche und bioinformatischen Ana-lyse zu einem übergeordneten Ergebnis zu integrieren.
- die resultierende Datenintegration im Kontext wissenschaftlichen Kenntnisstandes zu disku-tieren und zu dokumentieren.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effi-zient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.
- die Rolle akzessorischer Gene unter natürlichen Bedingungen (Plasmidcuring, Konkurrenzexperiment) zu analysieren.
- heterogene Daten aus eigenen Experimenten, Literaturrecherche und bioinformatischen Analyse zu einem übergeordneten Ergebnis zu integrieren.
- die resultierende Datenintegration im Kontext wissenschaftlichen Kenntnisstandes zu diskutieren und zu dokumentieren.

Literatur

Madigan et al., Brock Biology of Microorganisms, 2014

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich					
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich					
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich					
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Data-Driven Biology					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				

Titel der Veranstaltung						
Molekulare mikrobielle Evolution	n und Diversität (Bio-MI 22, Bio-	BD 22, AM-C	C-1)			
Dozent/in Mitwirkende SWS Art LVA Sprache						
Dr. Jörn Petersen			Vorlesung			
Titel der Veranstaltung						
Molekulare mikrobielle Evolution	n und Diversität (Bio-MI 22, Bio-	BD 22, AM-C	C-1)			
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		

Modulname	Genetik und Molekularbiologie filamentöser Pilze			
Nummer	1399760 Bio-GE 24 / Bio-BD 23	Modulversion		
Kurzbezeichnung	GE 24 / BD 23	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Andre Fleißner	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	112	Selbststudium (h)	188	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokollen (5)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Systematik der Pilze, allgemeine Entwicklungs- und Zellbiologie der Pilze, Bedeutung der Pilze in der Grundlagenforschung und in der angewandten Forschung, Pilze als Pathogene des Menschen und von Tier und Pflanze, pilzlicher Sekundärmetabolismus, Methoden der molekularbiologischen Manipulation von Pilzen.

Praktikum:

Molekularbiologische Manipulation von filamentösen Pilzen, Klonierung von Transformationsvektoren, Transformation filamentöser Pilze, Analyse der erhaltenen Transformanten mittels PCR, Sequenzierung, Southern-Blot-Analyse u.a., Herstellung von Protein-GFP-Konstrukten. Anwendung klassischer Genetik in Pilzkreuzungen und Analyse der erhaltenen Nachkommen (Kopplungsanalysen, Gene Mapping). Licht- und Fluoreszenzmikroskopie, Live Cell Imaging.

Qualifikationsziel

- die Eigenschaften von Pilzen und die Unterschiede zwischen den unterschiedlichen Gruppen der Pilze zu beschreiben.
- die Lebensweise und die Lebenszyklen verschiedener Pilzgruppen zu beschreiben.
- die Bedeutung der Pilze in der Grundlagen- und angewandten Forschung zu erklären.
- anhand pilzlicher Modellorganismen molekularbiologische, genetische und zellbiologi-sche Methoden anzuwenden.
- die Funktionsweise eukaryotischer Zellen zu analysieren und zu manipulieren.
- eine spezielle wissenschaftliche Fragestellung experimentell zu bearbeiten (wie werden Experimente sinnvoll geplant, durchgeführt und ausgewertet; wie werden die erhaltenen Ergebnisse dokumentiert und kritisch interpretiert?).
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

- Griffiths et al., An Introduction to Genetic Analysis, Freeman
 Webster and Weber, Introduction to Fungi, Cambridge University Press, 3. Auflage
 Kück et al., Schimmelpilze, Springer, 3. Auflage
- Davis, Neurospora Contributions of a Model Organism, Oxford

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich				
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN						
Belegungslogik bei der Wa	Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht						
Titel der Veranstaltung						
Genetik und Molekularbiologi	e filamentöser Pilze (Bio	-GE 24, Bio-BD 23)				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Prof. Dr. Andre Fleißner			Vorlesung	deutsch		
Titel der Veranstaltung						
Genetik und Molekularbiologi	e filamentöser Pilze (Bio	-GE 24, Bio-BD 23)				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Ulrike Brandt Prof. Dr. Andre Fleißner			Praktikum	deutsch		

Modulname	Struktur und Funktion mikrobieller	Struktur und Funktion mikrobieller Lebensgemeinschaften			
Nummer	1303930 Bio-BD 24	Modulversion			
Kurzbezeichnung	BD 24	Sprache	englisch deutsch		
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften		
Moduldauer	1	Einrichtung			
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r	Dr. Doreen Babin		
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	126	Selbststudium (h)	174		
Zwingende Voraussetzungen	keine				
Empfohlene Voraussetzungen	keine				
Zu erbringende Prüfungsleistung/ Prüfungsform	- Klausur (ca. 120 min)				
Zu erbringende Studienleistung	- Experimentelle Arbeit - Referat (ca. 30 min)				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.				

Vorlesung:

Aquatische und terrestrische Lebensräume und ihre mikrobiellen Lebensgemeinschaften; biogeochemische Stoffwechselkreisläufe; das humane Mikrobiom; das pflanzliche Mikrobiom; Populationsgenomik und Biogeographie

Praktikum:

Das Praktikum findet als 4-wöchiger ganztägiger Block nach Absprache an einer der Braunschweiger Forschungseinrichtungen Julius-Kühn-Institut, Johann Heinrich von Thünen-Institut, Leibniz Institut DSMZ oder Helmholtz Zentrum für Infektionsforschung statt. Es beinhaltet je nach Forschungsstandort die Analyse umweltrelevanter Mikroorganismen, des humanen Mikrobioms oder die Analyse der Interaktionen von Mikroorganismen mit Pflanzen. Methoden, die zur Anwendung kommen, sind: Analyse mikrobieller Gemeinschaften anhand von 16S rRNA Genen (Fingerprinting, Sequenzierung, bioinformatische und phylogenetische Analyse), Genomanalysen, Kultivierung und Charakterisierung von Mikroorganismen, Immunantwort des Wirtes auf transkriptioneller Ebene (qPCR), Auswirkungen von Pathogenen und nützlichen Mikroorganismen auf den Wirt.

Qualifikationsziel

- den Einfluss von Mikroorganismen auf globale und biotechnologische Stoffwechselkreisläufe zu verstehen.
- das aktuelle Verständnis des menschlichen Mikrobioms wiederzugeben.
- Interaktionen zwischen Pflanzen und Mikroorganismen wiederzugeben.
- Kenntnisse zur Diversita#t und Funktionalität von mikrobiellen Gemeinschaften in verschiedenen Umwelthabitaten vorzuweisen.
- mit modernen molekularbiologischen Methoden die Struktur und Funktion von mikrobiellen Gemeinschaften zu analysieren.
- aktuelle Themen aus den Bereichen Klimawandel, Medizin und Landwirtschaft im gesellschaftlichen Kontext kritisch zu reflektieren.
- eine wissenschaftliche Fragestellung eigenständig zu bearbeiten (Formulierung der Fragestellung, Zeitmanagement, gute wissenschaftliche Praxis, Dokumentation und Präsentation von Ergebnissen).

- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

Aktuelle Veröffentlichungen (englisch)

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Struktur und Funktion mikrobieller Lebensgemeinschaften (Bio-MI 25, Bio-BD 24)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Doreen Babin Dr. Damien Finn Prof. Dr. Adam Schikora			Vorlesung	deutsch

Titel der Veranstaltung

Struktur und Funktion mikrobieller Lebensgemeinschaften (Bio-MI 25, Bio-BD 24)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Doreen Babin Dr. Damien Finn Prof. Dr. Adam Schikora			Praktikum	deutsch

Modulname	Python for Life Scientists	Python for Life Scientists			
Nummer	1303960 Bio-SB 25	Modulversion			
Kurzbezeichnung	SB 25	Sprache	englisch		
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften		
Moduldauer	1	Einrichtung			
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Tim Kacprow- ski		
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	120	Selbststudium (h)	180		
Zwingende Voraussetzungen	keine				
Empfohlene Voraussetzungen	keine	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Erstellung und Dokumentation eines Computer- bzw. Softwareprogramms (1)				
Zu erbringende Studienleistung	- 50% der einzureichenden Programmierprojekte müssen bestanden werden - Teamprojekt muss erfolgreich abgegeben werden				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.				

Seminar:

Das Seminar ist eine Einführung in Python, die explizit auf Studierende der Lebenswissenschaften ausgerichtet ist und keinerlei Vorkenntnisse zum Programmieren vorraussetzt. Insbesondere werden gängige Pakete zum organisieren, analysieren und visualisieren von Daten behandelt, wie z.B. matplotlib, numpy, scipy, und pandas. Die Planung, Ausführung, Dokumentation und Ablage von Programmierprojekten, insbesondere mit geeigneten Versionsverwaltungswerkzeugen wird vermittelt.

Übung:

Die Studierenden lernen das Schreiben von Pythoncode durch zahlreiche Übungen. Häufig auftretende Herausforderungen mit Bezug zu Daten in den Lebenswissenschaften werden mit diesen Übungen behandelt. Studierende lernen die effektive Verwendung von Künstlicher Intelligenz für die Entwicklung von Pythonscripten. Abschließend werden Studierende mit einem individuellen Programmierprojekt gefordert, dessen Lösung die selbstständige Anwendung der vorher gelernten Qualifikationen erfordert. Dieses Projekt muss zunächst geplant und nach Abschluss mit einer entsprechenden Dokumentation in der Versionsverwaltung abgegeben werden. Zusätzlich werden die Studierenden in kleineren Teams Teamprojekte bearbeiten um auch die Herausforderungen kollaborativen Programmierens meistern zu können.

Qualifikationsziel

- ein Programmierprojekt zur Beantwortung einer biologischen Fragestellung zu planen.
- Scripte für die Analyse eigener Datensätze zu schreiben.
- eine Dokumentation zu eigenen Scripten zu erstellen und diese abzulegen.
- künstliche Intelligenz als Unterstützung bei der Scriptentwicklung zu verwenden.
- erfolgreich und eigenständig in einem Team zu arbeiten.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- die grundlegenden Features eines Versionsverwaltungswerkzeuges für die Codeentwicklung sowohl alleine als auch im Team einsetzen zu können.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.

- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.

Literatur

Webseiten

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich			
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Python for Life Scientists (Bio-BB 34, Bio-GE 36, Bio-SB 25)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Tim Kacprowski Prof. Dr. Boas Pucker Simone Scharke			Seminar	englisch deutsch

Titel der Veranstaltung

Python for Life Scientists (Bio-BB 34, Bio-GE 36, Bio-SB 25)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Tim Kacprowski Prof. Dr. Boas Pucker Simone Scharke			Übung	englisch deutsch

Modulname	Flexi-Modul		
Nummer	1301360	Modulversion	
Kurzbezeichnung	BL-STD2-36	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	10 / ,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.	
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Modulname	Alternativ-Modul		
Nummer	1301130	Modulversion	
Kurzbezeichnung	BL-STD2-13	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich			

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

Modulname	Alternativ-Modul2		
Nummer	1301380	Modulversion	
Kurzbezeichnung	BL-STD2-38	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt			

Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

ECTS

Molekulare Biodiversität - Schwerpunkt

Modulname	Mikrobielle Wirkstoffproduzenten - Die Myxobakterien		
Nummer	1301240 Bio-IB 20A / Bio-BD 31	Modulversion	
Kurzbezeichnung	IB 20A / BD 31	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswis- senschaften
Moduldauer	1	Einrichtung	
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Dr. Miriam Große
Arbeitsaufwand (h)	300		
Präsenzstudium (h)	160	Selbststudium (h)	140
Zwingende Voraussetzungen	keine		
Empfohlene Voraussetzungen	keine		
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (2, ca. 15 min, 5 min.)		
Zu erbringende Studienleistung	- Erfolgreiche Teilnahme am Seminar - Experimentelle Arbeit - Praktikumsprotokoll (1)		
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.	

Inhalte

Vorlesung:

Einführung in die Gruppe der Myxobakterien (taxonomische Einordnung, Charakterisierung mittels polyphasischer Taxonomie), Isolierung von Myxobakterien (klassische und molekularbilogische Ansätze), Sekundärmetabolismus (strukturelle Vielfalt, Biosynthese, biologische Wirkung) und dessen Regulation (Indiktion, Genomemining), Biotechnologische Produktion von Wirkstoffen

Praktikum:

Dieses erfolgt in enger Zusammenarbeit mit wissenschaftlichen Mitarbeiter/innen der Abteilung Mikrobielle Wirkstoffe (MWIS) am Helmholtz Zentrum für Infektionsforschung (HZI) sowie den Arbeitsgruppen der Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ).

Hierbei wird mit mikrobiologischen und biotechnologische Methoden gearbeitet, (Reaktivierung und Charakterisierung von Stämmen), Kultivierung von Myxobakterien, Analyse von Stoffwechseleigenschaften, offline Analytik). Die Analyse des Produktionskulturen erfolgt mit chemisch und analytischen Methoden. Zusätzlich werden auch molekularbiologische Methoden sowie Genomemining vermittelt.

Seminar:

Die Seminarthemen orientieren sich an aktuellen Fragestellungen zu Praktikum und Vorlesung. Dabei wird von jedem Studierenden ein Thema aus der Literatur bearbeitet und in einem kurzen Vortrag im Seminar vorgestellt.

Qualifikationsziel

- die Biologie und Taxonomie von Myxobakterien als einer wichtigen Gruppe der Wirkstoffproduzenten zu erklären.
- die Methoden zur Speziescharakterisierung bei dieser Gruppe von Mikroorganismen zu erläutern.

- die Bedeutung von Antibiotika, die Wege zur Suche nach neuen Wirkstoffen zu verstehen.
- grundlegend den Prozess von der Kultivierung über die Prozessentwicklung und der Produktion von Sekundärmetaboliten zu verstehen.
- bioinformatische Ansätze zum Genom Mining in Hinblick zur Findung neuer Wirkstoffe anzuwenden.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

- Gerth, K., Pradella, S., Perlova, O., Beyer, S., Müller, R., 2003. Myxobacteria: proficient producers of novel natural

products with various biological activities past and future biotechnological aspects with the focus on the genus

Sorangium. J. Biotech. 106, 233-253.

- Weissman, K.J. and Müller, R., 2009. A brief tour of myxobacterial secondary metabolism. Bioorg. Med. Chem. 17.

2121-2136.

- Weissman, K.J. and Müller, R., 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat.

Prod. Rep. 27, 1276-1295.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt			

LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Biotechnologische Aspekte der Myxobakterien (Bio-IB 20A, Bio-BD 31)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Miriam Große			Vorlesung	deutsch

Titel der Veranstaltung							
Myxobakterien als Wirkstoffproduzenten (Bio-IB 20A, Bio-BD 31)							
Dozent/in	Mitwirkende	sws	Art LVA	Sprache			
Dr. Miriam Große			Seminar	deutsch			
Titel der Veranstaltung							
Myxobakterien als Wirkstoffproduzenten (Bio-IB 20A, Bio-BD 31)							
Dozent/in	Mitwirkende	sws	Art LVA	Sprache			
Dr. Miriam Große			Praktikum	deutsch			

Modulname	Mikrobielle Wirkstoffproduzenten - Biotechnologische Aspekte der Actinobacteria				
Nummer	1301250 Bio-IB 20B / Bio-BD 32	Modulversion			
Kurzbezeichnung	IB 20B / BD 32	Sprache	deutsch		
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften		
Moduldauer	1	Einrichtung			
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Prof. Dr. Yvonne Mast		
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	160	Selbststudium (h)	140		
Zwingende Voraussetzungen	zwingend: keine				
Empfohlene Voraussetzungen	empfohlen: keine				
Zu erbringende Prüfungsleistung/ Prüfungsform	- Mündliche Prüfung (ca. 50 min.)				
Zu erbringende Studienleistung	- Erfolgreiche Teilnahme am Seminar - Experimentelle Arbeit - Praktikumsprotokoll (1) - Referat (1)				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.				

Vorlesung:

Einführung in die Klasse der Actinobacteria. Rolle der Taxonomie in einer Stammsammlung, Charakterisierung von Spezies mittels der polyphasischen Taxonomie und Vorstellung der für Actinobacteria relevanten Methoden, Bedeutung von Vertretern des Actinomycetales als Wirkstoffproduzenten und Vorstellung der unterschiedlichen Isolierungsmethoden für Vertreter der Klasse Actinobacteria, Übersicht über die aktuelle Phylogenie innerhalb der Klasse Actinobacteria mit Vorstellung der Ordnungen, Subordnungen, Familien und Gattungen, Rolle der Actinobacteria als pathogene Keime (Nocardiosen, Mycobacterium tuberculosis) und Vorstellung der Antibiotika- und Resistenzentwicklung an Hand der von Actinomyceten produzierten Wirkstoffe sowie Einführung in die Biosynthese am Beispiel der Nicht- Ribosomalen Peptidsynthese.

Praktikum:

Das Praktikum erfolgt in enger Zusammenarbeit mit wissenschaftlichen Mitarbeiter/innen der Arbeitsgruppe Mikrobielle Stammsammlung (MISG) und der Abteilung Mikrobielle Wirkstoffe (MWIS) am Helmholtz Zentrum für Infektionsforschung. Hierbei wird mit mikrobiologischen Methoden gearbeitet, wie Stammcharakterisierung auf unterschiedlichen Nährböden, Analyse von Stoffwechseleigenschaften, Konservierung und Isolierung von Actinomyceten aus Bodenproben. Zusätzlich werden auch molekularbiologische Parameter, wie die 16S rRNA bestimmt. Die Analyse des Sekundärmetabolismus erfolgt mit chemisch analytischen Methoden und durch mikrobielle Bioassays.

Seminar:

Die Seminarthemen orientieren sich an aktuellen Fragestellungen zu Praktikum und Vorlesung. Dabei wird von jedem Studierenden ein Thema aus der Literatur bearbeitet und in einem kurzen Vortrag im Seminar vorgestellt.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- die Biologie und den Sekundärmetabolismus von Actinobacteria als einer wichtigen Gruppe der Wirkstoffproduzenten zu erklären.

- den Prozess von der Isolierung neuer Stämme aus Bodenproben bis zur Identifikation der gebildeten Sekundärmetabolite darzustellen.
- die Methoden zur Speziescharakterisierung bei dieser Gruppe von Mikroorganismen zu er-läutern.
- die Bedeutung von Antibiotika, die Wege zur Suche nach neuen Wirkstoffen und aktuelle As-pekte der Taxonomie zu verstehen.
- Methoden zur genetischen Manipulation von Actinomyceten anzuwenden.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effi-zient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

- Compendium of Actinobacteria from Dr. Joachim M. Wink

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS		
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich					
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				

Titel der Veranstaltung					
Biotechnologische Aspekte der Actinobacteria (Bio IB 20B, Bio-BD 32) Dozent/in Mitwirkende SWS Art LVA Sprache					
					Prof. Dr. Yvonne Mast

Titel der Veranstaltung						
Actinomycetales als Wirkstoffproduzenten (Bio-IB 20B, Bio-BD 32)						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Prof. Dr. Yvonne Mast			Seminar	deutsch		

Titel der Veranstaltung					
Actinomycetales als Wirkstoffpr	Actinomycetales als Wirkstoffproduzenten (Bio-IB 20B, Bio-BD 32)				
Dozent/in Mitwirkende SWS Art LVA Sprache					
Prof. Dr. Yvonne Mast			Praktikum	deutsch	

Modulname	Pflanzen- und Bodenassoziierte Mikroorganismen: Diversita#t, Anpassung, Pathogenita#t				
Nummer	1303300 Bio-BD 33	Modulversion			
Kurzbezeichnung	BD 33	Sprache	deutsch		
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften		
Moduldauer	1	Einrichtung			
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Prof. Dr. Adam Schikora		
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	126	Selbststudium (h) 174			
Zwingende Voraussetzungen	keine				
Empfohlene Voraussetzungen	keine				
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referate (2, jeweils ca. 30 min.)	- Referate (2, jeweils ca. 30 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Erfolgreiche Teilnahme am Seminar - Hausarbeit (1)				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.			

Vorlesung:

Interaktionen zwischen Mikroorganismen und Pflanzen in der Rhizosphere und der Phyllosphere. Mikrobielle und Molekulare Nachweistechniken zu Untersuchungen der strukturellen und funktionellen Diversität von Pflanzen und Boden-assoziierten Mikroorganismen. Diversifizierung und Anpassungsfassungsfähigkeit von Bakterien durch Plasmidvermittelten horizontalen Gentransfer (am Beispiel von Antibiotikaresistenzplasmiden).

Seminar:

Vorstellung von Publikationen zum jeweiligen Forschungsthema, das im Rahmen des Blockpraktikums bearbeitet wird.

Praktikum:

Isolation von bakteriellen Stämmen aus Pflanzen oder Böden und deren Charakterisierung. Isolation von genomischer und Plasmid-DNA aus Isolaten bzw. direkt aus Pflanzen- oder Bodenproben für molekulare Analysen.

Techniken: DNA bzw. RNA Extraktion, PCR, qPCR, BOX-PCR, Restriktionsverdau von Plasmiden, Southern Blot Hybridisierungen, Enzymatische Assays.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- Kenntnisse zur Diversita#t von Pflanzen- und Bodenassoziierten Mikroorganismen vorzuweisen.
- molekulare und genetische Elemente, die zur Diversität, Anpassung und Pathogenita#t beitragen zu untersuchen.
- Methoden zur Erfassung der Biodiversita#t von mikrobiellen Lebensgemeinschaften in Pflanzen und im Boden anzuwenden.
- Methoden zur Erfassung der Interaktionen zwischen Pflanzen und Mikroorganismen anzuwenden.

- an einem jeweils aktuellen Forschungsprojekt mitzuarbeiten, Experimente zu planen, durchzuführen und auszuwerten.
- die Vorteile und Limitierungen der verschiedenen Methoden zu diskutieren.
- im Team die Ergebnisse des Blockpraktikums auszuwerten und im Rahmen eines Abschlusskolloquiums zu pra#sentieren.
- recherchierte wissenschaftliche Inhalte zu pra#sentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

aktuelle englischsprachige Publikationen

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt					
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt					

THATHADIAE	LEHRVERANSTA	LTINIACNI
/!!(abb()R!(ab	I FHKVFKVNZIV	

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Bodenmikroorganismen: Diversität, Anpassungsfähigkeit, Pathogenität (Bio-MI 27, Bio-BD 33)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Kornelia Smalla			Vorlesung	deutsch

Titel der Veranstaltung

Bodenmikroorganismen: Diversität, Anpassungsfähigkeit, Pathogenität (Bio-MI 27, Bio-BD 33)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Kornelia Smalla			Seminar	deutsch

Titel der Veranstaltung

Bodenmikroorganismen: Diversität, Anpassungsfähigkeit, Pathogenität (Bio-MI 27, Bio-BD 33)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Kornelia Smalla			Praktikum	deutsch

Modulname	Hormonelle Regulation pflanzlicher Entwicklungsprozesse				
Nummer	1399680 Bio-BB 26 / Bio-BD 34	399680 Bio-BB 26 / Bio-BD 34 Modulversion			
Kurzbezeichnung	BB 26 / BD 34	Sprache	englisch deutsch		
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften		
Moduldauer	1	Einrichtung			
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Dr. Maria Mirra Goncalves Pimenta Lange		
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	Selbststudium (h) 188				
Zwingende Voraussetzungen	keine				
Empfohlene Voraussetzungen	keine	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Mündliche Prüfung (ca. 50 min.)				
Zu erbringende Studienleistung	 Erfolgreiche Teilnahme an Übung und Seminar Praktikumsprotokoll (1) Referate (2, je 45 min.) 				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.				

Vorlesung:

Es werden allgemeine und spezielle Aspekte ausgewählter pflanzenbiochemischer Bereiche vertiefend behandelt, die die theoretische Basis für die Übung bilden.

Seminar:

Es werden, auf der Grundlage von Referaten, aktuelle wissenschaftliche Arbeiten, Themen und Methoden vorgestellt und diskutiert.

Übung:

Erlernen weiterführender Methoden:

- Extraktion von Gesamt-RNA und mRNA; Nachweis von Transkripten (competitive RT-PCR, Real Time PCR, in situ Hybridisierung),
- Heterologe Genexpression und funktioneller Nachweis von Proteinen (Enzymen und Rezeptoren), (Protein)-HPLC,
- "Public domain" Datenbanken im praktischen Einsatz (Analyse und Interpretation von Sequenzdaten, Entwicklung von Klonierungsstrategien, Primerdesign, etc.)
- Quantitative Real Time PCR

Folgende Techniken werden praktisch erlernt:

- Bonitur von pflanzlichem Wachstum und Entwicklung
- RNA Isolierung, cDNA Synthese, qPCR
- Bioinformatik: Primerdesign, Analyse und Interpretation ausgewählter Transkripte

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- grundlegende Methoden der modernen pflanzlichen Biochemie und Molekularbiologie zu erklären, wobei ein Schwerpunkt die selbstständige Erarbeitung einer wissenschaftlichen Fragestellung beinhaltet.
- molekulare Kontrollmechanismen bei ausgewählten pflanzlichen Wachstums- und Entwicklungsprozessen sowie beim Stressmanagement bei Pflanzen zu erläutern.
- das Erlernte unter grundlegenden gesellschaftlichen Aspekten einzuordnen.

- die Anpassung der pflanzlichen Performance unter sich verändernden klimatischen Bedingungen, sowie die Sicherung pflanzlicher Ressourcen und deren Produktion zu verstehen.
- -recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

- Taiz und Zeiger (2010) Plant Physiology,
- Aktuelle Veröffentlichungen (englisch)

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS		
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt					
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Hormonelle Regulation pflanzlicher Entwicklungsprozesse (Bio-BB 26, Bio-BD 34)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Theodor Lange Dr. Maria Mirra Goncalves Pimenta Lange			Vorlesung	englisch deutsch

Titel der Veranstaltung

Hormonelle Regulation pflanzlicher Entwicklungsprozesse (Bio-BB 26, Bio-BD 34)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Maria Mirra Goncalves Pimenta Lange			Übung	englisch deutsch

Titel der Veranstaltung						
Hormonelle Regulation pflanzlicher Entwicklungsprozesse (Bio-BB 26, Bio-BD 34)						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Prof. Dr. Theodor Lange Dr. Maria Mirra Goncalves Pimenta Lange			Seminar	englisch deutsch		

Modulname	Forschungspraktikum			
Nummer	1303410	Modulversion		
Kurzbezeichnung	FP	Sprache	englisch deutsch	
Turnus	in jedem Semester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r		
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	Wahlpflichtmodule des gewählten Fachgebiets			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (ca. 30 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Erfolgreiche Teilnahme am Seminar			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	Die Modulnote entspricht der Note der Prüfungsleistung.		

Mitarbeit an verschiedenen aktuellen Forschungsprojekten.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- aufbauend auf Kenntnissen von Wahlpflichtmodulen der Systembiologie und Bioinformatik in einem Laborpraktikum durch Mitarbeit an einem Forschungsprojekt aktuelle Fragestellungen mit dem Einsatz moderner Methoden zu lösen.
- eine wissenschaftliche Fragestellung in einem Team zu beantworten.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

Aktuelle Publikationen aus verschiedenen Bereichen der Biowissenschaften, in Englisch

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt				

Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	
Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.	

Modulname	Forschungspraktikum			
Nummer	1303420	Modulversion		
Kurzbezeichnung	FP	Sprache	englisch deutsch	
Turnus	in jedem Semester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r		
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	Wahlpflichtmodule des gewählten Fachgebiets			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (ca. 30 min.)			
Zu erbringende Studienleistung	Experimentelle Arbeit Praktikumsprotokoll (1) Erfolgreiche Teilnahme am Seminar			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.		

Mitarbeit an verschiedenen aktuellen Forschungsprojekten.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- aufbauend auf Kenntnissen von Wahlpflichtmodulen der Systembiologie und Bioinformatik in einem Laborpraktikum durch Mitarbeit an einem Forschungsprojekt aktuelle Fragestellungen mit dem Einsatz moderner Methoden zu lösen.
- eine wissenschaftliche Fragestellung in einem Team zu beantworten.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

Aktuelle Publikationen aus verschiedenen Bereichen der Biowissenschaften, in Englisch

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt				

Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	
Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.	

Modulname	Flexi-Modul		
Nummer	1301360	Modulversion	
Kurzbezeichnung	BL-STD2-36	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	10 / ,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.	
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Modulname	Alternativ-Modul		
Nummer	1301130	Modulversion	
Kurzbezeichnung	BL-STD2-13	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich			

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Modulname	Alternativ-Modul2		
Nummer	1301380	Modulversion	
Kurzbezeichnung	BL-STD2-38	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			
		,	

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt			

Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Mikrobiologie und Infektionsbiologie - Wahlpflichtbereich

ECTS

Modulname	Entry-Modul "Engineering for Health" und "Alignment Internship"			
Nummer	1399770 Bio-MI 20	Modulversion		
Kurzbezeichnung	MI 20	Sprache	englisch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r	Prof. Dr. Michael Steinert	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	120	Selbststudium (h)	180	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Referat (ca. 30 min.)			
Zu erbringende Studienleistung	- Präsentation (inkl. schriftliche Projektzusammenfassung, Hypothesenformulierung) (4 ECTS) - Experimentelle Arbeit (6 ECTS)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	Die Modulnote entspricht der Note der Prüfungsleistung.		

Inhalte

Vorlesung und Tutorium:

In der Ringvorlesung und im Tutorium werden:

- -grundlegende Kenntnisse zum Thema "One Health" ("Human Health, Biodiversity Climate Change, Water and Plant Health, Environmental Pollution, Infectious Diseases and Zoonoses, Antibiotic Resistance, Data Modelling and AI, Public Health, Ethical Stewardship") vermittelt
- -entsprechend den Schwerpunktsäulen der Biologie (Zellbiologie und Neurobiologie, Mikrobiologie und Infektionsbiologie, Genetik und Immunbiologie, Biochemie und Biotechnologie) und Biotechnologie (Molekular- und Zellbiologie, Bioprozesstechnik) fachliches Grund- und Spezialwissen mit Hilfe konkreter aktueller Forschungsprojekte der biowissenschaftlichen Abteilungen vermittelt und diskutiert. Hierdurch erhalten die Studierenden einen guten Überblick über die verschiedenen Arbeitsgebiete in den Fächern Biologie und Biotechnologie.
- -die Studierenden mit den studiengangsspezifischen Bestimmungen und Organisationseinheiten vertraut gemacht (StudIP, TUconnect)

Seminar:

Im Seminar werden die Studierenden in international gemischten Kleingruppen wissenschaftliche Projektzusammenfassungen schreiben, Arbeitshypothesen ausarbeiten, dokumentieren, präsentieren und diskutieren.

Praktikum:

Im Praktikum werden den Studierenden bedarfsorientiert grundlegende Methoden der Molekularbiologie, Zellbiologie, Mikrobiologie und Biochemie vermittelt, sowie unter Anleitung durchgeführt, analysiert und ausgewertet (Laborsicherheit, Pipettenkunde, Laborrechnen, DNA-Isolierung, Polymerase-Kettenreaktion, Agarosegelelektrophorese, Transformation, SDS-PAGE, Western Blot, Wachstumskurve, Zellkultur, ELISA, Datenauswertung). Dieses "Alignment Internship" soll Defizite der Studierenden in der laborpraktischen Ausbildung minimieren.

Qualifikationsziel

Nach Abschluss der englischsprachigen Vorlesung, des Tutoriums (Fachgruppe) und des Seminars sind die Studierenden in der Lage:

- den "One-Health-Ansatz" zu erklären und den Forschungsschwerpunkt der TU Braunschweig "Engineering for Health" anhand des erworbenen Spezialwissens fachkompetent zu beschreiben.
- aktuelle Forschungsprojekte mit Hilfe von Arbeitshypothesen und methodischen Lösungsstrategien weiterzuentwickeln (Fach- und Methodenkompetenz).
- die interdisziplinäre Thematik in englischer Sprache zu kommunizieren, wissenschaftliche Ressourcen in gemischten internationalen Teams (Gruppenarbeit, "Student Tandems") zu bearbeiten und zu präsentieren (Sozial- und Selbstkompetenz).
- sich mit internationalen GastdozentInnen (Digitale Lehrkooperation, Online-Vorträge und -Diskussionen) und Austauschstudierenden ("Incomings" ERASMUS und Overseas) auszutauschen und zu vernetzen (Interkulturelle Kompetenz).
- sich mit Beginn des Masterstudiums an der Etablierung einer Willkommenskultur zu beteiligen, fachliche und organisatorische Orientierung an internationale Gaststudierende weiterzugeben.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.

Nach Abschluss des Praktikums ("Alignment Internship") sind die Studierenden in der Lage:

- die Laborsicherheit zu berücksichtigen und steril zu arbeiten.
- mit Pipetten umzugehen, Puffer, Lösungen und Medien selbstständig herzustellen.
- grundlegende molekular-, mikro-, zellbiologische und biochemische Methoden eigenständig durchzuführen.
- Daten und Ergebnisse zu analysieren und zu protokollieren.

Literatur

Artikel: aktuelle Publikationen (englisch) zur Thematik

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich					
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN
Belegungslogik bei der Wahl von Lehrveranstaltungen
Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Modulname	Molekulare Mikrobiologie			
Nummer	1399890 Bio-MI 21 / Bio-MI 21	Modulversion		
Kurzbezeichnung	MI 21 / MI 21	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Prof. Dr. Dieter Jahn	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Molekulare Mechanismen von Bakterien zur Adaptation von Metabolismus, Physiologie, Morphologie und Beweglichkeit an sich wandelnde Umweltbedingungen und Nahrungsquellen (Anpassung an Temperatur, pH, Sauerstoffpartialdruck, hohe und niedrige Osmolarität, Hungerzustände, Phosphat- und Eisenrekrutierung etc.), globale und spezielle Regulationsmechanismen (transkriptionell und posttranskriptionell), Bildung von Biofilmen und mikrobielle Beweglichkeit, Adaptation des Metabolismus und biotechnologische Anwendung. Sekundärmetaboliten sowie ihre Funktion in der Natur und ihrer Anwendung in der Pharmazie.

Praktikum:

Das Praktikum erfolgt in direkter Zusammenarbeit mit wissenschaftlichen Mitarbeitern des Institutes an laufenden Forschungsarbeiten der Abteilungen Jahn, Engelmann und Steinert. Methoden: Klonierung, Transformation, Analyse der Genexpression durch Reporterfusionen, DNA-Bindeanalysen, Herstellung von Mutanten (RED Rekombinase, in vitro Mutagenese), Fluoreszenzmikroskopie, Konstruktion und Gebrauch von Expressionsvektoren, Produktion von rekombinanten Proteinen. Enzymisolierung: Zellaufschluss, Affinitäts- und Ionenaustauschchromatographie, SDS-PAGE, Bestimmung von Enzymaktivitäten, Überexpression und Reinigung von getaggten Proteinen, Proteincharakterisierung, systembiologische Verfahren (Transkriptom, Proteom, Metabolom), Bioinformatik, Programmieren. Isolierung von biologisch aktiven Sekundärmetaboliten aus Mikroorganismen.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- molekulare Mechanismen bakterieller Anpassungsstrategien zu beschreiben.
- molekulare Wechselwirkungen zu beschreiben.
- unterschiedliche experimentelle Ansätze zur Analyse von bakteriellen Anpassungsstrategien zu erklären.
- eigenständig Experimente zu planen und durchzuführen.
- Ergebnisse experimenteller Arbeiten zu dokumentieren und mit Hilfe von graphischen und computergestützten Analysemethoden kritisch zu bewerten.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.

- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

- Brock et al., Mikrobiologie, Pearson
- aktuelle Forschungspublikationen, in Englisch

Zugeordnet zu folgenden Studiengängen						
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich					
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich					

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Molekulare Mikrobiologie für Fortgeschrittene (Bio-MI 21, Bt-MM 03)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Simone Bergmann Dr. Elisabeth Härtig Prof. Dr. Dieter Jahn Dr. Jürgen Moser Prof. Dr. Michael Steinert		1,0	Vorlesung	deutsch

Titel der Veranstaltung

Molekulare Mikrobiologie (Bio-MI 21)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Jürgen Moser			Praktikum	deutsch

Modulname	Virologie			
Nummer	1398620 Bio-GE 30 / Bio-IB 26 / Bio-MI 22	Modulversion		
Kurzbezeichnung	GE 30 / IB 26 / MI 22	Sprache	deutsch	
Turnus	in jedem Semester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	2 Semester (Start 1. Vorlesung im WiSe, nachfolgend 2. Vorlesung und zugehöriges P im SoSe)	Einrichtung		
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Melanie Brink- mann	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	112	Selbststudium (h)	188	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Referat (1, ca. 30 min.)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

- Allgemeine Einführung in die Virologie mit geschichtlichem Überblick
- Definition, Aufbau und Einteilung von Viren in Familien (RNA-Viren, DNA-Viren, Phagen)
- Labormethoden zum Nachweis von Virusinfektionen
- Zelleintritt, Transport, Replikation, virale Biogenese, Zellaustritt von Viren
- Virus-Wirt-Interaktion, molekulare Mechanismen der viralen Pathogenese
- Onkogenese und Transformation durch Viren
- Immunabwehr (angeboren und adaptiv), virale Evasion der Immunantwort des Wirtes
- Impfstoffe und antivirale Therapien
- Neu aufkommende Viren wie z.B. das Zika-Virus oder SARS-CoV-2
- Virusinfektionen während der Schwangerschaft

Praktikum:

Ein 2-wöchiges Praktikum mit Schwerpunkten in den Bereichen der Virologie, Genetik, Zellbiologie, Molekularbiologie und Immunologie. Es werden moderne Methoden zur gezielten molekularbiologischen Manipulation ausgewählter zellulärer Gene mit antiviraler Funktion oder immunmodulatorischer viraler Gene und des Virusgenoms angewendet. Die im Praktikum generierten Expressionskonstrukte und Virusmutanten sollen anschließend in unserer Arbeitsgruppe für weitergehende Forschungsarbeiten Verwendung finden. Der aktuelle Stand der virologischen Forschung wird in Praktikumsbegleitenden Seminaren erarbeitet und diskutiert. Inhalte des Praktikums sind u.a. die Klonierung von Expressionsvektoren, DNA-Isolierung, Restriktionsanalysen, Sequenzierung, Transfektion sowie Infektion von eukaryotischen Zelllinien und Mikroskopie.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- grundlegende Kenntnisse im Fach Virologie und spezielle Kenntnisse im Bereich der humanpathogenen Viren wiederzugeben.

- die Zusammenhänge zwischen dem Aufbau, der Replikation und der viralen Biogenese zu verstehen.
- die wichtigsten Virusfamilien, durch sie verursachten Krankheiten und die Grundprinzipien von viralen Therapien darzulegen.
- die molekularen Mechanismen der Pathogenese von verschiedenen Viruserkrankungen zu beschreiben.
- zelluläre und virale Determinanten von Infektionen zu erklären.
- das Wechselspiel zwischen Wirt und Virus (angeborene und adaptive Immunantwort, virale Immunevasion) darzustellen.
- Aspekte der Immunologie, Molekularbiologie, Zellbiologie, Epidemiologie und Evolution im Kontext von Virusinfektionen zu erklären.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- Virusgenome mit molekularbiologischen Methoden zu mutieren.
- Virale immunmodulatorische Gene oder zelluläre antivirale Gene zu klonieren und zu exprimieren.
- Virusinfektionen nachzuweisen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

- Principles of Virology (Flint, Enquist, Racaniello & Skalka) 3rd or 4th edition
- Tischer et al. (2010), En passant mutagenesis: A Two Markerless red recombination system, Methods in Molecular Biology
- Übersichtsartikel, Primärliteratur (wird gestellt)

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich				
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbereich				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich				
Master Biotechnologie PO 4	Vertiefung Angewandte Mole- kular- und Zellbiologie				

Belegungslogik bei der Wahl von Lehrveranstaltungen	
A Children (I) a Li	

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung					
Virologie (Bio-IB 26, Bio-GE 30, Bio-MI 22, Bt-MM 02)					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Prof. Dr. Melanie Brinkmann Ulfert Rand Markus Stempel			Vorlesung	deutsch	

Titel der Veranstaltung

Virologie (Bio-IB 26, Bio-GE 30, Bio-MI 22, Bt-MM 02)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Nicole Andrée-Busch Prof. Dr. Melanie Brinkmann Luka Cicin-Sain Ulfert Rand Viktoria Rex Markus Stempel Abel Viejo-Borbolla			Praktikum	deutsch

Modulname	Molekulare Infektionsbiologie			
Nummer	1399820 Bio-IB 21 / Bio-MI 23	Modulversion		
Kurzbezeichnung	IB 21 / MI 23	Sprache	englisch deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Dr. Martina Jahn	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Einführung in die Infektionsbiologie (Was passiert im Körper, wenn ein Mensch durch bakterielle oder virale Infektionen erkrankt? Was ist eine Pandemie bzw. Epidemie und was versteht man unter Pathogenität und Virulenz?), verschiedene Klassen von Krankheitserregern, Übertragungswege, Verbreitung der Erkrankung, Wirtsabwehrmechanismen (angeborene und erworbene Immunsysteme), Pathogenitätsmechanismen: Anheftung und Kolonisation des Wirtsgewebes, Invasion/Penetration in Wirtszellen, Kapseln, Biofilme, Sekretionssysteme, bakterielle Toxine (Endo- und Exotoxine), Variation und Regulation von Virulenzfaktoren, Überleben und Persistenz in Wirtszellen, Übertragung von Virulenzfaktoren (Pathogenitätsinseln, horizontaler Gentransfer), Mikrobielle Evolution und Infektionsökologie, Molekulare Diagnoseverfahren, Impfstrategien und therapeutische Strategien.

Laborpraktikum:

Das Praktikum erfolgt in enger Zusammenarbeit mit wissenschaftlichen Mitarbeiter/innen des Instituts für Mikrobiologie und des Helmholtz-Zentrums für Infektionsforschung an verschiedenen laufenden infektionsbiologischen Forschungsarbeiten der beteiligten Abteilungen. Methoden der Arbeitsgruppen: Molekularbiologische Techniken, Zellkultur, Arbeiten mit pathogenen Bakterien (z.B. Erreger von gastrointestinalen und pneumonalen Erkrankungen), Infektionsversuche mit Epithel- bzw. Endothelzellen, Adhäsions- und Invasionsstudien, Analyse der umweltkontrollierten Expression von Virulenzgenen, Mutagenese und Genbankscreens zur Identifizierung und Charakterisierung von Virulenzfaktoren, Analyse der Funktion von Virulenzfaktoren anhand ex vivo Modellen und in vivo Infektionsmodellen (Mausmodelle) mittels Fluoreszenzmikroskopie und in vivo imaging.

Qualifikationsziel

Nach Abschluss der Veranstaltung sind die Studierenden in der Lage

- grundlegende Kenntnisse über pathogene Mikroorganismen und die durch sie verursachten Erkrankungen darzustellen.
- Wissen zu generieren wie pathogene Erreger mit ihren Wirtszellen interagieren, sie für ihre Zwecke zu nutzen bzw. schädigen und wie sich der Wirt gegen die verschiedenen Infektionen verteidigt (Immunreaktion).
- grundlegende und neu entwickelte molekulare und zellbiologische Techniken in der Infektionsbiologie zu erlernen und anzuwenden.

- Mechanismen der Wissensgenerierung im gesellschaftlichen Kontext kritisch zu reflektieren.
- verschiedene Forschungsstrategien grundlegend zu verstehen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

- Jörg Hacker, Jürgen Heesemann, Spektrum Akad. Verlag: Molekulare Infektionsbiologie

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Molekulare Infektionsbiologie (Bio-IB 21, Bio-MI 23, Bt-MM 04)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Simone Bergmann Dr. Martina Jahn Prof. Dr. Ulrich Nübel		1,0	Vorlesung	deutsch

Titel der Veranstaltung

Molekulare Infektionsbiologie (Bio-IB 21, Bio-MI 23, Bt-MM 04)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Jose Borrero de Acuna Dr. Martina Jahn Prof. Dr. Yvonne Mast			Labor	deutsch

Modulname	Zelluläre Mikrobiologie			
Nummer	1399840 Bio-IB 23 / Bio-MI 25	Modulversion		
Kurzbezeichnung	IB 23 / MI 25	Sprache	englisch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Prof. Dr. Michael Steinert	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Referat (30 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Mikroskopische Reise durch die Wirtszelle, Zytoskelett und Infektion; Autophagie und Infektion, Intrazelluläre Signaltransduktionswege und Infektion, Intrazelluläres Trafficking, Strukturbiologie und Pathogen-Wirtinteraktion, Bakterielle Toxine, Mimikry von Pathogenen, Gewebekultur und Modellorganismen, Infektion und Krebs, Alternative Behandlungsstrategien und Phagentherapie.

Laborpraktikum:

Molekularbiologische Manipulation von bakteriellen Pathogenen, Klonierung von Virulenzfaktoren, Reportergentechnologie, Isolierung von lytischen Phagen, Zellkultivierung, Zelluläre Infektionsassays (Adhäsion, Invasion, Replikation), Zytotoxizität, Gewebekultur und -infektion, Licht- und Fluoreszenzmikroskopie.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- Pathogen-Wirtszellinteraktionen anhand von Beispielen zu erklären.
- Zellkulturmodelle für infektionsbiologische Fragestellungen anzuwenden.
- bakterielle Pathogene mit molekularbiologischen und genetischen Methoden zu analysieren.
- Stärken und Schwächen von verschiedenen Zell- und Gewebemodellen sowie von Modellorganismen zu erklären.
- eine spezielle wissenschaftliche Fragestellung experimentell zu bearbeiten und zu präsentieren (wie werden Experimente sinnvoll geplant, durchgeführt und ausgewertet; wie werden die erhaltenen Ergebnisse dokumentiert, kritisch interpretiert und vor einem Fachpublikum vorgestellt und diskutiert?).
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

Aktuelle Übersichtsartikel und Originalarbeiten zu den Themenschwerpunkten

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN
Belegungslogik bei der Wahl von Lehrveranstaltungen
Anwesenheitspflicht
Line inhibited day Dystrike. Library Comings and Extrusion on bostohi Annuagenhoisenflight

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung						
Zelluläre Mikrobiologie (Bio-IB 23, Bio-MI 25)						
Dozent/in	Mitwirkende	sws	Art LVA	Sprache		
Prof. Dr. Simone Bergmann Prof. Dr. Michael Steinert			Vorlesung	englisch		

The der veranstallung					
Zelluläre Mikrobiologie (Bio-IB 23, Bio-MI 25)					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Prof. Dr. Simone Bergmann Prof. Dr. Michael Steinert			Praktikum	englisch	

Modulname	Klinische Mikrobiologie				
Nummer	1301350 Bio-IB 29 / Bio-MI 26	Modulversion			
Kurzbezeichnung	IB 29 / MI 26	Sprache	englisch deutsch		
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften		
Moduldauer	1	Einrichtung			
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Prof. Dr. Simone Berg- mann		
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	126	Selbststudium (h)	174		
Zwingende Voraussetzungen	keine	ceine			
Empfohlene Voraussetzungen	keine				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)				
Zu erbringende Studienleistung	- Experimentelle Arbeit - Erfolgreiche Teilnahme am Seminar - Hausarbeit (20 Fallstudienbewertungen inklusive der Erregersteckbriefe) - Referat (30 min) (englisch)				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Grundlagen zur medizinischen Mikrobiologie werden vermittelt, Vorstellung verschiedener diagnostischer Verfahren im Klinikalltag vor allem biologische Sachverhalte zu den Infektionserregern wie z.B. Mechanismen der Antibiotikaresistenz, geschichtliche Entwicklung der Hygienevorschriften, aktuelle Vakzinierungsmethoden und besondere Pathogenitätsstrategien.

Praktikum:

Bearbeitung von klinischen Fallbeispielen, Bewertung typischer Krankheitsverläufe vorwiegend bakterieller Erkrankungen der Haut, der Atemwege, des Gastrointestinal- sowie des Urogenitaltraktes und des Zentralnervensystems; Erstellen von Erregersteckbriefen, sowie Ausfüllen eines Bewertungsbogens zur vorliegenden Infektionserkrankung einschließlich der Besonderheiten der jeweiligen Pathogenitätsmechanismen und Therapie, Durchführung aktueller diagnostischer Verfahren der klinischen Mikrobiologie einschließlich Erstellen von Antibiotika-resistenzprofilen, serologische- und PCRbasierte Nachweismethoden, sowie Methoden zu in vitro-Zellkultur-Infektionsanalysen

Seminar:

Vortragspräsentationen zu definierten Spezialthemen der Infektionsbiologie, Hygiene und klinischen Mikrobiologie.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- verschiedene pathogene Mikroorganismen mit spezifischen Infektionskrankheiten in Zusammenhang zu setzen.
- die Virulenzfaktoren und Pathogenitätsmechanismen klinisch relevanter Mikroorganismen mit der Symptomatik der Infektionskrankheiten zu korrelieren.
- die mikrobiellen, serologischen und molekularbiologischen Verfahren zur Erreger-Diagnostik anzuwenden und zu evaluieren.
- die Wirkungsweisen von Antibiotika darzustellen und die Resistenzproblematik einzuordnen.

- anhand von praktischen, experimentellen Durchführungen eigenständig eine Erregerdiagnostik zu erstellen und die Eignung von klinischen Schnelltests zu bewerten.
- in Seminarpräsentationen den aktuellen Stand der Forschung zu speziellen Fragen der Infektionsbiologie in der Wissenschaftssprache zu präsentieren.
- anhand einer Literatur-basierten Bearbeitung von klinischen Fallstudien eine gezielte Bewertung zu erstellen.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

- Herbert Hof, Rüdiger Dörries: Medizinische Mikrobiologie, MLP Duale Reihe, Thieme Verlag

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich				

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Medizinische Mikrobiologie (Bio-IB 29, Bio-MI 26)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Simone Bergmann Prof. Dr. Michael Steinert			Vorlesung	deutsch

Titel der Veranstaltung

Medizinische Mikrobiologie (Bio-IB 29, Bio-MI 26)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Simone Bergmann Prof. Dr. Michael Steinert			Seminar	deutsch

Titel der Veranstaltung					
Medizinische Mikrobiologie (Bio-IB 29, Bio-MI 26)					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Prof. Dr. Simone Bergmann Prof. Dr. Michael Steinert			Praktikum	deutsch	

Modulname	Molekulare Zellbiologie des mikrobiellen Wachstums			
Nummer	1301280 Bio-MI 29 / Bio-MI 27	Modulversion		
Kurzbezeichnung	MI 29 / MI 27	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Dieter Jahn	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	112	Selbststudium (h)	188	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Referat (ca. 30 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Erfolgreiche Teilnahme am Seminar - Praktikumsprotokoll (1)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Das Modul behandelt Themen der Hochdurchsatzkultivierung und Einzelzellanalyse von bakteriellen Zellkulturen und vermittelt die nötigen Kenntnisse zu bioinformatischen Auswertung von Wachstumsverhalten. Es wird als 2-wöchige ganztägige Lehrveranstaltung durchgeführt und besteht aus einer begleitenden Vorlesung, einem Literatur-Seminar und einem Praktikum, das verschiedene Beispiele von bakteriellem Wachstumsverhalten umfasst.

Vorlesuna:

In der Vorlesung werden Grundlagen zu Aspekten von mikrobiellem Wachstumsverhalten vermittelt. Die Themen der Vorlesung umfassen neben der Vorstellung verschiedener Kultivierungsverfahren und Wachstumsformen auch die mathematische Betrachtung von bakteriellem Wachstumsverhalten sowie Methoden zur Analyse von Wachstumsparametern.

Praktikum:

Das Praktikum besteht aus einem praktischen und theoretischen Teil. Im praktischen Teil wird anhand verschiedener Beispiele das variable Wachstumsverhalten von Mikroorganismen gemessen. Dazu werden moderne Methoden der parallelen Batch-Kultivierung im Mikrotiter-Maßstab verwendet. Des Weiteren werden Populations- und Einzelzellanalysen über Zeitraffermikroskopie und Durchflusszytometrie (FACS) durchgeführt. Die generierten Ergebnisse werden im theoretischen Teil des Praktikums ausgewertet. Hierbei werden Wachstumsmodelle verwendet und mit verschiedenen mathematischen Methoden das Wachstumsverhalten der Bakterien charakterisiert. Zusätzlich werden

Methoden der Statistik, Bildanalyse und Visualisierung vorgestellt werden.

Seminar:

Die Studierenden erarbeiten Vorträge zu aktuellen Themen der Wachstumsanalytik, die im Rahmen eines Seminars vorgestellt und bewertet werden. Es handelt sich hierbei um Übersichtsartikel und aktuelle Publikationen, die einen Überblick über die Thematik ermöglichen sowie der Vertiefung und Ergänzung dienen.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- die Vermehrung von Bakterien unter verschiedensten Wachstumsbedingungen zu erklären.
- das Wachstum von Mikroorganismen in Abhängigkeit von unterschiedlichen Umweltbedingungen experimentell zu erfassen (u. a. im Hochdurchsatzverfahren).
- Grundprinzipien der Kulturheterogenität zu beschreiben.
- größere Datensätze bioinformatisch auszuwerten.
- Datensätze durch mathematische Modellierung zu beschreiben (Wachstumsmodelle).
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

Praktikumsskript

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich			
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich			

ZUGEHORIGE		

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Modulname	Molekulare mikrobielle Evolution und Diversität			
Nummer	1399900 Bio-MI 22 / Bio-BD 22	Modulversion		
Kurzbezeichnung	MI 22 / BD 22	Sprache	englisch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Dr. Jörn Petersen	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Voraussetzungen und Modellvorstellung zur Entstehung der prokaryotischen und eukaryotischen Zelle und der Vielzelligkeit, Chemofossilien und Biomarker, Analyse fossiler DNA, Enzyme und Isotopenzusammensetzung, phylogenetische Ansätze, Methoden der vergleichenden Genomanalyse, Populationsgenetik und Artentstehung bei Prokaryoten, Entstehung von Symbiose und Pathogenität, Methoden der Quantifizierung von Diversität, funktionelle Diversität von bakteriellen Gemeinschaften und Relevanz für globale Stoffkreisläufe, das polyphasische Artkonzept der Prokaryoten, Archivierung und Organisation von Sequenzen und Diversitätsdaten in Datenbanken, Bioinformatik der modernen Diversitätsforschung, biotechnologisches Nutzungspotential der mikrobiellen Diversität, Rolle von biologischen Ressourcenzentren für die mikrobielle Systematik und Bioökonomie.

Praktikum:

Im praktischen Teil arbeiten die Studierenden anwendungsorientiert und in enger individueller Betreuung durch Wissenschaftler des Institutes an aktuell laufenden molekularmikrobiologischen Forschungsprojekten. Die erlernten Methoden umfassen molekular-biologische Techniken (PCR, Klonierung), bioinformatisches Arbeiten (Annotationsübungen, Methoden des Sequenzvergleichs und der Phylogenie), chemotaxonomische Methoden (Fettsäurespektren, Zellwandbestandteile), molekularbiologische Methoden zur Quantifizierung mikrobieller Diversität (FISH, fingerprinting, Hochdurchsatzsequenzierung), Epifluoreszenzmikroskopie, moderne Methoden der gezielten Kultivierung und Hochdurchsatz-Kultivierung neuartiger Bakterien, und Konservierung von Bakterienkulturen.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- die kulturunabhängige Erfassung und Analyse funktioneller Diversität (u.a. durch Feldme-thoden) von Mikroorganismen im ökologischen Kontext zu interpretieren.
- eigene bakterielle Isolate in Reinkultur zu bringen, deren 16S rRNA Gen Sequenz zu be-stimmen und taxonomisch einzuordnen.

- bioinformatisch die Abschätzung mikrobieller Diversität anhand eines Illumina Hochdurch-satzdatensatzes von 16S rRNA Gensequenzen durchzuführen.
- Bakterien physiologisch und chemotaxonomisch experimentell zu charakterisieren.
- phylogenetische Analysen durchzuführen und korrekt zu interpretieren.
- morphologische, physiologische und phylogenetische Diversität im Kontext zu Genomse-quenzen zu analysieren.
- eine Abschätzung von Mutationsraten anhand eines Fluktuationstestes durchzuführen und deren Ergebnisse populationsgenetisch zu bewerten.
- die Rolle akzessorischer Gene unter natürlichen Bedingungen (Plasmidcuring, Konkurrenz-experiment) zu analysieren.
- heterogene Daten aus eigenen Experimenten, Literaturrecherche und bioinformatischen Ana-lyse zu einem übergeordneten Ergebnis zu integrieren.
- die resultierende Datenintegration im Kontext wissenschaftlichen Kenntnisstandes zu disku-tieren und zu dokumentieren.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effi-zient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.
- die Rolle akzessorischer Gene unter natürlichen Bedingungen (Plasmidcuring, Konkurrenzexperiment) zu analysieren.
- heterogene Daten aus eigenen Experimenten, Literaturrecherche und bioinformatischen Analyse zu einem übergeordneten Ergebnis zu integrieren.
- die resultierende Datenintegration im Kontext wissenschaftlichen Kenntnisstandes zu diskutieren und zu dokumentieren.

Madigan et al., Brock Biology of Microorganisms, 2014

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich				
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich				
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Data-Driven Biology				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			

Titel der Veranstaltung						
Molekulare mikrobielle Evolution und Diversität (Bio-MI 22, Bio-BD 22, AM-C-1)						
Dozent/in Mitwirkende SWS Art LVA Sprache						
Dr. Jörn Petersen	Vorlesung					
Titel der Veranstaltung						
Molekulare mikrobielle Evolutio	n und Diversität (Bio-MI 22, Bio-	BD 22, AM-C	Ç-1)			
Dozent/in Mitwirkende SWS Art LVA Sprache						
Dr. Jörn Petersen Praktikum englisch						

Modulname	Struktur und Funktion mikrobieller Lebensgemeinschaften			
Nummer	1303930 Bio-BD 24	Modulversion		
Kurzbezeichnung	BD 24	Sprache	englisch deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r	Dr. Doreen Babin	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Klausur (ca. 120 min)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Referat (ca. 30 min)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Aquatische und terrestrische Lebensräume und ihre mikrobiellen Lebensgemeinschaften; biogeochemische Stoffwechselkreisläufe; das humane Mikrobiom; das pflanzliche Mikrobiom; Populationsgenomik und Biogeographie

Praktikum:

Das Praktikum findet als 4-wöchiger ganztägiger Block nach Absprache an einer der Braunschweiger Forschungseinrichtungen Julius-Kühn-Institut, Johann Heinrich von Thünen-Institut, Leibniz Institut DSMZ oder Helmholtz Zentrum für Infektionsforschung statt. Es beinhaltet je nach Forschungsstandort die Analyse umweltrelevanter Mikroorganismen, des humanen Mikrobioms oder die Analyse der Interaktionen von Mikroorganismen mit Pflanzen. Methoden, die zur Anwendung kommen, sind: Analyse mikrobieller Gemeinschaften anhand von 16S rRNA Genen (Fingerprinting, Sequenzierung, bioinformatische und phylogenetische Analyse), Genomanalysen, Kultivierung und Charakterisierung von Mikroorganismen, Immunantwort des Wirtes auf transkriptioneller Ebene (qPCR), Auswirkungen von Pathogenen und nützlichen Mikroorganismen auf den Wirt.

Qualifikationsziel

- den Einfluss von Mikroorganismen auf globale und biotechnologische Stoffwechselkreisläufe zu verstehen.
- das aktuelle Verständnis des menschlichen Mikrobioms wiederzugeben.
- Interaktionen zwischen Pflanzen und Mikroorganismen wiederzugeben.
- Kenntnisse zur Diversita#t und Funktionalität von mikrobiellen Gemeinschaften in verschiedenen Umwelthabitaten vorzuweisen.
- mit modernen molekularbiologischen Methoden die Struktur und Funktion von mikrobiellen Gemeinschaften zu analysieren.
- aktuelle Themen aus den Bereichen Klimawandel, Medizin und Landwirtschaft im gesellschaftlichen Kontext kritisch zu reflektieren.
- eine wissenschaftliche Fragestellung eigenständig zu bearbeiten (Formulierung der Fragestellung, Zeitmanagement, gute wissenschaftliche Praxis, Dokumentation und Präsentation von Ergebnissen).

- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Aktuelle Veröffentlichungen (englisch)

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Struktur und Funktion mikrobieller Lebensgemeinschaften (Bio-MI 25, Bio-BD 24)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Doreen Babin Dr. Damien Finn Prof. Dr. Adam Schikora			Vorlesung	deutsch

Titel der Veranstaltung

Struktur und Funktion mikrobieller Lebensgemeinschaften (Bio-MI 25, Bio-BD 24)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Doreen Babin Dr. Damien Finn Prof. Dr. Adam Schikora			Praktikum	deutsch

Modulname	Metabolism in a Box: A Virtual Grant Challenge			
Nummer	1398840 Bio-BB 23 / Bio-IB 30 / Bio-SB 26	Modulversion		
Kurzbezeichnung	BB 23 / IB 30 / SB 26	Sprache	englisch deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r	Thekla Cordes	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	160	Selbststudium (h)	140	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Portfolio			
Zu erbringende Studienleistung	- Experimentelle Arbeit			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	Die Modulnote entspricht der Note der Prüfungsleistung.		

In dem Modul werden Kenntnisse über den mitochondrialen Stoffwechsel und dessen Einfluss auf Krankheiten, wie beispielsweise Krebs, Inflammation, und neurodegenerative Erkrankungen, vermittelt. Das Ziel ist es, ein breit gefächertes Spektrum des Metabolismus zu erlernen, um komplexe Krankheitsmechanismen zu verstehen. Das Modul wird dafür als virtuelle Grant challenge angeboten, in dem ein Forschugsprojekt ausgearbeitet, dokumentiert, presentiert, und diskutiert wird.

Das Modul wird als Flipped Classroom angeboten, wobei sich die Studierende aktiv in den Ablaufplan integrieren. Dabei wird jeder Studierende ein Experte in einer metabolischen Technik, die für das Forschen an metabolischen Krankheiten relevant ist. Die Studierenden werden anschliessend in Kleingruppen mit unterschiedlichen Expertenwissen an einem metabolischen Krankheitsbild forschen. Die Studierende werden ein Forschungsprojektplan entwicken und das wissenschaftliche Arbeiten virtuell anwenden. Ziel ist es, menschliche Stoffwechselwege bei bestimmten Krankheiten zu identifizieren, die anschliessend mit Pharmazeutika behandelt werden könnten.

Die Studierende werden den aktuellen Stand von metabolischen Zusammenhängen anhand von wissenschaftlichen Texten und Vorlesungen erlernen, sowie wissenschaftliche Experimente selber planen, durchführen und darstellen.

Basierend auf den Ergebnissen, werden wir zudem wissenschaftliche Texte verfassen und kritisch diskutieren. Wir werden uns auch mit internationalen Studierenden austauschen. Im Prakikum werden die erlernten Aspekte des Metabolismus und wie Krankheiten durch metabolische Prozesse beeinflusst werden praktisch vertieft.

Das Modul wird durch die Stiftung Innovation in der Hochschullehre mit dem Projekt ProDiGi unterstützt (Promoting Digital education through Global Interconnection, https://www.tubraunschweig.de/lehreundmedienbildung/angebote/internationale-lehre/prodigi/gefoerderte-projekte). Unser Modul wird in einem virtuellen Wissenschaftsraum (online) und auf Englisch stattfinden, um digitale und internationale Erfahrungen zu fördern.

Qualifikationsziel

Nach Abschluss des Modules sind die Studierende in der Lage

- den Einfluss von metabolischen Prozessen auf die Zellfunktionen und Krankheitsprozesse zu erklären und nachzuvollziehen.

- metabolische Analysemethoden zu recherchieren und auf unterschiedliche Krankheitsbilder anzuwenden.
- einen Projektplan zu entwickeln, um metabolische Krankheiten mit unterschiedlichen Techniken zu charakterisieren.
- wissenschaftliche Ergebnisse zu präsentieren, diskutieren, und dokumentieren
- kritisches Feedback zu wissenschaftlichen Arbeiten zu geben.
- eigenständig ein Forschungsprojekt in einer "realen" wissenschaftlichen Umgebung durchzuführen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

wird in der Vorlesung bekannt gegeben

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich			
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich			

••			
ZUGEHORIGE	LEUDVED	ANICTALT	
といいてロいていっこ	LEDKVEK	ANSTALI	UNCEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Metabolism in a Box: A Virtual Grant Challenge (Bio-BB 23, Bio-IB 30, Bio-SB 26)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Thekla Cordes			Vorlesung	englisch deutsch

Titel der Veranstaltung

Metabolism in a Box: A Virtual Grant Challenge (Bio-BB 23, Bio-IB 30, Bio-SB 26)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Thekla Cordes			Praktikum	englisch deutsch

Titel der Veranstaltung				
Metabolism in a Box: A Virtual Grant Challenge (Bio-BB 23, Bio-IB 30, Bio-SB 26)				
Dozent/in Mitwirkende SWS Art LVA Sprache				
Thekla Cordes			Übung	englisch deutsch

Modulname	Flexi-Modul		
Nummer	1301360	Modulversion	
Kurzbezeichnung	BL-STD2-36	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswis- senschaften
Moduldauer		Einrichtung	
SWS / ECTS	10 / ,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.	
Inhalte			
Qualifikationsziel			
Literatur			
		•	

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			

Technische Universität Braunschweig | Modulhandbuch: Biologie (Master)

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				

Modulname	Alternativ-Modul		
Nummer	1301130	Modulversion	
Kurzbezeichnung	BL-STD2-13	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich			

Technische Universität Braunschweig | Modulhandbuch: Biologie (Master)

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			

Modulname	Alternativ-Modul2		
Nummer	1301380	Modulversion	
Kurzbezeichnung	BL-STD2-38	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			
		,	

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt			

Technische Universität Braunschweig | Modulhandbuch: Biologie (Master)

Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			

Mikrobiologie und Infektionsbiologie - Schwerpunkt ECTS

Modulname	Molekulare Immunologie		
Nummer	1399850 Bio-IB 24 / Bio-MI 31	Modulversion	
Kurzbezeichnung	IB 24 / MI 31	Sprache	englisch deutsch
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswis- senschaften
Moduldauer	1	Einrichtung	
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Lothar Jänsch
Arbeitsaufwand (h)	300		
Präsenzstudium (h)	126 Selbststudium (h) 174		
Zwingende Voraussetzungen	keine		
Empfohlene	BB24, BB27, IB21, ZB23, ZB27 (PO 2)		
Voraussetzungen	SB 24 oder MI 23 oder MI 24 (PO 3)		
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (1, 30 min.)		
Zu erbringende Studienleistung	- Experimentelle Arbeit - Erfolgreiche Teilnahme am Seminar		
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.		

Das Modul wird durch mehrere Forschungsgruppen am Helmholtz Zentrum für Infektionsforschung (Science Campus Braunschweig- Süd) unterstützt, welche Einblicke in aktuelle Technologien und Themen geben. Die praktischen Arbeiten erfolgen direkt in den Forschungslaboren der beteiligten Gruppen.

Vorlesung/Seminar:

Die Studierenden erhalten einen Überblick über die zellulären Bestandteile des angeborenen und adaptiven Immunsystems. Lernschwerpunkt bildet die Proteinanalytik in der molekularen Immunologie durch die Typ, Funktion und Aktivität von Immunzellen bestimmt werden.

Praktikum

Erlernt wird: ein sicherer Umgang mit primären Probenmaterial (Mensch, Maus); Nachweis und Isolation von unterschiedlichen Immunzellen (Durchflusszytometrie und magnetische Sortierung); Aktivierung und Kontrolle von TZellen in An- und Abwesenheit von Zytokinen; Proteomische und mikroskopische Analysen ruhender und aktivierter Immunzellen (Neusynthese und Lokalisation von Proteinen); Analyse von immunologischen Signalwegen mittels quantitativer Massenspektrometrie; Kontrolle von Infektionsverläufen z.B. durch in vivo Imaging; Analyse von intrazellulären Funktionen sowie immunologischen Markern an der Zelloberfläche; Auswertung von Durchflusszytometrie-Daten; Visualisierung der Proliferation und Immunantworten (Mikroskopie); Verbesserung von Impfstoffen durch die Zugabe von Adjuvantien; Analyse von humoralen (IgG und IgA Titer, Hämagglutinationshemmungstest) und zellulären Immunantworten (Elispot) nach einer Influenza-Impfung.

Qualifikationsziel

- aktuelle Methoden der molekularen Immunologie mit Schwerpunkt Proteinanalytik anzuwenden (Durchflusszytometrie, Mikroskopie, Massenspektrometrie).
- Immunzellen zu isolieren und deren Aktivität zu bestimmen.

- Die spezifischen Funktionen des zellulären Immunsystems bei Infektionen zu verstehen.
- Immunologische Fragestellungen der klinischen Diagnostik, Therapie und Prävention zu diskutieren.
- im Arbeitsumfeld außeruniversitärer Großforschungseinrichtungen zu arbeiten.
- einen eigenen Vorschlag für ein Forschungsprojekt zu erstellen und zu verteidigen.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

- aktuelle Übersichtsartikel und Orginalarbeiten

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Molekulare Immunologie (Bio-IB 24, Bio-MI 31)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Luka Cicin-Sain Stefan Flöß Prof. Dr. Jochen Hühn Lothar Jänsch Dr. Peggy Riese			Vorlesung	deutsch

Titel der Veranstaltung

Molekulare Immunologie (Bio-IB 24, Bio-MI 31)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Luka Cicin-Sain Stefan Flöß Prof. Dr. Jochen Hühn Lothar Jänsch Dr. Peggy Riese			Seminar	deutsch

Titel der Veranstaltung				
Molekulare Immunologie (Bio-IB 24, Bio-MI 31)				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Luka Cicin-Sain Stefan Flöß Prof. Dr. Jochen Hühn Lothar Jänsch Dr. Peggy Riese			Praktikum	deutsch

Modulname	Molekulare Infektionsepidemiologie		
Nummer	1399860 Bio-IB 25 / Bio-MI 32	Modulversion	
Kurzbezeichnung	IB 25 / MI 32	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer	1	Einrichtung	
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Ulrich Nübel
Arbeitsaufwand (h)	300		
Präsenzstudium (h)	112	Selbststudium (h)	188
Zwingende Voraussetzungen	keine		
Empfohlene Voraussetzungen	keine		
Zu erbringende Prüfungsleistung/ Prüfungsform	Referat (45 min.)		
Zu erbringende Studienleistung	- Erfolgreiche Teilnahme am Seminar - Experimentelle Arbeit - Praktikumsprotokoll (1)		
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.		

Vorlesung:

Die Vorlesung gibt eine Übersicht über aktuell in Deutschland bedeutsame, bakterielle Erreger, informiert über assoziierte Erkrankungen und ihr Auftreten in Deutschland, und stellt wichtige klassische und molekularbiologische Methoden der Erreger-Charakterisierung vor.

Praktikum:

Es werden Fragestellungen zur klassischen und molekularen Feintypisierung experimentell bearbeitet.

Seminar

Im Seminar wird Literatur zu aktuellen epidemiologischen Untersuchungen von den Studierenden selbstständig analysiert und die verwendeten Methoden und die Ergebnisse im Rahmen eines Referats gemeinsam diskutiert.

Qualifikationsziel

- die molekulare Epidemiologie wichtiger bakterieller Erreger des Menschen und damit assoziierter Erkrankungen zu beschreiben.
- Methoden der Erreger-Charakterisierung zu erläutern und anzuwenden.
- epidemiologische Fragestellungen experimentell anzugehen.
- Ergebnisse infektionsepidemiologischer Untersuchungen hinsichtlich ihrer Aussagefähigkeit zu bewerten und zu interpretieren.
- wissenschaftliche Fragestellungen experimentell zu bearbeiten (Planung, Durchführung, Dokumentation, Interpretation).
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.

- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

- aktuelle Veröffentlichungen (englisch); die Literatur für das Referat wird während der Vorbesprechung zur Veranstaltung

ausgegeben und im Selbststudium erarbeitet und anschließend im Seminar behandelt.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Molekulare Infektionsepidemiologie (Bio-IB 25, Bio-MI 32)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Antje Flieger Prof. Dr. Ulrich Nübel			Vorlesung	deutsch

Titel der Veranstaltung

Molekulare Infektionsepidemiologie (Bio-IB 25, Bio-MI 32)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Antje Flieger Prof. Dr. Ulrich Nübel			Seminar	deutsch

Titel der Veranstaltung

Molekulare Infektionsepidemiologie (Bio-IB 25, Bio-MI 32)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Antje Flieger Prof. Dr. Ulrich Nübel			Praktikum	deutsch

Modulname	Funktionelle Genomforschung in der Infektionsbiologie		
Nummer	1398580 Bio-IB 28 / Bio-MI 33	Modulversion	
Kurzbezeichnung	IB 28 / MI 33	Sprache	englisch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswis- senschaften
Moduldauer	1	Einrichtung	
SWS / ECTS	0 / 10,0	Modulverantwortli- che/r	Prof. Dr. Susanne Engelmann
Arbeitsaufwand (h)	300		
Präsenzstudium (h)	140	Selbststudium (h)	160
Zwingende Voraussetzungen	keine		
Empfohlene Voraussetzungen	keine		
Zu erbringende Prüfungsleistung/ Prüfungsform	Referat (1)		
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Erfolgreiche Teilnahme am Seminar - Referat (1)		
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.		

Vorlesung:

Die Vorlesung bietet einen Überblick über das Potential der Funktionellen Genomforschung in der Infektionsbiologie und zeigt gleichzeitig auch deren Grenzen auf.

Weitere Themen sind:

- detaillierter Überblick über die Methoden der Funktionellen Genomanalyse (Genomsequenzierung, Mutagenese, Mutationsanalyse, Transkriptomik, Proteomik, Metabolomik).
- Einführung in systembiologische Modelle der Infektionsbiologie und mikrobiellen Pathophysiologie (z.B. stochastische Modelle der Genexpression, thermodynamische Modelle des Stoffwechsels).
- Einführung in komplexe Omics-Datensätze und deren Analyse (Standardverfahren der Genomrekonstruktion, -annotation, vergleichenden Genomanalyse und der differentiellen Genexpressionsanalyse).
- Darstellung von Beispielen, wie mit Hilfe der funktionellen Genomforschung ein komplexeres Verständnis der Wirt-Pathogen-Interaktionen möglich ist.
- Struktur und Physiologie von Mikrobiomen.
- Biomarker als diagnostische Werkzeug.

Praktikum:

- Vermittlung von Kenntnissen zur Planung von Experimenten in den Themenfeldern Genomik, Transkriptomik und Proteomik
- Darstellung von Auswertestrategien unter Einbeziehung lokaler und internetbasierter Datenbanken und Auswertewerkzeuge

Seminar:

- Präsentation eines Fachvortrages zu einem aktuellen Thema der Funktionellen Genomforschung
- Erfahrungen in der fortgeschrittenen Literaturrecherche
- Vermittlung von Kenntnissen in der eigenständigen Erarbeitung eines umgrenzten, wissenschaftlich relevanten Themas aus der Funktionellen Genomforschung anhand von Originalarbeiten in englischer Sprache einen Überblick über den aktuellen Forschungsstand zu verschaffen und das Gebiet in einem klar geglie-

derten, durch adäquate Visualisierungen anschaulichen Vortrag von ca. 30 Minuten Dauer zu präsentieren und kritisch zu diskutieren.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- die Konzepte der Funktionellen Genomforschung vertiefend zu verstehen. Dabei sollen insbesondere die Möglichkeiten und Grenzen molekulargenetischer Methoden und OMICs-Technologien sowohl in der Grundlagen- und angewandten Forschung als auch in der medizinischen Diagnostik erkannt werden.
- ein breites Spektrum von Arbeitsmethoden der Infektionsgenetik und funktionellen Genomforschung zum Studium von Wirt-Pathogen-Interaktionen anzuwenden.
- Experimente zur umfassenden Beantwortung einer wissenschaftlichen Fragestellung zu konzipieren.
- sich kritische mit den Vor- und Nachteilen einer Methode und den erhaltenen Ergebnissen auseinanderzusetzen
- Ergebnisse in einen wissenschaftlichen Kontext einzuordnen.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

wird in der Vorlesung bekanntgegeben.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Data-Driven Biology			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt			

ZUGEHÖRIGE	LEHRVERANS [*]	TALTUNGEN
------------	-------------------------	-----------

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Funktionelle Genomforschung in der Infektionsbiologie (Bio-IB 28, Bio-MI 33, AM-C-8)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Susanne Engelmann			Vorlesung	englisch

Titel der Veranstaltung				
Funktionelle Genomforschung in der Infektionsbiologie (Bio-IB 28, Bio-MI 33, AM-C-8)				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Susanne Engelmann			Praktikum	

Modulname	Sophisticated Imaging		
Nummer	1301260 Bio-IB 27 / Bio-MI 34	Modulversion	
Kurzbezeichnung	IB 27 / MI 34	Sprache	englisch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer	1	Einrichtung	
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r	Prof. Dr. Christian Sieben
Arbeitsaufwand (h)	300		
Präsenzstudium (h)	140	Selbststudium (h)	160
Zwingende	entweder IB21 oder IB22 oder IB2	3 oder IB29 (PO 2)	
Voraussetzungen	entweder MI 23 oder MI 25 oder M	II 26 (PO 3)	
Empfohlene Voraussetzungen	keine		
Zu erbringende Prüfungsleistung/ Prüfungsform	- Seminarvortrag (1, ca. 20 min)		
Zu erbringende Studienleistung	- Experimentelle Arbeit - Erfolgreiche Teilnahme am Seminar		
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.		

Vorlesung:

Die Vorlesungsreihe beinhaltet einen Überblick der wichtigsten Bildgebungs- und Analyseverfahren in den Lebenswissenschaften. Dabei werden die physikalischen Grundlagen dieser Techniken sowie vielerlei Anwendungsbeispiele aus der Infektionsbiologie vermittelt. Ein Schwerpunkt liegt in der Vorstellung von licht- und elektronenoptischen Verfahren und den entsprechenden Probenpräparationen. Im Einzelnen werden Fluoreszenzmikroskopie, Konfokalmikroskopie, superaufgelöste Mikroskopie sowie hochauflösende Transmissions-(TEM) wie Feldemissionsraster-Elektronenmikroskopie (FESEM) behandelt. In der LM wird ein starker Fokus auf das Live-Imaging zur Verfolgung von dynamischen Prozessen, sowie den unterschiedlichen superauflösenden Mikroskopieverfahren und deren Einsatzgebieten gelegt. FESEM und TEM werden als diejenigen Methoden behandelt, die es erlauben in den submikroskopischen Bereich vorzudringen. Hier werden spezielle Anwendungen wie z.B. der Immuno-Gold-Nachweis von Proteinen, aber auch neuere Entwicklungen aus dem Bereich der Cryo-EM vorgestellt. Neben den Visualisierungsverfahren wird auch die Erstellung, Beurteilung und Weiterverarbeitung von Bildern und Filmen in der Vorlesung behandelt, um aufzuzeigen, welche Verfahren geeignet oder ungeeignet sind, die mit Fluoreszenz- und konfokaler Mikroskopie aufgenommenen Abbildungen weiter zu bearbeiten und die Qualität der Bilder zu optimieren ohne gegen die gängige Gute Wissenschaftliche Praxis in Bezug auf Bildbearbeitung zu verstoßen. Neben diesen Techniken wird auch die Laserdissektionsmikroskopie vorgestellt, eine Methode, mit der spezifische Zellkomponenten oder einzelne Zellen aus gemischten Populationen präzise isoliert werden können. Diese Technik erlaubt es, Zielstrukturen unter dem Mikroskop exakt zu definieren und dann mittels eines Laserstrahls zu extrahieren, was besonders in der zellulären und molekularen Forschung angewandt wird.

Praktikum:

Es werden einfach durchführbare Experimente gewählt, um den Fokus auf die Bedienung und die Funktionsweisen der vorhandenen Geräte zu legen. Die Studierenden werden dabei selbstständig Bilder auf verschiedenem Vergrößerungsniveaus aufnehmen und mit Hilfe von unterschiedlichen, im Praktikum erlernten Bildbearbeitungstools bearbeiten. Der Fokus liegt auf der Darstellung von Pathogen (TEM) bzw. Wirt-Pathogen Interaktionen (LM/FESEM). In der TEM wird die Probenpräration und die Darstellung von Bakterien, Viren und Proteinen im negativ-staining Verfahren erlernt. Ein selbst durchgeführtes Infektionsexperiment soll darüber hinaus die Korrelation von LM und FESEM-Technologien näherbringen. Zudem werden Immun-

Label Proben betrachtet. In der LM werden Säugerzellen zunächst strukturell untersucht und danach infiziert, um die Infektion und betroffene Organellen zu visualisieren. Es werden sowohl Methoden der hochals auch der super-aufgelösten Mikroskopie verwendet. Zusätzlich zur super-aufgelösten und hochauflösenden Mikroskopie haben die Studierenden die Gelegenheit, die Prinzipien und Techniken der Laserdissektion in praktischen Anwendungen zu erfahren und zu lernen, wie man mit dieser Methode spezifische Zellen oder Zellregionen für nachfolgende molekulare Analysen isoliert.

Folgende Techniken werden praktisch erlernt:

- Fluoreszenz- und Konfokalmikroskopie (Live Cell Imaging)
- Lasermikrodissektion
- Rasterelektronenmikrokopie
- Transmissionselektronenmikroskopie
- Superauflösende Mikroskopie

Seminar:

Im begleitenden Seminar werden neueste mikroskopische Techniken, die nicht gerätetechnisch im Modul verfügbar sind, durch Seminarvorträge vorgestellt werden.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- grundlegende und fortgeschrittene Kenntnisse im Bereich der modernen Lichtmikroskopie (LM), Fluoreszenzmikroskopie, Photomanipulation und der Elektronenmikroskopie (EM) für ihre wissenschaftlichen Fragestellungen anzuwenden.
- zu verstehen, welche relevanten Fragestellungen sie in den Lebenswissenschaften mit welchem Bildgebungs- bzw. Analyseverfahren am besten bearbeiten können.
- Vor- und Nachteile einer Methode erkennen und einschätzen zu können.
- zu erkennen, welche neuen Erkenntnisse man gewinnen kann, wenn man Bildgebungsverfahren mit unterschiedlichen Auflösungs- und Vergrößerungsbereichen miteinander (Technologie-übergreifend) verbindet (korrelative Mikroskopie).
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

aktuelle mikroskopisch orientierte Veröffentlichungen in englischer Sprache zu den Seminarvorträgen

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Spectroscopy and Imaging			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt			
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Sophisticated Imaging (Bio-IB 27, Bio-MI 34, AM-B-6)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Mathias Müsken Prof. Dr. Christian Sieben			Vorlesung	deutsch

Titel der Veranstaltung

Sophisticated Imaging (Bio-IB 27, Bio-MI 34, AM-B-6)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Mathias Müsken Prof. Dr. Christian Sieben			Seminar	deutsch

Titel der Veranstaltung

Sophisticated Imaging (Bio-IB 27, Bio-MI 34, AM-B-6)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Mathias Müsken Prof. Dr. Christian Sieben			Praktikum	deutsch

Modulname	Klimawandel und wasserbedingte	Infektionen		
Nummer	1303603 Bio-MI 35	Modulversion		
Kurzbezeichnung	MI 35	Sprache	englisch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r	Prof. Dr. Michael Steinert	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	80	Selbststudium (h)	220	
Zwingende Voraussetzungen	keine	`		
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (1, ca. 30 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	Die Modulnote entspricht der Note der Prüfungsleistung.		

Vorlesung und Tutorium:

Die Vorlesung vermittelt grundlegende Kenntnisse zu Trinkwassersicherheit, wasserbedingten Infektionen (Viren, Bakterien, Pilze, Helminthen), Infektionsrouten (oral, fäkal, Hautkontakt, Aerosole, Zoonosen, Technische Vektoren), Erreger-Diagnose, Therapie, Infektionskontrolle, Erregerökologie, Klimawandel als Treiber von Infektionskrankheiten, "One-Health"-Strategien). Das Tutorium vermittelt grundlegende bioinformatische Kenntnisse für die Datenbanken und Software-Tools BacDrive, BRENDA, SILVA, Apache Open Climate Workbench).

Praktikum:

Im Praktikum werden mikrobiologische Labormethoden und Bioinformatik-Anwendungen eingeübt. Hierzu gehören selektive Erregerkultivierung, DNA-Isolation, PCR-Amplifikation, Sequenzierung. Der Schwerpunkt liegt jedoch auf der computergestützten Bearbeitung von Sequenzen und datenbankgestützten Sequenzvergleichen mittels BLAST-Analysen. Die Daten werden im Anschluss bioinformatisch analysiert, um durchgeführte Erreger-Genotypisierungen mit ökologischen Daten zu korrelieren (West Bank versus Deutschland) und mit Klima-Modellen zu verknüpfen.

Seminar:

Die Studierenden sollen in gemischten Kleingruppen einen Projektplan für ein biomedizinischen Forschungsprojekt ausarbeiten, dokumentieren, präsentieren und diskutieren. Dabei wird jeder Studierende zum Experten in einem Spezialgebiet, das für das Forschen an Auswirkungen des Klimawandels auf wasserbedingte Infektionen und die Trinkwassersicherheit relevant ist. Die Studierende werden nach der Revision ihrer Forschungsprojektpläne (Supervisor, Gruppendiskussionen) die Arbeitshypothesen weiterentwickeln, Experimente selber planen, wissenschaftliche Literatur auswerten und einen Forschungsbericht verfassen. Nach Erreichen der Meilensteine (1000-Wörter-Projektvorschlag, Datensammlung, 5000-Wörter-Research-Report) werden die Studierenden zum Abschluss des Forschungsmoduls ihre Ergebnisse in Form eines Gruppenvortrages (Zoom-Meeting) vorstellen.

Qualifikationsziel

- Auswirkungen des Klimawandels auf wasserbedingte Infektionen und die Trinkwassersicherheit zu erklären.

moderne Methoden und Datenbanken der Molekularen Epidemiologie und Bioinformatik (BacDrive, BRENDA, SILVA, WorldClim) praktisch anzuwenden.

- Infektionserreger aus Wasserproben zu isolieren, mikrobiologisch und bioinformatisch zu charakterisieren und Handlungsempfehlungen zu entwickeln.
- ein biomedizinisches Forschungsprojekt und Arbeitshypothesen auszuarbeiten, zu dokumentieren und präsentieren.
- Experimente zu planen, wissenschaftliche Literatur auszuwerten und einen Forschungsbericht zu verfassen und Forschungsergebnisse zu präsentieren.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

Artikel: aktuelle Publikationen (englisch) zur Thematik

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
	Mikrobiologie und Infektions- biologie - Schwerpunkt				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Klimawandel und wasserbedingte Infektionen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Michael Steinert			Vorlesung/Übung	englisch deutsch

Titel der Veranstaltung

Klimawandel und wasserbedingte Infektionen

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Michael Steinert			Praktikum	englisch deutsch

Titel der Veranstaltung					
Klimawandel und wasserbedingte Infektionen					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Prof. Dr. Michael Steinert			Seminar	englisch	

Modulname	Pflanzen- und Bodenassoziierte Mikroorganismen: Diversita#t, Anpassung, Pathogenita#t		
Nummer	1303300 Bio-BD 33	Modulversion	
Kurzbezeichnung	BD 33	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer	1	Einrichtung	
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Prof. Dr. Adam Schikora
Arbeitsaufwand (h)	300		
Präsenzstudium (h)	126	Selbststudium (h)	174
Zwingende Voraussetzungen	keine		
Empfohlene Voraussetzungen	keine		
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referate (2, jeweils ca. 30 min.)		
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Erfolgreiche Teilnahme am Seminar - Hausarbeit (1)		
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.		

Vorlesung:

Interaktionen zwischen Mikroorganismen und Pflanzen in der Rhizosphere und der Phyllosphere. Mikrobielle und Molekulare Nachweistechniken zu Untersuchungen der strukturellen und funktionellen Diversität von Pflanzen und Boden-assoziierten Mikroorganismen. Diversifizierung und Anpassungsfassungsfähigkeit von Bakterien durch Plasmidvermittelten horizontalen Gentransfer (am Beispiel von Antibiotikaresistenzplasmiden).

Seminar:

Vorstellung von Publikationen zum jeweiligen Forschungsthema, das im Rahmen des Blockpraktikums bearbeitet wird.

Praktikum:

Isolation von bakteriellen Stämmen aus Pflanzen oder Böden und deren Charakterisierung. Isolation von genomischer und Plasmid-DNA aus Isolaten bzw. direkt aus Pflanzen- oder Bodenproben für molekulare Analysen.

Techniken: DNA bzw. RNA Extraktion, PCR, qPCR, BOX-PCR, Restriktionsverdau von Plasmiden, Southern Blot Hybridisierungen, Enzymatische Assays.

Qualifikationsziel

- Kenntnisse zur Diversita#t von Pflanzen- und Bodenassoziierten Mikroorganismen vorzuweisen.
- molekulare und genetische Elemente, die zur Diversität, Anpassung und Pathogenita#t beitragen zu untersuchen.
- Methoden zur Erfassung der Biodiversita#t von mikrobiellen Lebensgemeinschaften in Pflanzen und im Boden anzuwenden.
- Methoden zur Erfassung der Interaktionen zwischen Pflanzen und Mikroorganismen anzuwenden.

- an einem jeweils aktuellen Forschungsprojekt mitzuarbeiten, Experimente zu planen, durchzuführen und auszuwerten.
- die Vorteile und Limitierungen der verschiedenen Methoden zu diskutieren.
- im Team die Ergebnisse des Blockpraktikums auszuwerten und im Rahmen eines Abschlusskolloquiums zu pra#sentieren.
- recherchierte wissenschaftliche Inhalte zu pra#sentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

aktuelle englischsprachige Publikationen

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt				

THATHADIAE	LEHRVERANSTA	LTINIACNI
/!!(abb()R!(ab	I FHKVFKVNZIV	

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Bodenmikroorganismen: Diversität, Anpassungsfähigkeit, Pathogenität (Bio-MI 27, Bio-BD 33)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Kornelia Smalla			Vorlesung	deutsch

Titel der Veranstaltung

Bodenmikroorganismen: Diversität, Anpassungsfähigkeit, Pathogenität (Bio-MI 27, Bio-BD 33)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Kornelia Smalla			Seminar	deutsch

Titel der Veranstaltung

Bodenmikroorganismen: Diversität, Anpassungsfähigkeit, Pathogenität (Bio-MI 27, Bio-BD 33)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Kornelia Smalla			Praktikum	deutsch

Modulname	Immunmetabolismus			
Nummer	1398590 Bio-BB 31 / Bio-SB 31	Modulversion		
Kurzbezeichnung	BB 31 / SB 31	Sprache	englisch deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Karsten Hiller	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	112	Selbststudium (h)	188	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (1)			
Zu erbringende Studienleistung	- erfolgreiche Teilnahme am Seminar - Experimentelle Arbeit			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Seminar:

Im Seminar beschäftigen sich die Studierenden zunächst mit der Biochemie des Zentralstoffwechsels von Makrophagen und wie dieser mit Hilfe von Isotopen-Markierungs-Experimenten und Modellierung studiert werden kann. Hier spielen insbesondere Makrophagen spezifische Mechanismen wie Itakonsäure, ROS, NO und Glutathion eine Rolle. Dabei wird auch ein Überblick über verfügbare experimentelle Modelle erarbeitet (primäre Zellen aus Maus und Mensch, Zellkultur Modelle). Dann werden unterschiedliche experimentelle Methoden entwickelt, die eine Co-Kultivierung von pathogenen Bakterien mit Makrophagen ermöglichen.

Die Studierenden entwickeln ein eigenes Konzept für das folgende Praktikum um verschiedene Fragestellungen im Bereich Immunmetabolismus zu beantworten. Das Konzept wird mit Hilfe von verschiedenen Lehr- und Lernmethoden erstellt und präsentiert.

Praktikum:

Im Praktikum setzen die Studierenden dann ihr theoretisch ermitteltes Wissen selbstständig um. Dabei werden pathogene Bakterien mit Makrophagen zusammen kultiviert und mithilfe von metabolischen Messungen der Einfluss der Infektion auf die Makrophagen bestimmt. Zusätzlich wird die antibakterielle Effizienz der Makrophagen ermittelt und dabei untersucht, in wie weit eine metabolische Modulation des Stoffwechsels der Makrophagen die antimikrobielle Effizienz beeinflusst. Folgende Techniken werden dabei praktisch erlernt: Kultivierung von Makrophagen und Co-Kultivierung mit Bakterien, Metaboliten Extraktion, Respirationsmessungen mit Seahorse Analyzer, GC-MS Messungen und die dazugehörige Datenanalyse, metabolische Flussanalyse mit stabilen Isotopen, Assays zur Bestimmung der antimikrobiellen Aktivität von Makrophagen.

Qualifikationsziel

- die Bedeutung des Stoffwechsels von Immunzellen während einer Infektion/Inflammation zu erläutern.
- moderne analytische Techniken wie Isotopen Markierung, Massenspektrometrie und metabolische Flussanalyse anzuwenden.
- GC-MS Daten auszuwerten und zu interpretieren.
- den Energiestoffwechsel mit Hilfe von Respirationsmessungen zu interpretieren.

- Konzepte zu entwickeln, um systembiologische Fragestellungen mit Hilfe von verschiedenen Methoden zu beantworten.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Data-Driven Biology			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Data Science PO 1	Data Science in Anwendungen - Biologie, Chemie und Phar- mazie			
Master Data Science PO 2	Data Science in Anwendungen - Biologie, Chemie und Phar- mazie			
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt			
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt			

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Immunmetabolismus (Bio-BB 31, Bio-SB 31, AM-C-2)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Karsten Hiller Dr. Kerstin Schmidt-Hohagen			Seminar	englisch deutsch

Titel der Veranstaltung					
Immunmetabolismus (Bio-BB 31, Bio-SB 31, AM-C-2)					
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Prof. Dr. Karsten Hiller Dr. Kerstin Schmidt-Hohagen			Praktische Übung	englisch deutsch	

Modulname	Angewandte Bioinformatik: Biomarker zur Diagnose				
Nummer	1303600 Bio-SB 32	Modulversion			
Kurzbezeichnung	SB 32	Sprache	englisch		
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswis- senschaften		
Moduldauer	1	Einrichtung			
SWS / ECTS	/ 10,0	Modulverantwortli- che/r	Prof. Dr. Karsten Hiller		
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	188	Selbststudium (h)	112		
Zwingende Voraussetzungen	keine				
Empfohlene Voraussetzungen	keine	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)				
Zu erbringende Studienleistung	- Erfolgreiche Teilnahme am Seminar - Experimentelle Arbeit				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.				

Seminar und Übung:

1-wöchiger Kurs "Einführung in R"

Integriertes Seminar, Workshop und Praktikum (semesterbegleitend, 4h pro Woche):

Seminar, Workshop: Einführung in die MS basierte Metabolomuntersuchung, Verständnis der geeigneten Auswahl von Maßeinheiten, um vergleichbare Messungen zu ermöglichen, erlernen der Bedeutung der Rückführbarkeit von Messergebnissen sowie die Schätzung der Messunsicherheit und wie sie bei der Dateninterpretation verwendet werden sollte. Zudem Einführung in Algorithmen zur statistischen Biomarkerbestimmung, Korrektur für multiples Testen, Theorie zur logistischen Regression und zu neuronalen Netzen, Normalisierung von Daten. Erlernen der Bedeutung der Qualitätskontrolle für die Sicherung der Messergebnisse. Design einer cross-over Interventionsstudie.

Praktikum:

Isolierung von Metaboliten aus Speichel und/oder Bluttropfen und massenspektrometrische Analyse. Die Messmethode wird dann für ausgesuchte Metabolite optimiert und durch Isotopenverdünnung quantifizierbar gemacht. Es werden Methoden zur Optimierung der Probenentnahme, Prozessierung und Auswertung dabei erlernt. Am Ende wird eine Biomarkersignatur bestimmt, die z.B. basierend auf einer Speichelprobe ermitteln kann, ob es sich bei dem Donor um Fall oder Kontrolle handelt.

Qualifikationsziel

- einfache Cross-over Interventionsstudien durchzuführen und Proben zu entnehmen.
- Metabolomanalysen in humanen Speichel- und Blutproben durchzuführen und massenspektrometrisch zu messen.
- die gemessenen Rohdaten bioinformatisch zu analysieren und daraus quantitative und semiquantitative Metabolitmengen abzuleiten.
- die Daten mit Algorithmen des maschinellen Lernens (logistische Regression, neuronale Netze) auf Biomarkersignaturen zu untersuchen.
- ausgewählte Biomarker Metabolite mit hoher Präzision und Reproduzierbarkeit zu messen.
- grundlegende Konzepte der Metrologie und Standardisierung anzuwenden.
- statistische Analysen in R durchzuführen.

- die Bedeutung der Standardisierung für die Durchführung von Experimenten zu erkennen.
- die Bedeutung des Konzepts von klinischen Cross-over Interventionsstudien für die Bewertung von Medikamenten zu verstehen.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Wird in der Veranstaltung bekannt gegeben

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt			
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt			
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Data-Driven Biology			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Angewandte Bioinformatik: Biomarker zur Diagnose (Bio-BB 32, Bio-SB 32, AM-C-3)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Karsten Hiller Prof. Dr. Thomas Naake Prof. Dr. Gavin O' Connor			Seminar	englisch

Titel der Veranstaltung

Angewandte Bioinformatik: Biomarker zur Diagnose (Bio-BB 32, Bio-SB 32, AM-C-3)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Karsten Hiller Prof. Dr. Thomas Naake Prof. Dr. Gavin O' Connor			Praktikum	englisch

Modulname	Mikrobielle Proteomik			
Nummer	1301290 Bio-MI 26 / Bio-SB 35	Modulversion		
Kurzbezeichnung	MI 26 / SB 35	Sprache	englisch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	6 / 10,0	Modulverantwortli- che/r	Prof. Dr. Susanne Engelmann	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	148	Selbststudium (h)	152	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	reine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Referat (ca. 40 min)			
Zu erbringende Studienleistung	Experimentelle ArbeitErfolgreiche Teilnahme am SemiPraktikumsprotokoll (1)Referat (ca. 30 min)	nar		
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.		

Vorlesung:

Die Vorlesung "Mikrobielle Proteomik" bietet einen Überblick über die Methoden der Proteomik und deren Anwendung in der Mikrobiologie. Aufbauend auf einer Einführung in die Methoden zur Identifizierung und Quantifizierung von Proteinen in hochkomplexen Proteingemischen werden moderne experimentelle Ansätze zur qualitativen und quantitativen Charakterisierung der Gesamtheit der Proteine (Proteom) eines Mikroorganismus oder einer Lebensgemeinschaft von Mikroorganismen (Metaproteom) am Beispiel aktueller Veröffentlichungen und eigener Forschungsarbeiten vorgestellt. Zusätzlich werden Möglichkeiten zum Nachweis von Proteinmodifikationen und zur Darstellung von Proteinkomplexen aufgezeigt.

Praktikum:

Im Praktikum "Mikrobielle Proteomik" sollen die Studierenden unter Anleitung die in der Vorlesung vermittelten Methoden zur Beantwortung einer Fragstellung auf dem Gebiet der Physiologie von Mikroorganismen, der Infektionsbiologie bzw. der Aufklärung der Wirkweise antibakterieller Naturstoffe anwenden.

Seminar:

Im Seminar "Mikrobielle Proteomik" sind die Studierenden angehalten, aktuelle Veröffentlichungen über Forschungsarbeiten im Fachgebiet selbstständig zu analysieren, in einem Kurzvortrag zu präsentieren und kritisch zu hinterfragen und zu diskutieren.

Qualifikationsziel

- die Grundprinzipien der Methoden der Proteomik zu beschreiben und Vor- und Nachteile der Methoden kritisch zu bewerten.
- Proteine aus komplexen Proteingemischen zu identifizieren und zu quantifizieren.
- umfangreiche Datensätze zu analysieren und die erhaltenen Ergebnisse visuell darzustellen.
- Konzeption von Experimenten zur umfassenden Beantwortung einer wissenschaftlichen Fragestellung.
- kritische mit den Vor- und Nachteilen einer Methode und den erhaltenen Ergebnissen auseinanderzusetzen.

- Ergebnisse in einen wissenschaftlichen Kontext einzuordnen.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

- H. Rehm und T. Letzel, Der Experimentator Proteinbiochemie/Proteomics
- F. Lottspeich und J. W. Engels, Bioanalytik
- aktuelle englischsprachige Fachliteratur

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Data-Driven Biology				
Englischsprachige Lehrveranstaltungen PO 0	Biologie (Master)				
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt				
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Mikrobielle Proteomik (Bio-MI 26, Bio-SB 35, AM-C-9)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Susanne Engelmann Dr. Martin Kucklick			Vorlesung	englisch

Titel der Veranstaltung

Mikrobielle Proteomik (Bio-MI 26, Bio-SB 35, AM-C-9)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Susanne Engelmann			Seminar	englisch

Titel der Veranstaltung					
Mikrobielle Proteomik (Bio-MI 2	Mikrobielle Proteomik (Bio-MI 26, Bio-SB 35, AM-C-9)				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Prof. Dr. Susanne Engelmann Dr. Martin Kucklick			Praktikum	englisch	

Modulname	Forschungspraktikum			
Nummer	1303410	Modulversion		
Kurzbezeichnung	FP	Sprache	englisch deutsch	
Turnus	in jedem Semester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r		
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	Nahlpflichtmodule des gewählten Fachgebiets			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (ca. 30 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Erfolgreiche Teilnahme am Seminar			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.		

Mitarbeit an verschiedenen aktuellen Forschungsprojekten.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- aufbauend auf Kenntnissen von Wahlpflichtmodulen der Systembiologie und Bioinformatik in einem Laborpraktikum durch Mitarbeit an einem Forschungsprojekt aktuelle Fragestellungen mit dem Einsatz moderner Methoden zu lösen.
- eine wissenschaftliche Fragestellung in einem Team zu beantworten.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

Aktuelle Publikationen aus verschiedenen Bereichen der Biowissenschaften, in Englisch

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt				

Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	
Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.	

Modulname	Forschungspraktikum			
Nummer	1303420	Modulversion		
Kurzbezeichnung	FP	Sprache	englisch deutsch	
Turnus	in jedem Semester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r		
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	Nahlpflichtmodule des gewählten Fachgebiets			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (ca. 30 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Erfolgreiche Teilnahme am Seminar			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	Die Modulnote entspricht der Note der Prüfungsleistung.		

Mitarbeit an verschiedenen aktuellen Forschungsprojekten.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- aufbauend auf Kenntnissen von Wahlpflichtmodulen der Systembiologie und Bioinformatik in einem Laborpraktikum durch Mitarbeit an einem Forschungsprojekt aktuelle Fragestellungen mit dem Einsatz moderner Methoden zu lösen.
- eine wissenschaftliche Fragestellung in einem Team zu beantworten.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

Aktuelle Publikationen aus verschiedenen Bereichen der Biowissenschaften, in Englisch

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt			

Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	
Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.	

Modulname	Flexi-Modul		
Nummer	1301360	Modulversion	
Kurzbezeichnung	BL-STD2-36	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	10 / ,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.	
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Modulname	Alternativ-Modul		
Nummer	1301130	Modulversion	
Kurzbezeichnung	BL-STD2-13	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich			

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

Modulname	Alternativ-Modul2		
Nummer	1301380	Modulversion	
Kurzbezeichnung	BL-STD2-38	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich				
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich				
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt				
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich				
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt				
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich				
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt				
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt				

Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

Zellbiologie und Neurobiologie - Wahlpflichtbereich

ECTS

Modulname	Zellbiologie der Entwicklung und Funktion des zentralen Nervensystems			
Nummer	1301340 Bio-ZB 21 / Bio-ZN 21	Modulversion		
Kurzbezeichnung	ZB 21 / ZN 21	Sprache	englisch deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswis- senschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Reinhard Köster	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	112	Selbststudium (h)	188	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)			
Zu erbringende Studienleistung	- Erfolgreiche Teilnahme an Übung und Seminar - Referat (6 pro Gruppe) (15 min.)			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Inhalte

Vorlesung

Die Vorlesung Zellbiologie der Entwicklung und Funktion des ZNS beschäftigt sich mit den Themen: Frühe Musterbildung, Zellmigration, Signalfelder und Zelldeterminierung, Genexpression und Differenzierung, Synaptogenese.

Seminar:

Das übungsbegleitende Seminar beschäftigt sich mit den theoretischen Grundlagen der zu erlernenden Methoden.

Übung:

In der Übung 1 Neuronale Zellbiologie werden folgende Inhalte bearbeitet:

- Charakterisierung der entwicklungsabhängigen subzellulären Lokalisation neuronaler Proteine mittels Immunofluoreszenz.
- Fluoreszenzmikroskopische Analyse der Rolle neurotropher Faktoren in der Ausbildung der dendritischen Komplexität in sich entwickelnden und reifen neuronalen Kulturen.
- Vergleichende Western Blot-Analysen der entwicklungsabhängigen Expression neuronaler Proteine.
- Untersuchung der gewebsspezifischen und Zellzyklus-abhängigen Phosphorylierung des Tau-Proteins im Immunoblot.
- Nachweis der Expression versch. Tau-Isoformen in Maus Gehirnen mittels PCR.

Übung:

In der alternativen Übung 2 Zellbiologie der Entwicklung und Funktion des ZNS werden die nachfolgenden Themen bearbeitet:

- Expressionsanalyse des neurotrophen Faktors NGF und dessen Rezeptor im Gehirn des Zebrafisches (In situ Hybridisierung)
- Isolierung und funktionelle Analyse von NGF-Proteinextrakten über die induzierte Differenzierung neuronaler PC12 Zellkulturen und Identifikation von neuronalen Differenzierungsgenen über PCR.

- Duale Reportergen Analysen in tierischen Zellkulturen über Luciferase-Messungen.
- Nachweis der genetischen Aktivierung intrazellulärer Signalkaskaden durch den Neurotrophin Rezeptor mittels Immunhistochemie in PC12 Zellen.
- Pharmakologische Inhibition von NGF-induzierten intrazellulären Signalkaskaden im Zebrafisch.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- molekulare und zellbiologische Grundlagen der Entwicklung und Funktion des Nervensystems von Wirbeltieren zu verstehen.
- molekulargenetisches und zellbiologisches Grundlagenwissen auf aktuelle Forschungsthemen zu übertragen.
- das Zusammenspiel zellbiologischer Strukturen und deren Regulation in der Entstehung, Reifung und Funktion eines komplexen Organs zu erkennen und zu interpretieren.
- unterschiedliche Forschungsstrategien zu evaluieren und spezielle wissenschaftliche Fragestellungen experimentell zu bearbeiten (Planung, Durchführung, Dokumentation und Auswertung).
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

-Wolpert: Prinzipien der Entwicklungsbiologie

-Gilbert: Developmental Biology

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich				
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN
Belegungslogik bei der Wahl von Lehrveranstaltungen
Anwesenheitspflicht
Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Zellbiologie der Entwicklung und Funktion des Zentralen Nervensystems (ZNS) (Bio-ZB 21, Bio-ZN 21, Bt-MZ 01)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Martin Korte Prof. Dr. Reinhard Köster Dr. Marta Zagrebelsky		2,0	Vorlesung	englisch deutsch

Titel der Veranstaltung

Neuronale Zellbiologie (Bio-ZB 21, Bio-ZN 21)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Martin Rothkegel Dr. Marta Zagrebelsky			Übung	englisch deutsch

Titel der Veranstaltung

Zellbiologie der Entwicklung und Funktion des ZNS - praktikumsbegleitend (Bio-ZB 21, Bio-ZN 21)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Martin Rothkegel			Seminar	englisch deutsch

Modulname	Pflanzliche Zelltechnik - Gentransf	er und Bioimaging	
Nummer	1399980 Bio-ZB 22 / Bio-ZN 22	Modulversion	
Kurzbezeichnung	ZB 22 / ZN 22	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer	1	Einrichtung	
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Dr. Tobias Kruse
Arbeitsaufwand (h)	300		
Präsenzstudium (h)	112	Selbststudium (h)	188
Zwingende Voraussetzungen	keine		
Empfohlene Voraussetzungen	keine		
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (ca. 200 min.)		
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1)		
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.	

Vorlesung:

Die Vorlesung "Zellbiologie der Pflanzen" beschäftigt sich mit den Themen: Protein-Funktion und -Regulation, Protein-Interaktion, Vesikeltransport, Kanäle und Transporter, Genexpression und Differenzierung, Interaktion und Kommunikation zwischen den Kompartimenten, Redox und ROS, Zellbiologie der Metalle, transgene Pflanzen und deren Zellkulturen.

Praktikum:

Im Praktikum Molekulare Zellbiologie der Pflanzen - Kurs A werden erarbeitet: der Transfer von komplexen pflanzlichen Problemstellungen auf einfache eukaryotische Systeme: Molekularbiologische Charakterisierung des key player des Neurospora crassa Stickstoff-Metabolismus.

Angewendete Methoden: biochemische Charakterisierungen von N. crassa (selektives Wachstum, HPLC-gestützte Metaboliten Analyse) gerichtete genetische Manipulation, stabile Genexpression, Monoklonale Antikörper: Herstellung und Anwendung, spezifischer Nachweis von Proteinen durch das Immuno-Blot Verfahren, rekombinante Proteinexpression und Aufreinigung, biochemische Charaktersierung der N. crassa Nitratreduktase, Visualisierung und Identifizierung von N. crassa Zellorganellen durch Verwendung der confokalen Laserscanning Mikroskopie.

Praktikum:

Im Praktikum Molekulare Zellbiologie der Pflanzen - Kurs B werden erarbeitet: Grundlagen der Manipulation der Entwicklung von pflanzlichen Zellen und Geweben unter in-vitro-Bedingungen.

Angewendete Methoden: Steuerung der Dedifferenzierung und Redifferenzierung von pflanzlichen Zellen durch Phytohormone, Protoplastentechnik (Isolation, Kultur, Immobilisation), Anwendung der Protoplastenfusion für Komplementationsanalysen (Beispiel Nitratreduktase), Haploideninduktion, Kryokonservierung pflanzlicher Zellen, direkter Gentransfer in Protoplasten, transiente Genexpression, Reportergen-Tests, Visualisierung verschiedener Entwicklungsprozesse durch Fluoreszenzmikroskopie.

Folgende Techniken werden praktisch erlernt:

- Immobilisationstechniken für Protoplasten/Zellen
- Gentransfer (chemisch/elektrisch) in Protoplasten
- Somatische Hybridisierung
- Fluoreszenzmikroskopie

- Kryokonservierung von pflanzlichen Zellen

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- ihre Kompetenz in molekularen Mechanismen der Funktion und Regulation von Proteinen und ihrer Bedeutung in zellulären Prozessen zu schulen.
- die Prozesse der Zelldifferenzierung, der Embryogenese und Organogenese, der Interaktion von Zellkompartimenten und der Signal-Weiterleitung zu bewerten.
- eine spezielle wissenschaftliche Fragestellung experimentell zu bearbeiten (wie werden Experimente sinnvoll geplant, durchgeführt und ausgewertet; wie werden die erhaltenen Ergebnisse dokumentiert und kritisch interpretiert?).
- Mechanismen der Wissensgenerierung im gesellschaftlichen Kontext kritisch zu reflektieren.
- verschiedene Forschungsstrategien grundlegend zu verstehen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

aktuelle Publikationen (englisch) zur molekularen Zellbiologie und zur Fremdgenexpression

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Zellbiologie der Pflanzen (Bio-ZB 22, Bio-ZN 22)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Tobias Kruse Prof. Dr. Ralf-Rainer Mendel Jutta Schulze			Vorlesung	deutsch

Titel der Veranstaltung					
Molekulare Zellbiologie der Pfla	nnzen (Bio-ZB 22, Bio-ZN 22)				
Dozent/in	Mitwirkende	sws	Art LVA	Sprache	
Dr. Tobias Kruse			Praktikum	deutsch	

Modulname	Flexi-Modul		
Nummer	1301360	Modulversion	
Kurzbezeichnung	BL-STD2-36	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	10 / ,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.	
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studieng	Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich				
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich				
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt				
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich				
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt				
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich				
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt				

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Modulname	Alternativ-Modul		
Nummer	1301130	Modulversion	
Kurzbezeichnung	BL-STD2-13	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich			

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN
Belegungslogik bei der Wahl von Lehrveranstaltungen
Anwesenheitspflicht

Modulname	Alternativ-Modul2		
Nummer	1301380	Modulversion	
Kurzbezeichnung	BL-STD2-38	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich				
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich				
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt				
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich				
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt				
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich				
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt				
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt				

Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN
Belegungslogik bei der Wahl von Lehrveranstaltungen
Anwesenheitspflicht

Zellbiologie und Neurobiologie - Schwerpunkt ECTS

Modulname	Gewebsentwicklung und Pathogenese			
Nummer	1398870 Bio-ZB 31 / Bio-ZN 31	Modulversion		
Kurzbezeichnung	ZB 31 / ZN 31	Sprache	englisch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Prof. Dr. Reinhard Köster	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende	erfolgreicher Abschluss von ZB 21 oder ZB 22, und ZB 23 (PO 2)			
Voraussetzungen	erfolgreicher Abschluss von ZN 21 oder ZN 22, und ZN 33 (PO 3)			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Referate (1, ca. 30 min)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll - Erfolgreiche Teilnahme am Seminar			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Inhalte

Übuna:

In der 4-wöchigen experimentellen Übung Gewebsentwicklung und Pathogenese werden Projektarbeiten durchgeführt, die für die aktuelle Forschung der Arbeitsgruppe Zelluläre und Molekulare Neurobiologie relevant sind. Die Studierenden erlernen dabei neue, moderne und projektbezogene Technologien in fokussierter Anwendung: Zellkultur, Klonierung, Mutagenese, Injektionsexperimente im Zebrafisch, Genexpressionsanalysen im Zebrafisch, Immunhistochemie und Immunofluoreszenz, Fluoreszenz-Mikroskopie, Laser Scanning Mikroskopie, in vivo Imaging, Histologie und Verhaltensphänotypisierung. Die Übung kann im WiSe als auch im SoSe absolviert werden.

Seminar:

Recherchierte Forschungsergebnisse aus der aktuellen Literatur und eigene Forschungsergebnisse werden regelmäßig im Arbeitsgruppenseminar vorgestellt und kritisch diskutiert. Die wissenschaftlichen Beiträge werden inhaltlich hinterfragt und in einer Gruppendiskussion analysiert und bewertet.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- die molekulargenetischen und zellbiologischen Kenntnisse aus den Modulen der Zellbiologie in einer Laborübung durch die Bearbeitung eines Forschungsprojekts zur Lösung wissenschaftlicher Probleme mit modernen Methoden zu vertiefen.
- Forschungsmethoden, die diagnostisch und therapeutisch am Patienten und im Tiermodell eingesetzt werden, zu bewerten.
- zell- und entwicklungsbiologische Prozesse in der Pathogenese menschlicher Krankheiten zu verstehen.
- wissenschaftliche Ergebnisse in einem Forschungsprojekt zu erarbeiten und kompetent auszuwerten.
- recherchierte wissenschaftliche Inhalte sowie eigene Forschungsergebnisse zu präsentieren und in der Arbeitsgruppe zu diskutieren.

- sich in einer Gruppendiskussion kontrovers mit wissenschaftlichen Themen und Fragestellungen auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

aktuelle Publikationen aus der neusten Forschung

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt				
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt				

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Gewebsentwicklung und Pathogenese (Bio-ZB 31, Bio-ZN 31, Bt-MZ 06)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Reinhard Köster Dr. Kazuhiko Namikawa Dr. Franz Vauti		6,0	Übung	englisch

Titel der Veranstaltung

Zelluläre und Molekulare Neurobiologie (Journal Club) (Bio-ZB 31, Bio-ZN 31)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Reinhard Köster Dr. Kazuhiko Namikawa Dr. Franz Vauti			Seminar	englisch

Modulname	Physical Biology of the Cell			
Nummer	1398890 Bio-ZB 26 / Bio-ZN 32	Modulversion		
Kurzbezeichnung	ZB 26 / ZN 32	Sprache	englisch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1 Semester	Einrichtung		
SWS / ECTS	8 / 10,0	Modulverantwortli- che/r	Prof. Dr. Christian Sieben	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	112 h Selbststudium (h) 188 h			
Zwingende Voraussetzungen	keine			
Empfohlene	erfolgreicher Abschluss von IB 21 oder IB 23 (PO 2)			
Voraussetzungen	erfolgreicher Abschluss von MI 23 oder MI 25 (PO 3)			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (1, ca. 15 min.) (Das Referat fasst die Inhalte und Ergebnisse der praktischen Arbeit während des Praktikums zusammen.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Erfolgreiche Teilnahme am Seminar und Übung			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Die Studierenden erhalten einen wissenschafts-orientierten Einblick in den Bereich der Zellbiophysik. Die Vorlesungsreihe vermittelt einen breiten Überblick verschiedener Themen der quantitativen Biologie bzw. der Zellbiophysik. Zu Beginn sollen grundlegende Begriffe, Größenordnungen und Prinzipien der zellulären Organisation (Gewebe, Zellen, Organellen) betrachtet werden. Außerdem werden die zellulären Bestandteile und deren Eigenschaften nicht nur biochemisch, aber auch aus biophysikalischer Sicht betrachtet (z.B. Polymere wie DNA oder das Zytoskelett). Im Weiteren geht es vertiefend um Themen wie Membranen, Diffusion, Elektrophysiologie, Strukturbiologie sowie Mechanik und Kinetik von zellbiologischen Prozessen. Es soll gezielt eine biophysikalische Betrachtung gewählt werden, um Prozesse anhand von Modellen verstehen und vorhersagen zu können. Um eine praxisnahe Perspektive zu geben werden neben Inhalten aus Lehrbüchern, Beispiele aus der Primärliteratur vorgestellt. Hierbei werden vor allem Themen der Zell- und Infektionsbiologie herangezogen.

Praktikum:

Es werden an verschiedenen Modelsystemen zellbiologische Vorgänge wie z.B. Diffusion, Zellmobilität und Zellzyklus untersucht. Dabei sollen sowohl Bakterien als auch Säugerzellen mit verschiedenen spektroskopischen und mikroskopischen Methoden untersucht werden. Die Studierenden sollen ihre Versuche dabei selbst planen, durchführen und analysieren. Die Protokolle sollen in Form einer kurzen Publikation nach wissenschaftlichen Standards angefertigt werden.

Folgende Techniken werden praktisch erlernt:

- Fluoreszenz- und Konfokalmikroskopie (Live Cell Imaging)
- Fluorescence recovery after photobleaching (FRAP)
- Superauflösende Mikroskopie (single-molecule tracking)
- Immunfluoreszenz-Mikroskopie
- Säugerzellkultur und -transfektion von Expressionsvektoren

Seminar:

Im Seminar werden von den Studierenden sowohl klassische (seminal papers) als auch aktuelle Publikationen vor- und gegenübergestellt. Wir werden die wissenschaftlichen Methoden in beiden Fällen miteinander

vergleichen, um den Studierenden die Möglichkeit zu geben, auch den Reiz einer klassischen (historischen) Herangehensweise zu erkennen.

Übung:

In der Übung wird eine Publikation selbständig durchgearbeitet als Vorbereitung auf die kommende Vorlesung.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- fundamentale Größenordnungen zellulärer Prozesse zu verstehen und daraus eine eigene Intuition zu entwickeln, in welchem messbaren Rahmen sich biologische Prozesse abspielen.
- grundlegende Begriffe und Konzepte der Biophysik an zell- und molekularbiologischen Systemen zu verstehen.
- aus den erlernten quantitativen Methoden der Zellbiophysik eine interdisziplinäre Herangehensweise an spezifische experimentelle Probleme zu entwickeln.
- sich intensiv mit Datenanalyse bis hin zur Generierung von Computermodellen zu beschäftigen.
- quantitative Methoden an zellbiologischen Präparaten anzuwenden, Strukturen und Kinetiken zu analysieren und basierend auf biophysikalischen Modellen Vorhersagen zu treffen.
- die Funktion von spezifischen zellulären Komponenten zu messen und zu analysieren.
- eigene Ergebnisse zu dokumentieren, zu analysieren und kritisch zu diskutieren.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

- Phillips, R., Kondev, J., Theriot, J., Garcia, H.G. and Orme, N., 2012. Physical biology of the cell. Garland Science
- Bornschlögl, T. and Dietz, H., Biophysik in der Zelle
- Aktuelle Publikationen aus der Zell- und Infektionsbiologie, Biophysik in englischer Sprache (Zur Vorlesung und den Seminarvorträgen

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Spectroscopy and Imaging				
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt				
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Physical Biology of the Cell (Bio-ZB 26, Bio-ZN 32, Bt-MZ 05, AM-B-5)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Christian Sieben		2,0	Vorlesung	englisch deutsch

Titel der Veranstaltung

Physical Biology of the Cell (Bio-ZB 26, Bio-ZN 32, Bt-MZ 05, AM-B-5)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Christian Sieben		1,0	Seminar	englisch

Titel der Veranstaltung

Physical Biology of the Cell (Bio-ZB 26, Bio-ZN 32, Bt-MZ 05, AM-B-5)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Christian Sieben		5,0	Praktikum	englisch deutsch

Modulname	Genetik, Zellbiologie und Modellierung neurologischer Erkrankungen			
Nummer	1303070 Bio-ZN 33	Modulversion		
Kurzbezeichnung	ZN 33	Sprache	englisch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	9 / 10,0	Modulverantwortli- che/r	Prof. Dr. Reinhard Köster	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	112	Selbststudium (h)	188	
Zwingende Voraussetzungen	erfolgreicher Abschluss von ZN 21	ouel ZIV ZZ		
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	Referat (ca. 45 min.)			
Zu erbringende Studienleistung	Erfolgreiche Teilnahme am Semin	ar		
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.		

Vorlesung:

Die Vorlesung Neurologische Erkrankungen umfasst die Vermittlung molekularer und zellulärer Prozesse, die pathologische Veränderungen und Funktionen des menschlichen Nervensystems verursachen. Hierzu gehören: Alzheimer, Morbus Parkinson, Polyglutamin-Erkrankungen, Depression, Hirntumore, ALS und Lissencephalien. Ebenso werden moderne Diagnoseverfahren und therapeutische Ansätze auf Grundlage der Lebenswissenschaften besprochen.

Seminar:

Im vorlesungsbegleitenden Seminar Zellbiologie und Genetik neurologischer Erkrankungen werden aktuelle Forschungsarbeiten zur Diagnose, Ursachenforschung und Therapie neurologischer Erkrankungen analysiert,

zusammenfassend präsentiert und kritisch diskutiert und gemeinsame sowie spezifische Aspekte einzelner Erkrankungen herausgearbeitet.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- die genetischen Grundlagen der Funktion des Nervensystems von Wirbeltieren sowie die Ursachen und Konsequenzen pathogener Veränderungen zu verstehen.

- genetisches und zellbiologisches Grundlagenwissen auf anwendungsorientierte Forschung zu übertragen und die interdisziplinäre Herangehensweise therapeutischer Forschung selbstständig zu bewerten.
- soziale und ethische Aspekte neuronaler Erkrankungen zu berücksichtigen.
- zell- und entwicklungsbiologische Vorgänge bei der Pathogenese humaner Erkrankungen zu verstehen.
- molekulargenetische und zellbiologische Auslöser humaner Krankheitsprozesse zu erken-nen.
- ein breites Spektrum von Forschungsmethoden zu bewerten, die diagnostisch und therapeu-tisch in Patienten und in Tiermodellen angewendet werden.
- eine wissenschaftliche Fragestellung in einem Forschungsprojekt zu bearbeiten und sie da-tenkritisch und kompetent zu analysieren.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

- Mark F. Blor, Barry W. Connors, Michael A. Paradiso: Neurowissenschaften, 3. Aufl.
- Eric R. Kandel, James H. Schwartz, Thomas M. Jessell: Principles of Neural Science, 4. Aufl.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Neurologische Erkrankungen (Bio-ZB 28, Bio-ZN 33)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Reinhard Köster Dr. Kazuhiko Namikawa			Vorlesung	deutsch

Titel der Veranstaltung				
Zellbiologie und Genetik neurologischer Erkrankungen (Bio-ZB 28, Bio-ZN 33)				
Dozent/in Mitwirkende SWS Art LVA Sp				Sprache
Prof. Dr. Reinhard Köster			Seminar	deutsch

Modulname	Physiologie und Pathophysiologie humaner Erkrankungen			
Nummer	1303250 Bio-ZN 34	Modulversion		
Kurzbezeichnung	ZN 34	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r	Prof. Dr. Jochen Meier	
Arbeitsaufwand (h)	300		_	
Präsenzstudium (h)	140	Selbststudium (h)	220	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	erfolgreicher Abschluss von ZN 21			
Zu erbringende Prüfungsleistung/ Prüfungsform	Mündliche Prüfung (ca. 60 min)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Erfolgreiche Teilnahme am Semi - Referate (4, insgesamt ca. 60 mi			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.		
Inhalte				

Vorlesung:

Die Vorlesung Pathophysiologie humaner Erkrankungen bietet einen kritischen Einblick in die fehlgeleitete RNA-Prozessierung und deren Auswirkungen auf die pathologische neuronale Netzwerkfunktion im Hinblick auf Verhalten und Systemphysiologie, also der Ebene neuronaler Netzwerke und miteinander interagierenden Hirnsysteme.

Seminar:

Im Seminar vor dem Praktikum werden Beispiele aus der zeitgemäßen und innovativen Originalliteratur vorgestellt und kritisch diskutiert sowie Vorlesungsinhalte vertieft.

Praktikum:

Im Praktikum Imaging von pathogenen Genprodukten werden sie in aktuelle Forschungsprojekte eingebunden und erarbeiten folgende Methodenkenntnisse:

Umgang mit Zellkulturen, molekulare Klonierung, DNA-Sequenzanalyse, Genexpression, Elektrophysiologie in Kombination mit live cell imaging,Immunchemie, Mikroskopie und morphometrische Bildanalyse.

Folgende Techniken werden praktisch erlernt:

- Elektrophysiologie (whole cell patch clamp)
- Molekulare Klonierung von Expressionsvektoren
- Bioinformatische DNA-Sequenzanalyse
- Immunchemische Färbung von Zellkulturen
- Epifluoreszenz- und Konfokalmikroskopie

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- Kausalzusammenhänge der neurophysiologischen Signalverarbeitung und die ihr zugrunde-liegenden membran- und synapsenphysiologischen Prinzipien zu erklären.
- Kausalzusammenhänge bei der Temporallappenepilepsie darzustellen.
- molekulare und zellbiologische Mechanismen der C-zu-U RNA-Editierung und deren patho-physiologischen Auswirkungen darzustellen.
- Grundlagen der molekularen Klonierung zu erläutern.
- Fluoreszenzmikroskopie zu erläutern.
- experimentelle Daten zu erheben, zu dokumentieren und auszuwerten, insbesondere:
- molekulare Klonierung einschließlich Sequenzauswertung durchzuführen.
- transiente Genexpression mittels Transfektion von Zellkulturen anzuwenden.
- erregende und hemmende Synapsen sowie die neuronale Morphologie immunchemisch dar-zustellen und fluoreszenzmikroskopisch zu analysieren.
- elektrophysiologische Methoden anzuwenden.
- Mechanismen der Wissensgenerierung in gesellschaftspolitischen Kontext kritisch zu reflek-tieren.
- theoretische Lerninhalte anhand der 3D-Technologie (virtuelle Realität und 3D-Druckpräparate) zu verinnerlichen (Teach4TU-Transferprojekt Tasthirn).
- unterschiedliche Forschungsstrategien grundlegend zu verstehen.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effi-zient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

- aktuelle Publikationen aus verschiedenen Bereichen der Zellbiologie und Neurobiologie, in Deutsch und Englisch.
- Principles of Neural Science, Eric. R Kandel et. al.- Neurobiology, Gordon M. Sheperd

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Pathophysiologie humaner Erkrankungen (Bio-ZB 30, Bio-ZN 34)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Jochen Meier			Vorlesung	deutsch

Titel der Veranstaltung

RNA-Prozessierung bei humanen Erkrankungen (Bio-ZB 30, Bio-ZN 34)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Jochen Meier			Seminar	deutsch

Titel der Veranstaltung

Elektrophysiologie und Live Cell Imaging von pathogenen Genprodukten (Bio-ZB30, Bio-ZN 34)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Jochen Meier			Praktikum	deutsch

Modulname	Molekulare Humangenetik				
Nummer	1303660 Bio-ZN 35	Modulversion			
Kurzbezeichnung	ZN 35	Sprache	deutsch		
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften		
Moduldauer	1 Semester	Einrichtung			
SWS / ECTS	0 / 10,0	Modulverantwortli- che/r	Prof. Dr. Laura Steen- paß		
Arbeitsaufwand (h)	300				
Präsenzstudium (h)	80	Selbststudium (h)	220		
Zwingende Voraussetzungen	keine				
Empfohlene Voraussetzungen	keine	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Poster (inkl. Posterpräsentation)				
Zu erbringende Studienleistung	 Experimentelle Arbeit Laborjournal Referat (ca. 20 min.) (Vortrag (ca. 15 min.) und Diskussion (ca. 5 min.)) 				
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.			

Vorlesung:

Vermittlung grundlegender Kenntnisse über die Praxis der Humangenetik, genetische Erkrankungen, mendelsche Vererbung sowie über die Verwendung von verschiedenen Methoden in der humangenetischen Diagnostik und der Verwendung von Zellkultur-Modellen in der Forschung. Hier wird auch die Verwendung und das Zusammenspiel der Methoden, die im Praxisteil verwendet werden, für die Analyse und Diagnostik von genetischen Erkrankungen erläutert. Vermittlung der Grundlagen und Techniken zur Erstellung und Präsentation eines wissenschaftlichen Posters zu einer vorab ausgewählten Publikation, die Themen aus Vorlesung und Praktikum aufgreift.

Praktikum:

Es werden vier Themen behandelt: Chromosomen des Menschen, Short tandem repeat-Typing zur Authentifizierung/Identifizierung von humanem genetischem Material, Analyse der DNA-Methylierung mittels Bisulfit-Sequenzierung, Differenzierung einer Zelllinie und Anaylse mittels Immunfluoreszenz. Dabei kommen folgende Methoden zum Einsatz: Zellkultur; Präparation von genomischer DNA; PCR-Amplifikation der genomischen DNA; Analyse der PCR-Produkte mittels Fragmentlängenanalyse, Sanger-Sequenzierung, Agarose-Gelelektrophorese; Präparation von Metaphase-Chromosomen, Giemsa-Färbung, Analyse mittels Mikroskopie und Karyogramm; Bisulfit-Konvertierung von genomischer DNA und deren Analyse mittels Sanger-Sequenzierung und Methylierungs-spezifischer PCR; Beobachtung und Analyse der Differenzierung einer Zelllinie in ausdifferenzierte Derivate.

Folgende Techniken werden praktisch erlernt:

- Zellkultur von humanen Zelllinien
- Authentifizerung von humanen Zelllinien
- DNA-Methylierung mittels Bisulfit-Sequenzierung
- Präparation von Metaphase-Chromosomen

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- genomische DNA zu präparieren, sie mittels PCR zu amplifizieren eine Sequenzierung nach Sanger anzusetzen und die Sequenz-Chromatogramme auszuwerten.

- Zellkultur mit Säugerzellen durchzuführen.
- humane Chromosomen zu präparieren und zu analysieren.
- humane Proben durch STR-Typing zu authentifizieren.
- DNA-Methylierung mittels Bisulfit-Sequenzierung zu analysieren.
- eine Differenzierung von Zelllinien durchzuführen.
- zellbiologische und molekularbiologische Methoden für die humangenetische Diagnostik und für die Modellierung von genetischen Erkrankungen anzuwenden.
- ein wissenschaftliches Poster zu erstellen und zu präsentieren.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinander zu setzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

- Griffiths: Introduction to Genetic Analysis
- Klug: Concepts of Genetics
- Aktuelle Publikationen werden zur Verfügung gestellt

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Humangenetik (Bio-GE 27, Bio-ZN 35)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Laura Steenpaß			Vorlesung	deutsch

Titel der Veranstaltung

Humangenetik (Bio-GE 27, Bio-ZN 35)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Prof. Dr. Laura Steenpaß			Praktikum	deutsch

Modulname	Sophisticated Imaging			
Nummer	1301260 Bio-IB 27 / Bio-MI 34	Modulversion		
Kurzbezeichnung	IB 27 / MI 34	Sprache	englisch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r	Prof. Dr. Christian Sieben	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	140	Selbststudium (h)	160	
Zwingende	entweder IB21 oder IB22 oder IB23 oder IB29 (PO 2)			
Voraussetzungen	entweder MI 23 oder MI 25 oder MI 26 (PO 3)			
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Seminarvortrag (1, ca. 20 min)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Erfolgreiche Teilnahme am Seminar			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Vorlesung:

Die Vorlesungsreihe beinhaltet einen Überblick der wichtigsten Bildgebungs- und Analyseverfahren in den Lebenswissenschaften. Dabei werden die physikalischen Grundlagen dieser Techniken sowie vielerlei Anwendungsbeispiele aus der Infektionsbiologie vermittelt. Ein Schwerpunkt liegt in der Vorstellung von licht- und elektronenoptischen Verfahren und den entsprechenden Probenpräparationen. Im Einzelnen werden Fluoreszenzmikroskopie, Konfokalmikroskopie, superaufgelöste Mikroskopie sowie hochauflösende Transmissions-(TEM) wie Feldemissionsraster-Elektronenmikroskopie (FESEM) behandelt. In der LM wird ein starker Fokus auf das Live-Imaging zur Verfolgung von dynamischen Prozessen, sowie den unterschiedlichen superauflösenden Mikroskopieverfahren und deren Einsatzgebieten gelegt. FESEM und TEM werden als diejenigen Methoden behandelt, die es erlauben in den submikroskopischen Bereich vorzudringen. Hier werden spezielle Anwendungen wie z.B. der Immuno-Gold-Nachweis von Proteinen, aber auch neuere Entwicklungen aus dem Bereich der Cryo-EM vorgestellt. Neben den Visualisierungsverfahren wird auch die Erstellung, Beurteilung und Weiterverarbeitung von Bildern und Filmen in der Vorlesung behandelt, um aufzuzeigen, welche Verfahren geeignet oder ungeeignet sind, die mit Fluoreszenz- und konfokaler Mikroskopie aufgenommenen Abbildungen weiter zu bearbeiten und die Qualität der Bilder zu optimieren ohne gegen die gängige Gute Wissenschaftliche Praxis in Bezug auf Bildbearbeitung zu verstoßen. Neben diesen Techniken wird auch die Laserdissektionsmikroskopie vorgestellt, eine Methode, mit der spezifische Zellkomponenten oder einzelne Zellen aus gemischten Populationen präzise isoliert werden können. Diese Technik erlaubt es, Zielstrukturen unter dem Mikroskop exakt zu definieren und dann mittels eines Laserstrahls zu extrahieren, was besonders in der zellulären und molekularen Forschung angewandt wird.

Praktikum:

Es werden einfach durchführbare Experimente gewählt, um den Fokus auf die Bedienung und die Funktionsweisen der vorhandenen Geräte zu legen. Die Studierenden werden dabei selbstständig Bilder auf verschiedenem Vergrößerungsniveaus aufnehmen und mit Hilfe von unterschiedlichen, im Praktikum erlernten Bildbearbeitungstools bearbeiten. Der Fokus liegt auf der Darstellung von Pathogen (TEM) bzw. Wirt-Pathogen Interaktionen (LM/FESEM). In der TEM wird die Probenpräration und die Darstellung von Bakterien, Viren und Proteinen im negativ-staining Verfahren erlernt. Ein selbst durchgeführtes Infektionsexperiment soll darüber hinaus die Korrelation von LM und FESEM-Technologien näherbringen. Zudem werden Immun-

Label Proben betrachtet. In der LM werden Säugerzellen zunächst strukturell untersucht und danach infiziert, um die Infektion und betroffene Organellen zu visualisieren. Es werden sowohl Methoden der hochals auch der super-aufgelösten Mikroskopie verwendet. Zusätzlich zur super-aufgelösten und hochauflösenden Mikroskopie haben die Studierenden die Gelegenheit, die Prinzipien und Techniken der Laserdissektion in praktischen Anwendungen zu erfahren und zu lernen, wie man mit dieser Methode spezifische Zellen oder Zellregionen für nachfolgende molekulare Analysen isoliert.

Folgende Techniken werden praktisch erlernt:

- Fluoreszenz- und Konfokalmikroskopie (Live Cell Imaging)
- Lasermikrodissektion
- Rasterelektronenmikrokopie
- Transmissionselektronenmikroskopie
- Superauflösende Mikroskopie

Seminar:

Im begleitenden Seminar werden neueste mikroskopische Techniken, die nicht gerätetechnisch im Modul verfügbar sind, durch Seminarvorträge vorgestellt werden.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- grundlegende und fortgeschrittene Kenntnisse im Bereich der modernen Lichtmikroskopie (LM), Fluoreszenzmikroskopie, Photomanipulation und der Elektronenmikroskopie (EM) für ihre wissenschaftlichen Fragestellungen anzuwenden.
- zu verstehen, welche relevanten Fragestellungen sie in den Lebenswissenschaften mit welchem Bildgebungs- bzw. Analyseverfahren am besten bearbeiten können.
- Vor- und Nachteile einer Methode erkennen und einschätzen zu können.
- zu erkennen, welche neuen Erkenntnisse man gewinnen kann, wenn man Bildgebungsverfahren mit unterschiedlichen Auflösungs- und Vergrößerungsbereichen miteinander (Technologie-übergreifend) verbindet (korrelative Mikroskopie).
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.
- vertiefte Fremdsprachenkenntnisse (üblicherweise Englisch) anzuwenden.

Literatur

aktuelle mikroskopisch orientierte Veröffentlichungen in englischer Sprache zu den Seminarvorträgen

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Artificial Intelligence for Molecular Sciences PO 1	Profilbereich Spectroscopy and Imaging				
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt				
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt				
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt				

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

Titel der Veranstaltung

Sophisticated Imaging (Bio-IB 27, Bio-MI 34, AM-B-6)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Mathias Müsken Prof. Dr. Christian Sieben			Vorlesung	deutsch

Titel der Veranstaltung

Sophisticated Imaging (Bio-IB 27, Bio-MI 34, AM-B-6)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Mathias Müsken Prof. Dr. Christian Sieben			Seminar	deutsch

Titel der Veranstaltung

Sophisticated Imaging (Bio-IB 27, Bio-MI 34, AM-B-6)

Dozent/in	Mitwirkende	sws	Art LVA	Sprache
Dr. Mathias Müsken Prof. Dr. Christian Sieben			Praktikum	deutsch

Modulname	Forschungspraktikum		
Nummer	1303410	Modulversion	
Kurzbezeichnung	FP	Sprache	englisch deutsch
Turnus	in jedem Semester	Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer	1	Einrichtung	
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)	300		
Präsenzstudium (h)	126	Selbststudium (h)	174
Zwingende Voraussetzungen	keine		
Empfohlene Voraussetzungen	Wahlpflichtmodule des gewählten Fachgebiets		
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (ca. 30 min.)		
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Erfolgreiche Teilnahme am Seminar		
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.		

Mitarbeit an verschiedenen aktuellen Forschungsprojekten.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- aufbauend auf Kenntnissen von Wahlpflichtmodulen der Systembiologie und Bioinformatik in einem Laborpraktikum durch Mitarbeit an einem Forschungsprojekt aktuelle Fragestellungen mit dem Einsatz moderner Methoden zu lösen.
- eine wissenschaftliche Fragestellung in einem Team zu beantworten.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

Aktuelle Publikationen aus verschiedenen Bereichen der Biowissenschaften, in Englisch

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt				

Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	
Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.	

Modulname	Forschungspraktikum			
Nummer	1303420	Modulversion		
Kurzbezeichnung	FP	Sprache	englisch deutsch	
Turnus	in jedem Semester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	10 / 10,0	Modulverantwortli- che/r		
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	126	Selbststudium (h)	174	
Zwingende Voraussetzungen	keine			
Empfohlene Voraussetzungen	Wahlpflichtmodule des gewählten Fachgebiets			
Zu erbringende Prüfungsleistung/ Prüfungsform	- Referat (ca. 30 min.)			
Zu erbringende Studienleistung	- Experimentelle Arbeit - Praktikumsprotokoll (1) - Erfolgreiche Teilnahme am Seminar			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note der Prüfungsleistung.			

Mitarbeit an verschiedenen aktuellen Forschungsprojekten.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- aufbauend auf Kenntnissen von Wahlpflichtmodulen der Systembiologie und Bioinformatik in einem Laborpraktikum durch Mitarbeit an einem Forschungsprojekt aktuelle Fragestellungen mit dem Einsatz moderner Methoden zu lösen.
- eine wissenschaftliche Fragestellung in einem Team zu beantworten.
- recherchierte wissenschaftliche Inhalte zu präsentieren und zu diskutieren.
- sich inhaltlich kontrovers mit wissenschaftlichen Themen und Fragestellungen in einer Gruppendiskussion auseinanderzusetzen.
- erfolgreich und eigenständig in einem Team zu arbeiten, ein Team zu organisieren und effizient mit verschiedenen Zielgruppen zu kommunizieren.
- selbstständig fortgeschrittene praktische und wissenschaftliche Arbeiten durchzuführen und experimentelle Daten zu analysieren.

Literatur

Aktuelle Publikationen aus verschiedenen Bereichen der Biowissenschaften, in Englisch

Zugeordnet zu folgenden Studiengängen					
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS	
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt				

Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	
Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.	

Modulname	Flexi-Modul		
Nummer	1301360	Modulversion	
Kurzbezeichnung	BL-STD2-36	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	10 / ,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.	
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

Modulname	Alternativ-Modul		
Nummer	1301130	Modulversion	
Kurzbezeichnung	BL-STD2-13	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich			

Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt		
Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

Modulname	Alternativ-Modul2		
Nummer	1301380	Modulversion	
Kurzbezeichnung	BL-STD2-38	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 1,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)			
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung			
Inhalte			
Qualifikationsziel			
Literatur			
		,	

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Wahlpflichtbereich			
Master Biologie PO 2	Genetik (GE) - Wahlpflichtbe- reich			
Master Biologie PO 2	Mikrobiologie (MI) - Schwer- punkt			
Master Biologie PO 2	Zellbiologie (ZB) - Wahlpflicht- bereich			
Master Biologie PO 2	Zellbiologie (ZB) - Schwer- punkt			
Master Biologie PO 2	Infektionsbiologie (IB) - Wahl- pflichtbereich			
Master Biologie PO 2	Infektionsbiologie (IB) - Schwerpunkt			
Master Biologie PO 2	Biochemie / Bioinformatik (BB) - Schwerpunkt			

Master Biologie PO 2	Genetik (GE) - Schwerpunkt		
Master Biologie PO 2	Mikrobiologie (MI) - Wahl- pflichtbereich		
Master Biologie PO 3	Systembiologie und Bioinfor- matik - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Wahlpflichtbereich		
Master Biologie PO 3	Molekulare Biodiversität - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Wahlpflichtbereich		
Master Biologie PO 3	Mikrobiologie und Infektions- biologie - Schwerpunkt		
Master Biologie PO 3	Zellbiologie und Neurobiologie - Schwerpunkt		
Master Biologie PO 3	Systembiologie und Bioinformatik - Schwerpunkt		

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN		
Belegungslogik bei der Wahl von Lehrveranstaltungen		
Anwesenheitspflicht		

	5 ECTS
--	--------

Modulname	Methodik-Modul			
Nummer	1303430	Modulversion		
Kurzbezeichnung	MM	Sprache	englisch deutsch	
Turnus	in jedem Semester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1	Einrichtung		
SWS / ECTS	5 / 5,0	Modulverantwortli- che/r		
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	90	Selbststudium (h)	60	
Zwingende Voraussetzungen	Studien- und Prüfungsleistungen mit mindestens 60 Leistungspunkten			
Empfohlene Voraussetzungen	keine	keine		
Zu erbringende Prüfungsleistung/ Prüfungsform	- Literaturrecherche - Experimentelle Arbeit			
Zu erbringende Studienleistung	- Erfolgreiche Teilnahme am Seminar			
Zusammensetzung der Modulnote	Die Modulnote entspricht der Note	der Prüfungsleistung.		

Spezifisch vom Thema des Projektes abhängig. Dabei können Themen aus den Bereichen der vier Säulen der Biologie ("Systembiologie und Bioinformatik", "Molekulare Biodiversität", "Mikrobiologie und Infektionsbiologie" und "Zellbiologie und Neurobiologie"), aber auch aus externen Forschungseinrichtungen bearbeitet werden. Der Fokus liegt auf dem Erlernen der eigenständigen Konzipierung einer wissenschaftlichen Fragestellung und Auswahl und Anwendung geeigneter experimenteller und analytischer Verfahren.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- spezielle analytische Verfahren in einem bestimmten Arbeitsfeld anzuwenden.
- geeignete experimentelle Verfahren für spezifische wissenschaftliche Fragestellungen auszuwählen.
- mit verschiedenen Geräten in einem bestimmten Arbeitsfeld umzugehen und diese einzusetzen.
- durch Integration in ein laufendes Forschungsprojekt aktuelle Fragestellungen theoretisch und praktisch zu bearbeiten.
- eine umfassende Literaturrecherche zu einer wissenschaftlichen Fragestellung durchzuführen.
- organisatorische Grundlagen, die für das Arbeiten in den jeweiligen Teilgebieten der Biologie, in denen die Masterarbeit angefertigt werden soll, typisch und notwendig sind anzuwenden. Hierzu gehören z. B. Erstellung und Pflege von Dokumentationssystemen: Erstellung eines Datenmanagementplans und elektronische Datendokumentation und Datenarchivierung.
- etablierte spezielle methodische Ansätze und experimentelle Techniken zu erlernen und zunehmend selbstständig anzuwenden.
- grundlegende einfache Kenntnisse zum Projektmanagement und zur Führungskompetenz anzuwenden.

Literatur

Spezifisch vom Thema des Projektes abhängig.

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion Bereich Pflichtform Sem. Auswahl			ECTS	
Master Biologie PO 3	Methodik-Modul			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	
Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.	

Überfachliche Qualifikation	5 ECTS
-----------------------------	--------

Modulname	Wahlveranstaltung aus dem Pool-Modell der TU BS				
Nummer	1301090	Modulversion			
Kurzbezeichnung		Sprache	deutsch		
Turnus	in jedem Semester	Lehreinheit	Fakultät für Lebenswis- senschaften		
Moduldauer		Einrichtung			
SWS / ECTS	5 / 5,0	Modulverantwortli- che/r			
Arbeitsaufwand (h)	je nach Angebot				
Präsenzstudium (h)	je nach Angebot	Selbststudium (h)	je nach Angebot		
Zwingende Voraussetzungen	keine	keine			
Empfohlene Voraussetzungen	keine	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	siehe Modulbeschreibungen (Pool-Modell der TU sowie Homepage der Biologie und des Sprachenzentrums) Ein benoteter oder unbenoteter Leistungsnachweis ist erforderlich.				
Zu erbringende Studienleistung	siehe Modulbeschreibungen (Pool-Modell der TU sowie Homepage der Biologie und des Sprachenzentrums) Ein benoteter oder unbenoteter Leistungsnachweis ist erforderlich.				
Zusammensetzung der Modulnote	Zum Erhalt von LP ist ein Leistungsnachweis zu erbringen, der benotet oder nicht benotet sein kann. Falls eine Benotung vorliegt, geht diese nicht in die Berechnung der Endnote ein, wird aber auf dem Zeugnis aufgeführt.				

siehe Modulbeschreibungen (Pool-Modell der TU sowie Homepage der Biologie und des Sprachenzentrums)

Qualifikationsziel

Das Pool-Modell der TU Braunschweig bietet drei Bereiche:

- I. Übergeordneter Bezug: Einbettung des Studienfachs
- II. Wissenschaftskulturen
- III. Handlungsorientierte Angebote

Die Angebote aus diesen Bereichen lassen sich frei wählen und zu den Modulen ZQ 11, ZQ 12 oder ZQ 13 kombinieren und vermitteln folgende Qualifikationsziele:

I. Übergeordneter Bezug:

Nach Abschluss des Moduls sind die Studierenden in der Lage

- Ihr Studienfach in gesellschaftliche, historische, rechtliche oder berufsorientierende Be-züge einzuordnen (je nach Schwerpunkt der Veranstaltung).
- übergeordnete fachliche Verbindungen und deren Bedeutung zu erkennen, zu analysieren und zu bewerten.
- Vernetzungsmöglichkeiten des Studienfaches und Anwendungsbezüge ihres Studienfa-ches im Berufsleben zu erkennen.
- II. Wissenschaftskulturen:

Nach Abschluss des Moduls sind die Studierenden in der Lage

- Theorien und Methoden anderer, fachfremder Wissenschaftskulturen zu erklären.
- sich interdisziplinär mit Studierenden aus fachfremden Studiengebieten auseinanderzu-setzen und mit ihnen zu arbeiten.
- aktuelle Kontroversen aus einzelnen Fachwissenschaften zu diskutieren und zu bewerten.

- die Bedeutung kultureller Rahmenbedingungen auf verschiedene Wissenschaftsverständ-nisse und Anwendungen zu erkennen.
- genderbezogene Sichtweisen auf verschiedene Fachgebiete und die Auswirkung von Ge-schlechterdifferenzen zu beachten.
- sich intensiv mit Anwendungsbeispielen aus fremden Fachwissenschaften auseinander-setzen.
- III. Handlungsorientierte Angebote:

Nach Abschluss des Moduls sind die Studierenden in der Lage

- theoretische Kenntnisse handlungsorientiert umzusetzen.
- verfahrensorientiertes Wissen (Wissen über Verfahren und Handlungsweisen, Anwen-dungskriterien bestimmter Verfahrens- und Handlungsweisen) sowie metakognitives Wissen (u. a. Wissen über eigene Stärken und Schwächen) anzuwenden.
- je nach Veranstaltungsschwerpunkt, Wissen zu vermitteln bzw. Vermittlungstechniken anzuwenden, Gespräche und Verhandlungen effektiv zu führen, sich selbst zu reflektieren und adäquat zu bewerten.
- kooperativ im Team zu arbeiten, Konflikte zu bewältigen, Informations- und Kommunikati-onsmedien zu bedienen oder sich in einer anderen Sprache auszudrücken.
- in anderen Bereichen erworbenes Wissen effektiver einzusetzen, die Zusammenarbeit mit anderen Personen einfacher und konstruktiver zu gestalten und somit Neuerwerb und Neuentwicklung von Wissen zu erleichtern.

Literatur			

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 3	Überfachliche Qualifikation			

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	
Belegungslogik bei der Wahl von Lehrveranstaltungen	
Anwesenheitspflicht	

Abschlussmodul	30 ECTS
----------------	---------

Modulname	Masterarbeit		
Nummer	1301110	Modulversion	
Kurzbezeichnung	BL-STD2-11	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Lebenswissenschaften
Moduldauer		Einrichtung	
SWS / ECTS	0 / 30,0	Modulverantwortli- che/r	
Arbeitsaufwand (h)	900		
Präsenzstudium (h)		Selbststudium (h)	
Zwingende Voraussetzungen	Der Anmeldung zur Masterarbeit beim Prüfungsausschuss sind Nachweise über Studien- und Prüfungsleistungen mit mindestens 70 Leistungspunkten beizufügen.		
Zu erbringende Prüfungsleistung/ Prüfungsform	- erfolgreiche Abschlussarbeit mit Präsentation		
Zu erbringende Studienleistung	keine		

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage

- ihre zuvor erworbenen Fachkenntnisse in einem selbst gewählten Anwendungsfeld zu erpro-ben und ihre Kompetenzen um praktische Erfahrungen zu ergänzen.
- elementare Labormethoden der Zellbiologie, Mikrobiologie, Genetik, Biochemie und Moleku-larbiologie selbstständig auszuführen und experimentelle Daten zu analysieren.
- wissenschaftliche Publikationen zu lesen und die darin beschriebenen Methoden in die eige-ne Laborarbeit umzusetzen.
- analytisch zu denken, Zusammenhänge zu erkennen, vorhandene Problemlösungen einzu-schätzen und eigene zu entwickeln.
- erfolgreich in einer Gruppe zu arbeiten und effizient mit verschiedenen Zielgruppen zu kom-munizieren.
- ihre Ergebnisse angemessen darzustellen.

Literatur

Zugeordnet zu folgenden Studiengängen				
Studiengang/Studiengangsversion	Bereich	Pflichtform	Sem. Aus- wahl	ECTS
Master Biologie PO 2	Master-Arbeit			
Master Biologie PO 3	Abschlussmodul			

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Hinsichtlich der Praktika, Übungen, Seminare und Exkursionen besteht Anwesenheitspflicht.

rechnische Oniversität Braunschweig	Infodultiandbuch. Biologie (Master)	