

Beschreibung des Studiengangs

Informatik (Bachelor) PO 6

Datum: 07.11.2025

Inhaltsverzeichnis

Bachelor Informatik	
Pflichtbereich Grundlagen der Informatik	
Algorithmen und Datenstrukturen	
Einführung in die Logik	
Programmieren 1	
Programmieren 2	
Propädeutikum Informatik	
Technische Informatik	
Theoretische Informatik 1	
Theoretische Informatik 2	18
Pflichtbereich Grundlagen der Mathematik	
Analysis für Informatiker	20
Diskrete Mathematik für Informatiker	
Lineare Algebra für Informatiker	24
Pflichtbereich Grundlagen der Informatik der Systeme	
Betriebssysteme	
Computernetze 1	
Einführung in die IT-Sicherheit	
Einführung in die IT-Sicherheit	
Relationale Datenbanksysteme 1	
Software Engineering 1	
Software-Entwicklungspraktikum	38
Wahlpflichtbereich Informatik	
Elektrotechnische Grundlagen der Technischen Informatik	
Rechnerstrukturen 1	
Raumfahrtelektronik 1	
Hardware-Software-Systeme	
Hardware Praktikum	
Grundlagen Maschinelles Lernen	
Praktische Aspekte der Informatik	
Computergraphik - Grundlagenpraktikum	
Computergraphik - Grundlagen	
Grundlagenpraktikum Computer Vision	
Einführung in die Medizinische Informatik	
Medizinische Informationssysteme A	
Repräsentation und Analyse medizinischer Daten	
Bild- und Signalerzeugung in der Biomedizin	
Cloud Computing	
Praktikum Enterprise Applications	
Praktikum Cloud Computing	
Verteilte Systeme	
Algorithmik-Praktikum	
Netzwerkalgorithmen	
Algorithmen und Datenstrukturen 2	
Einführung in Algorithm Engineering	
Grundlagen der digitalen Schaltungstechnik	
Programmiersprachen und Übersetzer	
Principles and Theory for Machine Learning	
Einführung in maschinelles Lernen	
Software Engineering 2	
Entwicklung (un)sicherer Systeme	
Bioinformatik und Biostatistik 1	
Finführung in Algorithmische Geometrie	03

Einführung in parallele und verteilte Algorithmen	94
Fortgeschrittene Aspekte der Anwendungssicherheit	
Parametrisierte Algorithmen	
Softwaremodellierung elektronischer Systeme	
Wahlpflichtbereich Mathematik	
Algebra für Informatiker	101
Einführung in die Stochastik für Informatiker	103
Numerik für Informatiker	
Seminar Informatik	
Seminar Informatik Bachelor	107
Teamprojekt	
Teamprojekt	110
Schlüsselqualifikationen	
Medizin 2	
Schlüsselqualifikationen	114
Schlüsselqualifikationen (3 LP)	116
Nebenfach Advanced Industrial Management	
Betriebsorganisation	118
Industrielles Qualitätsmanagement	120
Nebenfach Betriebswirtschaftslehre	
Grundlagen der Betriebswirtschaftslehre - Produktion & Logistik und Finanzwirtschaft	
Grundlagen der Betriebswirtschaftslehre - Unternehmensführung und Marketing	124
Nebenfach Kommunikationsnetze	
Grundlagen des Mobilfunks	
Kommunikationsnetze	128
Nebenfach Maschinenbau/Mechatronik	
Einführung in die Mechatronik	
Regelungstechnik	132
Nebenfach Mathematik	
Algebra für Informatiker	
Einführung in die Stochastik für Informatiker	
Lineare und Kombinatorische Optimierung	
Nichtlineare Optimierung	
Numerik für Informatiker	
Statistische Verfahren	144
Nebenfach Medizin	
Gesundheitssysteme	
Medizin 1	148
Nebenfach Philosophie	
Philosophie für TechnikwissenschaftlerInnen (1)	
Philosophie für TechnikwissenschaftlerInnen (2)	152
Nebenfach Psychologie	
Einführung in die Psychologie für Informatiker	
Grundlagengebiete in der Psychologie für Informatiker	156
Nebenfach Raumfahrttechnik	
Raumfahrttechnische Grundlagen	
Raumfahrttechnik bemannter Systeme	
Satellitentechnik und Satellitenbetrieb	162
Nebenfach Signalverarbeitung	
Grundlagen der Digitalen Signalverarbeitung	
Sprachkommunikation	166
Bachelorarbeit	
Bachelorarbeit Informatik	168

Pflichtbereich Grundlagen der Informatik

46 ECTS

Modulname	Algorithmen und Datenstrukturen		
Nummer	4227130	Modulversion	V2
Kurzbezeichnung	INF-ALG-13	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Betriebssysteme und Rechnerverbund
SWS / ECTS	6 / 8,0	Modulverantwortli- che/r	Prof. Dr. Sandor Fekete
Arbeitsaufwand (h)	240		
Präsenzstudium (h)	84	Selbststudium (h)	156
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 120 Minuten oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam. Die Prüfungsform ist abhängig von der Teilnehmerzahl.		
Zu erbringende Studienleistung	1 Studienleistung: 50% der Übungen müssen bestanden sein		

Inhalte

- Algorithmenbegriff
- Graphen
- Suche in Graphen
- Korrektheit und Komplexität von Algorithmen
- Datenstrukturen
- Sortieren
- Rekursionen
- Hashing

Qualifikationsziel

Die Absolventen dieses Moduls kennen die grundlegenden Algorithmen und Datenstrukturen der Informatik. Sie sind in der Lage, für ein gegebenes Problem eine algorithmische Lösung zu formulieren und algorithmische Lösungen in ihrer Leistungsfähigkeit einzuschätzen.

Literatur

- Th. Cormen, Ch. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms. 3rd edition. MIT Press, Cambridge 2009.

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	'		
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Algorithmen und Datenstrukturen	5,0	Vorlesung/Übung	deutsch
Literaturhinweise			
- Th. Cormen, Ch. Leiserson, R. Rivest, C. Stein: Introduction to Albridge 2009.	gorithms.	3rd edition. MIT Pro	ess, Cam-
Algorithmen und Datenstrukturen	1,0	kleine Übung	deutsch

Modulname	Einführung in die Logik		
Nummer	4212520	Modulversion	V2
Kurzbezeichnung	INF-THI-52	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Theoretische Informatik
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Roland Meyer
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 120 Minuten oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam		
Zu erbringende Studienleistung	1 Studienleistung: 50% der Hausaufgaben müssen bestanden sein		

- Aussagenlogik
- Normalformen
- Boole'sche Algebren
- Prädikatenlogik

Qualifikationsziel

- Nach Abschluss dieses Moduls besitzen die Studierenden einen Einblick in die Methoden der formalen Logik und deren Relevanz in der Informatik.
- Sie können Sachverhalte formal-logisch formulieren und formal-logische Methoden anwenden.

Literatur

- J. Adamek: Einfuehrung in die Logik, Skript 2011 (Webseite des Instituts fuer Theoretische Informatik)
- Uwe Schoening: Logik fuer Informatiker, Spektrum Verlag, Berlin 2005
- H. Ehrich et al: Grundlagen der Informatik, Springer Verlag 1999
- M. Huth und M.Ryan: Logic in computer science, Cambridge University Press 2004.

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	'		
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Einführung in die Logik	2,0	Vorlesung	deutsch
Literaturhinweise			
- J. Adamek: Einfuehrung in die Logik, Skript 2011 (Webseite des Instituts fuer Theoretische Informatik) - Uwe Schoening: Logik fuer Informatiker, Spektrum Verlag, Berlin 2005 - H. Ehrich et al: Grundlagen der Informatik, Springer Verlag 1999 - M. Huth und M.Ryan: Logic in computer science, Cambridge University Press 2004.			
Einführung in die Logik (Übung)	2,0	kleine Übung	deutsch

Modulname	Programmieren 1			
Nummer	4210430	Modulversion	V2	
Kurzbezeichnung	INF-PRS-43	Sprache	deutsch	
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Institut für Betriebssysteme und Rechnerverbund	
SWS / ECTS	4 / 6,0	Modulverantwortli- che/r	Dr. Arne Schmidt	
Arbeitsaufwand (h)	180			
Präsenzstudium (h)	56	Selbststudium (h)	124	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Die Studierenden sollten parallel das Modul "Algorithmen und Datenstrukturen" besuchen.			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 120 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: Erfolgreiche Bea	1 Studienleistung: Erfolgreiche Bearbeitung von Hausaufgaben		

- Grundlagen der imperativen und objektorientierten Programmierung anhand der Sprache Java
- rekursive Methoden
- Zuverlässigkeit von Programmen

Qualifikationsziel

Nach Abschluss dieses Moduls besitzen die Studierenden grundlegende Kenntnisse der imperativen und objektorientierten Programmierung sowie der Sprache Java. Sie sind in der Lage, kleine Programme selbstständig zu entwickeln.

Literatur

- R. Sedgewick, K. Wayne: Einführung in die Programmierung mit Java. 1. Auflage. Pearson-Verlag, München 2011.
- D. Ratz, J.Scheffler: Grundkurs Programmieren in Java. 6. aktualisierte und erweiterte Auflage. Hanser Verlag, München, Wien 2011.
- R. Schiedermeier: Programmieren mit Java. 2. aktualisierte Auflage. Pearson Studium, München 2010.
- W. Struckmann, D. Wätjen: Mathematik für Informatiker. Spektrum Akademischer Verlag, 2007.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Die Vorlesung und die kleine Übung sind verpflichtend zu belegen. Die Übung ist optional.

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache
Programmieren 1	2,0	Vorlesung	deutsch

Literaturhinweise

R. Sedgewick, K. Wayne: Einführung in die Programmierung mit Java. 1. Auflage. Pearson-Verlag, München 2011. D. Ratz, J.Scheffler: Grundkurs Programmieren in Java. 6. aktualisierte und erweiterte Auflage. Hanser Verlag, München, Wien 2011. R. Schiedermeier: Programmieren mit Java. 2. aktualisierte Auflage. Pearson Studium, München 2010. W. Struckmann, D. Wätjen: Mathematik für Informatiker. Spektrum Akademischer Verlag, 2007.

Programmieren 1	2,0	Übung	deutsch
Programmieren 1	2,0	kleine Übung	deutsch

Literaturhinweise

R. Sedgewick, K. Wayne: Einführung in die Programmierung mit Java. 1. Auflage. Pearson-Verlag, München 2011. D. Ratz, J.Scheffler: Grundkurs Programmieren in Java. 6. aktualisierte und erweiterte Auflage. Hanser Verlag, München, Wien 2011. R. Schiedermeier: Programmieren mit Java. 2. aktualisierte Auflage. Pearson Studium, München 2010. W. Struckmann, D. Wätjen: Mathematik für Informatiker. Spektrum Akademischer Verlag, 2007.

Modulname	Programmieren 2			
Nummer	4210440	Modulversion	V2	
Kurzbezeichnung		Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Institut für Anwendungs- sicherheit	
SWS / ECTS	4 / 6,0	Modulverantwortli- che/r	Prof. Dr. Martin Eise- mann	
Arbeitsaufwand (h)	180			
Präsenzstudium (h)	42	Selbststudium (h)	138	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen		Die Studierenden sollten vorher die Module "Algorithmen und Datenstrukturen" und "Programmieren I" besucht haben.		
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (120 min.) oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: Erfolgreiche Bearbeitung von Hausaufgaben			

- Vertiefung der objektorientierten Programmierung
- Dynamische und rekursive Datenstrukturen
- Grundlagen der Parallelprogrammierung
- Grundlagen der Grafikprogrammierung
- Grundlagen der funktionalen Programmierung
- Clean Code

Qualifikationsziel

Nach Abschluss dieses Moduls besitzen die Studierenden vertiefte Kenntnisse der imperativen, funktionalen und objektorientierten Programmierung. Sie sind in der Lage, mittelgroße Programme selbstständig zu entwickeln und dabei Aspekte der strukturierten Programmierung zu berücksichtigen.

Literatur

- R. Sedgewick, K. Wayne: Einführung in die Programmierung mit Java. 1. Auflage. Pearson-Verlag, München 2011.
- D. Ratz, J.Scheffler: Grundkurs Programmieren in Java. 6. aktualisierte und erweiterte Auflage. Hanser Verlag, München, Wien 2011.
- R. Schiedermeier: Programmieren mit Java. 2. aktualisierte Auflage. Pearson Studium, München 2010.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache
Programmieren 2	4,0	Vorlesung/Übung	deutsch

Literaturhinweise

- Stroustroup, B.: Tour of C++, A (C++ In Depth SERIES), Pearson International; 3. Edition (14. September 2022)
- T. Will: C++: Das umfassende Handbuch zu Modern C++. Über 1.000 Seiten Profiwissen, aktuell zum Standard C++23, Rheinwerk Computing; 3. Edition (6. Juni 2024)
- Martin, R.C.: Clean Code: A Handbook of Agile Software Craftsmanship (Robert C. Martin), Prentice Hall; 1. Edition (1. August 2008)
- Grimm, R: C++ Core Guidelines Explained: Best Practices for Modern C++, Addison-Wesley Professional; 1. Edition (22. April 2022)

		.e	
Programmieren 2	2,0	Ubung	deutsch

Modulname	Propädeutikum Informatik		
Nummer	4299790	Modulversion	
Kurzbezeichnung	INF-STD-79	Sprache	deutsch
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer		Einrichtung	
SWS / ECTS	6 / 6,0	Modulverantwortli- che/r	Studiendekan der Informatik
Arbeitsaufwand (h)	180		
Präsenzstudium (h)	84	Selbststudium (h)	96
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung	1 Studienleistung: Erfolgreiche Bearbeitung aller Aufgaben in der Veranstaltung Wissenschaftliches Arbeiten 1 Studienleistung: Erfolgreicher Abschluss der Klausur (45 Minuten) zur Veranstaltung Ethik 1 Studienleistung: schriftliche Ausarbeitung (Hausarbeit) zur Literaturrecherche, wobei für die Studienleistung die An- und Abmeldefristen gemäß § 4 Absatz 6 BPO Informatik nicht gelten		

Wissenschaftliches Arbeiten: Literaturbeschaffung und Recherchestrategie (Nutzung von Datenbanken, Katalogen, Internet), Einführung in Citavi, Zitieren, Bibliografieren, wissenschaftliche Texterstellung (wird seitens des Faches angeboten und in die Lehrveranstaltung integriert), Urheberrecht, Gestaltung wissenschaftlicher Präsentationen, Publikation wissenschaftlicher Information Literaturstudie: Anwendung der erlernten Kenntnisse aus dem Wissenschaftlichen Arbeiten auf eine selbstgewählte Thematik (in der Regel in einem Fachgebiet ähnlich zur Bachelorarbeit), Recherche von Literatur zu diesem Thema und schriftliche Ausarbeitung dazu.

Ethik: Nach einer allgemeinen Grundlegung zu ethischen Theorien (Tugendethik, Pflichtenethik, Utilitarismus, Diskursethik, Rawls'sche Gerechtigkeitstheorie) stehen die Werte und Normen der Technikschaffenden im Mittelpunkt, d.h. die der IngenieurInnen und InformatikerInnen. Dazu werden die Ethikcodizes und Leitlinien der Berufsverbände analysiert (u.a. des VDI und der Gesellschaft für Informatik e.V.) und im Hinblick auf ihre Handhabbarkeit an den gewählten Fallbeispielen überprüft.

Qualifikationsziel

Ziele dieses Moduls ist es, die Studierenden in die Lage zu versetzen, eigenständig wissenschaftlich zu arbeiten und die ethischen Aspekte ihrer Tätigkeit zu bewerten. Insbesondere gelten für die einzelnen Veranstaltungen folgende Ziele: Wissenschaftliches Arbeiten: Die Studierenden erwerben Informationskompetenz auf ihrem Fachgebiet. Durch einen hohen Praxis- und Übungsanteil werden die Teilnehmenden befähigt, selbstständig mit den Werkzeugen wissenschaftlicher Arbeit umzugehen. Literaturstudie: Die Studierenden sind in der Lage, selbständig zu einem gegebenen Thema wissenschaftliche Literatur zu recherchieren, diese zu bewerten und zu klassifizieren und ihre Ergebnisse schriftlich angemessen darzustellen. Ethik: Lernziele sind, berufsrelevante Werte und Normen in ihrer gesellschaftlichen Komplexität und damit auch jenseits der eige-

nen Fächerkultur analysieren und verstehen zu lernen, und sie ferner auch konstruktiv im eigenen Berufsfeld anwenden zu können.

Literatur

wird in den einzelnen Veranstaltungen bekanntgegeben

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			'
Belegungslogik bei der Wahl von Lehrveranstaltunge	n		
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Ethik der Technik, Wirtschaft und Information	2,0	Vorlesung	deutsch
Wissenschaftliches Arbeiten	2,0	Online-Vorlesung	deutsch
Literaturhinweise	·		
wird in der Veranstaltung bekanntgegeben			

Modulname	Technische Informatik		
Nummer	4299750	Modulversion	
Kurzbezeichnung	INF-STD-75	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Moduldauer		Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Rolf Ernst
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur, 90 Minuten, oder mündliche Prüfung, 30 Minuten		
Zu erbringende Studienleistung			

- Hardwarestruktur eines Rechnersystems
- Zahlendarstellung, Zahlenarithmetik
- Schaltnetze, Minimierung, Standardschaltnetze
- Schaltwerke, Realisierungen
- Busse -Grundfunktionen und Protokolle-
- Prozessor-Struktur (Mikroarchitektur)
- Instruction Set Architecture
- Grundlagen Assemblersprache

Qualifikationsziel

Nach Abschluss dieses Moduls kennen die Studierenden die elementaren Grundlagen von Rechensystemen.

Literatur

- J. Wakerly: Digital Design, Prentice Hall, 2001
- D. Gajski: Principles of Digital Design, Prentice Hall, 1997
- M. Mano, Ch. Kime: Logic and Computer Design Fundamentals, Prentice Hall, 2001
- A. Tanenbaum, J. Goodman: Computerarchitektur, Pearson Studium, 2001

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Der Besuch der kleinen Übung ist freiwillig.			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Technische Informatik II (BA)	2,0	Übung	deutsch
Technische Informatik II (BA)	2,0	Vorlesung	deutsch
Technische Informatik II für IST	2,0	kleine Übung	deutsch

Modulname	Theoretische Informatik 1		
Nummer	4212350	Modulversion	V2
Kurzbezeichnung	INF-THI-35	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Roland Meyer
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 120 Minuten oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam		
Zu erbringende Studienleistung	1 Studienleistung: 50 % der gelösten Hausaufgaben		

- Endliche Automaten
- reguläre Sprachen
- Kellerautomaten
- Kontextfreie Grammatiken und Sprachen

Qualifikationsziel

- Nach Abschluss dieses Moduls besitzen die Studierenden grundlegende Kenntnisse über Automaten, kontextfreie Sprachen und ihre Grammatiken.
- Sie werden vorbereitet, diese Konzepte in anderen Gebieten der Informatik wiederzuerkennen und dort anzuwenden.
- Die angesprochenen Modelle sollen den Studierenden die Fähigkeit vermitteln, selbständig Modelle zu bilden. Diese Befähigung ist in allen Zweigen der Informatik sowie im späteren Berufsleben von großer Bedeutung.

Literatur

- John E. Hopcroft, Jeffrey D. Ullman, Rajeev Motwani. Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Pearson Studium 2002
- Alexander Asteroth, Christel Baier: Theoretische Informatik Pearson 2002

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Die Übung ist freiwillig.			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Theoretische Informatik 1	2,0	Vorlesung	deutsch		
Literaturhinweise					
- John E. Hopcroft, Jeffrey D. Ullman, Rajeev Motwani. Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Pearson Studium 2002 - Alexander Asteroth, Christel Baier: Theoretische Informatik Pearson 2002					
Theoretische Informatik 1	2,0	kleine Übung	deutsch		
Literaturhinweise					
- John E. Hopcroft, Jeffrey D. Ullman, Rajeev Motwani. Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Pearson Studium 2002 - Alexander Asteroth, Christel Baier: Theoretische Informatik Pearson 2002					
Theoretische Informatik 1	2,0	Übung	deutsch		

Modulname	Theoretische Informatik 2			
Nummer	4212600	Modulversion	V2	
Kurzbezeichnung	INF-THI-60	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Roland Meyer	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Studierende sollten vorher das Modul "Theoretische Informatik I" belegt haben.			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 120 Minuten oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: 50 % gelöste Hausaufgaben			

- Turingmaschinen
- Chomsky-Hierarchie
- Berechenbarkeit und Entscheidbarkeit
- Komplexität
- NP-Vollständigkeit

Qualifikationsziel

- Nach Abschluss dieses Moduls besitzen die Studierenden grundlegende Kenntnisse über deterministische und nichtdeterministische Algorithmen und ihre Komplexität.
- Die Studierenden sind befähigt, die Komplexität von verschiedenen Arten von Algorithmen selbständig zu analysieren und diese Konzepte in anderen Gebieten der Informatik wiederzuerkennen und dort anzuwenden.

Literatur

- John E. Hopcroft, Jeffrey D. Ullman, Rajeev Motwani: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Pearson Studium 2002
- Alexander Asteroth, Christel Baier: Theoretische Informatik Pearson 2002

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Theoretische Informatik 2	3,0	Vorlesung/Übung	deutsch
Literaturhinweise			

J. E. Hopcroft, R. Motwani und J. D. Ullman: Einführung in die Automatentheorie, formale Sprachen und Komplexitätstheorie, 2. Auflage, Pearson Studium 2002. H.R. Lewis und C.H. Papdimitriou: Elements of the Theory of Computation, 2. Auflage, Prentice Hall, 1998.

Theoretische Informatik 2		kleine Übung	deutsch

Literaturhinweise

- John E. Hopcroft, Jeffrey D. Ullman, Rajeev Motwani: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie. Pearson Studium 2002 - Alexander Asteroth, Christel Baier: Theoretische Informatik Pearson 2002

Pflichtbereich Grundlagen der Mathematik

25 ECTS

Modulname	Analysis für Informatiker		
Nummer	1201110	Modulversion	V3
Kurzbezeichnung	MAT-STD1-11	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	6 / 10,0	Modulverantwortli- che/r	Dr. Marko Stautz
Arbeitsaufwand (h)	300		
Präsenzstudium (h)	84	Selbststudium (h)	216
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Kenntnisse aus der Linearen Algebra werden benötigt.		
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungleistung: 1 Klausur (180 Minuten) oder 1 mündliche Prüfung (etwa 35 Minuten) oder 1 Projekt oder Take-Home-Exam		
Zu erbringende Studienleistung	1 Studienleistung in Form von wöchentlichen Hausaufgaben ist möglich		

Inhalte

- Grenzwerte, Konvergenz, Stetigkeit
- Differentialrechnung in einer und mehreren Variablen
- Integralrechnung in einer und mehreren Variablen
- Taylorentwicklung
- Elementare Funktionen
- Kurvendiskussion
- Einfache Beispiele gewöhnlicher Differentialgleichungen
- Anfangswertaufgaben
- Fourierentwicklung
- Extrema mit Nebenbedingungen
- Integralsätze von Gauß und Stokes

Qualifikationsziel

- Die Studierenden kennen nach Absolvierung dieses Moduls die Grundkonzepte und Grundtechniken der Analysis.
- Die Studierenden sind in der Lage, funktionale Abhängigkeiten und einfache dynamische Prozesse mit Methoden der Analysis zu untersuchen.
- Die Studierenden bekommen einen Einblick in die Integralsätze, die für die Modellbildung in den technischen Wissenschaften und in den Naturwissenschaften von Bedeutung sind.

Literatur

- Christian Blatter: Analysis 1, 2, Springer, 1991, 1993
- Otto Forster: Analysis 1, 2, 3, Vieweg, 2004, 1984, 1984
- Konrad Königsberger: Analysis 1, 2, Springer, 2004

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN Belegungslogik bei der Wahl von Lehrveranstaltungen 'Kleine Übung' sowie 'Lerntreff' sind freiwillig. Anwesenheitspflicht Titel der Veranstaltung **SWS** Art LVA **Sprache** Analysis für Informatiker 4,0 Vorlesung deutsch Analysis für Informatiker 2,0 Übung deutsch kleine Übung Analysis für Informatiker 2,0 deutsch Lerntreff Mathematik 1,0 Zusatzübung deutsch

Modulname	Diskrete Mathematik für Informatiker		
Nummer	1201320	Modulversion	V4
Kurzbezeichnung	MAT-STD1-32	Sprache	deutsch
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Analysis und Algebra
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Studiendekan der Mathematik
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung in Form einer Klausur (90 Minuten) oder einer mündlichen Prüfung (etwa 25 Minuten) oder einem Projekt oder Take-Home-Exam		
Zu erbringende Studienleistung	1 Studienleistung in Form von wöchentlichen Hausaufgaben sind möglich.		

- Kombinatorische Beweisprinzipien
- Abzählmethoden
- Permutationen, Kombinationen, Variationen, Inklusion-Exklusion
- Asymptotische Analyse
- Graphen
- Bäume
- Wichtige Grapheneigenschaften
- Modulare Arithmetik
- Anwendungen in der Kryptographie

Qualifikationsziel

- Nach Abschluss dieses Moduls besitzen die Studierenden einen Einblick in einige Methoden, Begriffsbildungen und Algorithmen der Diskreten Mathematik.
- Sie können ausgewählte Anwendungsprobleme kombinatorisch, graphentheoretisch oder arithmetisch lösen unter Verwendung effizienter Algorithmen.

Literatur

- M. Aigner: Diskrete Mathematik, 5. Aufl. Vieweg, Wiesbaden, 2004.
- T. Ihringer: Diskrete Mathematik, 2. Aufl. Teubner, Stuttgart, 1999.
- A. Steger: Diskrete Strukturen, Band 1. Springer, Berlin, 2001.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Diskrete Mathematik	3,0	Vorlesung/Übung	deutsch

Modulname	Lineare Algebra für Informatiker			
Nummer	1201200	Modulversion	V3	
Kurzbezeichnung	MAT-STD1-2	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	6 / 10,0	Modulverantwortli- che/r	Dr. Marko Stautz	
Arbeitsaufwand (h)	300			
Präsenzstudium (h)	84	Selbststudium (h)	216	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung in Form einer Klausur (180 Minuten) oder einer mündlichen Prüfung (etwa 35 Minuten) oder einem Projekt oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistungen in Form von wöchentlichen Hausaufgaben ist möglich.			

- Lineare Gleichungssysteme. Gauß-Algorithmus
- · Vektor- und Matrizenrechung
- · Reelle und komplexe Vektorräume. Räume mit innerem Produkt.
- Analytische Geometrie
- Eigenwerte und Eigenvektoren. Diagonalisierbarkeit
- Wichtige Typen linearer Abbildungen. Ihre Matrixdarstellungen
- Normalformen und Matrixzerlegungen. Algorithmen
- Beste Approximation. Methode der kleinsten Quadrate
- Bewegungen

Qualifikationsziel

- Die Studierenden kennen nach Absolvierung dieses Moduls die Grundkonzepte und Grundtechniken der Linearen Algebra.
- Die Studierenden sind in der Lage, geometrische Probleme mit Methoden der Linearen Algebra zu lösen.
- Die Studierenden kennen die Matrixzerlegungen, die für die Numerik von Bedeutung sind.

Literatur

- Gerd Fischer: Lineare Algebra, Vieweg, 2003
- Gerd Fischer: Analytische Geometrie, Vieweg, 2001
- Max Koecher: Lineare Algebra und analytische Geometrie, Springer-Verlag, 1985
- Peter D. Lax: Linear Algebra, Wiley, 1997
- Gilbert W. Stewart: Matrix Algorithms, Volume I, Basic Decompositions, SIAM, 1998

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN Belegungslogik bei der Wahl von Lehrveranstaltungen 'Kleine Übung' sowie 'Lerntreff Mathematik (Zusatzübung)' sind freiwillig. Anwesenheitspflicht Titel der Veranstaltung **SWS** Art LVA **Sprache** Lineare Algebra für Informatiker 4,0 Vorlesung deutsch Lineare Algebra für Informatiker 2,0 Übung deutsch Lineare Algebra für Informatiker kleine Übung 1,0 deutsch Lerntreff Mathematik 1,0 Zusatzübung deutsch

Pflichtbereich Grundlagen der Informatik der Systeme

32 ECTS

Modulname	Betriebssysteme		
Nummer	4225040	Modulversion	V3
Kurzbezeichnung	INF-IBR-04	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Betriebssysteme und Rechnerverbund
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Rüdiger Kapitza
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten, oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam		
Zu erbringende Studienleistung	1 Studienleistung: 50% der Hausaufgaben müssen bestanden sein		

Inhalte

- Geschichte der Betriebssysteme
- Prozessverwaltung
- Interprozesskommunikation
- Speicherverwaltung
- Ein- und Ausgabe
- Dateisysteme

Qualifikationsziel

- Die Studierenden haben am Ende des Kurses einen guten Überblick über die grundlegenden Konzepte von Betriebssystemen.
- Sie haben insbesondere von Prozessen und Speicherverwaltung ein tiefgehendes Verständnis erworben.
- Sie können die erlernten Prinzipien in realen Betriebssystemen identifizieren und die Qualität der Implementierung einschätzen.

Literatur

- A. Tanenbaum: Modern Operating Systems, 2nd., Prentice-Hall, 2001.
- W. Stallings: Operating Systems: International Version: Internals and Design Principles, 7th revised edition, Prentice Hall International, 2011.
- Silberschatz, Galvin, Gane:Operating System Concepts, 8th edition, John Wiley & Sons, 2011

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Betriebssysteme	4,0	Vorlesung/Übung	deutsch	
Betriebssysteme	1,0	Übung	deutsch	
Betriebssysteme	1,0	kleine Übung	deutsch	

Modulname	Computernetze 1		
Nummer	4213330	Modulversion	V2
Kurzbezeichnung	INF-KM-33	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Betriebssysteme und Rechnerverbund
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Lars Wolf
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten oder Take-Home-Exam		
Zu erbringende Studienleistung			

- Historische Einordnung
- Überblick zu Netzen & Protokollen
- Schichtenmodelle und Schichten
- Protokollmechanismen
- Kurzeinführung zu Internet-Protokollen

Qualifikationsziel

Nach Abschluss dieses Moduls besitzen Studierende ein grundlegendes Verständnis der Funktionsweise von Rechnernetzen.

- Sie können beschreiben, wie die Abläufe in Rechnernetzen aussehen.
- Des Weiteren haben die Studierenden ein grundsätzliches Verständnis dafür erarbeitet, welche Auswirkungen die Verteilung und Kommunikation durch Netze hat und wie damit umgegangen werden kann.

Literatur

Andrew Tanenbaum, David Wetherall, Nick Feamster, Computer Networks, 6.Ed. 2021, Print-ISBN: 978-1-292-37406-2, E-ISBN: 978-1-292-37401-7

James Kurose, Keith Ross. Computer Networking. A Top-Down Approach, 2021, 8th edition, Print-ISBN: 978-1-292-40546-9, E-ISBN: 978-1-292-40551-3.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Computernetze	4,0	Vorlesung/Übung	deutsch
Literaturhinweise			

- Andrew S. Tanenbaum; David J. Wetherall: Computer Networks. International Edition. 5th edition. Pearson, 2010. ISBN-10: 0132553171 / ISBN-13: 9780132553179 - James F. Kurose; Keith W. Ross: Computer Networking: A Top-Down Approach. International Edition. 6th edition. Pearson, 2012. ISBN-10: 0273768964 / ISBN-13: 9780273768968

Modulname	Einführung in die IT-Sicherheit		
Nummer	4229070	Modulversion	V2
Kurzbezeichnung	INF-ISS-07	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Martin Johns
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Voraussetzung: Der erfolgreiche Abschluss der Module "Betriebssysteme" und "Computernetze 1".		
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung:Klausur, 90 Minuten, oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam		
Zu erbringende Studienleistung	1 Studienleistung: erfolgreiche Bearbeitung von mind. 50% der Übungsaufgaben		

- symmetrische und asymmetrische Kryptosysteme
- Zugangs- und Zugriffskontrolle
- Grundlagen der Netzsicherheit
- Grundlagen der Rechnersicherheit
- Angriffserkennung und -abwehr

Qualifikationsziel

Die Studierenden sind mit den Grundlagen der Kryptographie sowie der Netz- und Rechnersicherheit vertraut. Sie kennen relevante Probleme und können hierfür Lösungsansätze entwickeln. Weiterhin können sie defensive und offensive Sicherheitstechniken anwenden.

Literatur

- M. Bishop. Computer Security Art and Science. Macmillian Publishing, 2002
- D. Gollmann. Computer Security. Wiley & Sons, 2011
- C. Eckert. IT-Sicherheit: Konzepte Verfahren Protokolle. Oldenbourg, 2006
- B. Schneier. Applied Cryptography. Wiley & Sons, 1995
- P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley, 2005

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

	Einführung in die IT-Sicherheit	4,0	Vorlesung/Übung	deutsch
--	---------------------------------	-----	-----------------	---------

Modulname	Einführung in die IT-Sicherheit			
Nummer	4229070 Modulversion V3			
Kurzbezeichnung	INF-ISS-07 Sprache deutsch			
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1 Einrichtung Institut für Anwendungs- sicherheit			
SWS / ECTS	4 / 5,0 Modulverantwortli- che/r Prof. Dr. Martin Johns			
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	Selbststudium (h) 94			
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Kenntnisse aus dem Modul Grundlagen der Betriebssysteme werden empfohlen.			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung:Klausur, 90 Minuten, oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: erfolgreiche Bearbeitung von mind. 50% der Übungsaufgaben			

- symmetrische und asymmetrische Kryptosysteme
- Zugangs- und Zugriffskontrolle
- Grundlagen der Netzsicherheit
- Grundlagen der Rechnersicherheit
- Angriffserkennung und -abwehr

Qualifikationsziel

Die Studierenden sind mit den Grundlagen der Kryptographie sowie der Netz- und Rechnersicherheit vertraut. Sie kennen relevante Probleme und können hierfür Lösungsansätze entwickeln. Weiterhin können sie defensive und offensive Sicherheitstechniken anwenden.

Literatur

- M. Bishop. Computer Security Art and Science. Macmillian Publishing, 2002
- D. Gollmann. Computer Security. Wiley & Sons, 2011
- C. Eckert. IT-Sicherheit: Konzepte Verfahren Protokolle. Oldenbourg, 2006
- B. Schneier. Applied Cryptography. Wiley & Sons, 1995
- P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley, 2005

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Einführung in die IT-Sicherheit	4,0	Vorlesung/Übung	deutsch
---------------------------------	-----	-----------------	---------

Modulname	Relationale Datenbanksysteme 1			
Nummer	4214560	Modulversion	V2	
Kurzbezeichnung	INF-IS-56	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Institut für Informations- systeme	
SWS / ECTS	3 / 5,0 Modulverantwortli- che/r Prof. Dr. Wolf-Tilo Balk			
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42 Selbststudium (h) 108			
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 120 Minuten oder mündliche Prüfung, etwa 30 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: 50% der Hausaufgaben müssen bestanden sein			

- das relationale Datenmodell
- ER- und UML-Modellierung
- relationale Kalküle und Algebra
- Aufbau und Verwendung der Structured Query Language SQL
- Grundlagen der Administration von Datenbanken
- Trigger und Aktive Datenbanken
- Normalisierung von Datenbanken

Qualifikationsziel

Die Studierenden besitzen nach Besuch dieses Moduls grundlegende praktische Fähigkeiten im Entwurf und der Abfrage relationaler Datenbanken. Zudem kennen sie die theoretischen Zusammenhänge des relationalen Modells mit realen Daten und Datenstrukturen und können diese anwenden.

Literatur

wird in der Veranstaltung bekanntgegeben

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Die Übung ist freiwillig				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Relationale Datenbanksysteme 1	2,0	Vorlesung	deutsch		
Literaturhinweise					
wird in der Vorlesung bekanntgegeben					
Relationale Datenbanksysteme 1	1,0	kleine Übung	deutsch		
Literaturhinweise					
wird in der Vorlesung bekanntgegeben					
Relationale Datenbanksysteme 1	1,0	Übung	deutsch		

Modulname	Software Engineering 1			
Nummer	4220430	Modulversion	V3	
Kurzbezeichnung	INF-ISF-01 Sprache deutsch			
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1 Einrichtung Institut für Softwaretech nik und Fahrzeuginformatik			
SWS / ECTS	3 / 5,0 Modulverantwortli- che/r Prof. Dr. Thomas Thün			
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42 Selbststudium (h) 108			
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten, oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: 50% der Hausaufgaben müssen bestanden sein.			

- Überblick zu Softwaretechniken
- Vorgehensweisen
- Entwurf, Implementierung
- Objektorientierung
- Modellierung, UML
- Software/System-Architekturen
- Muster in der Softwareentwicklung

Qualifikationsziel

Nach Abschluss dieses Moduls besitzen die Studierenden ein grundlegendes Verständnis zur Entwicklung komplexer Softwaresysteme. Sie sind prinzipiell in der Lage, die Aufgabenstellung zu erfassen, zu modellieren und in ein Design umzusetzen.

Literatur

- Ian Sommerville: Software Engineering. 7. Aufl. Addison-Wesley, München 2004, ISBN 0-321-21026-3.
- Helmut Balzert: Lehrbuch der Software-Technik, Spektrum Akademischer Verlag, Heidelberg 1996, 1998, 2001, ISBN 3-8274-0480-0.
- J. Ludewig, H. Lichter: Software Engineering Grundlagen, Menschen, Prozesse, Techniken. 1. Auflage. dpunkt-Verlag, Heidelberg 2006, ISBN 3-89864-268-2

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Software Engineering 1	2,0	Vorlesung	deutsch	
Software Engineering 1	1,0	Übung	deutsch	

Modulname	Software-Entwicklungspraktikum			
Nummer	4220440	Modulversion		
Kurzbezeichnung	INF-SSE-44	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	6 / 7,0	Modulverantwortli- che/r	Prof. Dr. Thomas Thüm	
Arbeitsaufwand (h)	210			
Präsenzstudium (h)	70	Selbststudium (h)	140	
Zwingende Voraussetzungen	Voraussetzung für die Belegung des Software-Entwicklungspraktikums ist der erfolgreiche Abschluss des Moduls "Software Engineering".			
Empfohlene Voraussetzungen	Der erfolgreiche Abschluss der Module "Programmieren 1" und "Programmieren 2" wird empfohlen. Die entsprechenden Inhalte sind selbstständig zu erarbeiten und werden vorausgesetzt.			
Zu erbringende Prüfungsleistung/ Prüfungsform				
Zu erbringende Studienleistung	1 Studienleistung: Experimentelle Arbeit (Gruppenarbeit): Erstellung, Dokumentation und Präsentation von Software im experimentellen Umfeld mit individueller Benotung.			

- Überblick zu Softwaretechniken
- Entwurf, Implementierung
- Objektorientierung
- Modellierung, UML
- Kenntnisse in einem der Anwendungsgebiete

Qualifikationsziel

Nach Abschluss es Moduls, sind die Studierenden in der Lage, ein größeres Softwareentwicklungsprojekt erfolgreich im Team zu bearbeiten. Sie können nach systematischen Methoden der Softwaretechnik, die Anforderungen für das zu entwickelnde System ermitteln, diese in ein Design umsetzen, die zu entwickelnde Software realisieren und testen.

Literatur

- Ian Sommerville: Software Engineering. 7. Aufl. Addison-Wesley, München 2004, ISBN 0-321-21026-3.
- Helmut Balzert: Lehrbuch der Software-Technik, Spektrum Akademischer Verlag, Heidelberg 1996, 1998, 2001, ISBN 3-8274-0480-0.
- J. Ludewig, H. Lichter: Software Engineering Grundlagen, Menschen, Prozesse, Techniken. 1. Auflage. dpunkt-Verlag, Heidelberg 2006, ISBN 3-89864-268-2

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Softwareentwicklungspraktikum (SEP)	6,0	Praktikum	deutsch	

Wahlpflichtbereich Informatik

30 ECTS

Modulname	Elektrotechnische Grundlagen der Technischen Informatik			
Nummer	2424550	Modulversion		
Kurzbezeichnung	ET-NT-55	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Elektrotech- nik, Informationstechnik, Physik	
Moduldauer	1	Einrichtung		
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Tim Fing- scheidt	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	Selbststudium (h)	108	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur 90 Minuten oder mündliche Prüfung 30 Minuten (nach Teilnehmerzahl)			
Zu erbringende Studienleistung				

Inhalte

Einführung in die Grundlagen elektrischer Schaltungen, Entwurf und Analyse elektrischer Netzwerke, elementare Bauelemente, Grundlagen der Systemtechnik, Schaltvorgänge

Qualifikationsziel

Nach Abschluss dieses Moduls können die Studierenden Strom- und Spannungsverhältnisse in einfachen elektrischen Netzwerken für Gleich- und Wechselgrößen bestimmen. Sie sind in der Lage, Eingangs-/Ausgangsverhalten von Vierpolen zu analysieren und Übertragungsfunktionen zu bestimmen. Die Studierenden können mittels der Anwendung der Laplace-Transformation Schaltvorgänge berechnen, was ihnen die notwendigen Vorkenntnisse für Lehrveranstaltungen in der Digitaltechnik aber auch in der Digitalen Signalverarbeitung vermittelt.

Literatur

M. Albach: Grundlagen der Elektrotechnik I, Pearson Studium, ISBN 3-8273-7106-6 M. Albach: Grundlagen der Elektrotechnik II, Pearson Studium, ISBN 3-8273-7108-2 W. Ameling: Grundlagen der Elektrotechnik I, Vieweg, ISBN 3-528-39149-9 W. Ameling: Grundlagen der Elektrotechnik II, Vieweg, ISBN 3-528-29150-8

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Insbesondere erlangen Studierende der Informatik die notwendigen Vorkenntnisse für das Modul "Technische Informatik I für Informatik".

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Elektrotechnische Grundlagen der Technischen Informatik 2,0 Vorlesung					
Literaturhinweise					
M. Albach: Grundlagen der Elektrotechnik I und II, Pearson Studium, ISBN 3-8273-7106-6 bzw. 3-8273-7108-2.					
Elektrotechnische Grundlagen der Technischen Informatik 1,0 Übung deutsch					
Elektrotechnische Grundlagen der Technischen Informatik	1,0	Übung	deutsch		
Elektrotechnische Grundlagen der Technischen Informatik Literaturhinweise	1,0	Übung	deutsch		

Modulname	Rechnerstrukturen 1		
Nummer	2416010	Modulversion	
Kurzbezeichnung	ET-IDA-01	Sprache	deutsch
Turnus		Lehreinheit	Fakultät für Elektrotechnik, Informationstechnik, Physik
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 6,0	Modulverantwortli- che/r	Prof. Dr. Selma Saidi
Arbeitsaufwand (h)	180		
Präsenzstudium (h)	56	Selbststudium (h)	124
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur 120 Minuten oder mündliche Prüfung 30 Minuten		
Zu erbringende Studienleistung			

- Einführung in die Rechnerarchitektur
- Prinzipien der Rechnerarchitektur (Steuerung, Pipelining, Speicherhierarchie)
- Mikroprozessoren (RISC, ISC)
- Quantitativer Rechnerentwurf
- Entwurf von Befehlssätzen

Qualifikationsziel

Die Studierenden besitzen Grundkenntnisse moderner Rechnerarchitekturen und ein Verständnis der Funktion moderner Computer. Mit dem erworbenen Wissen sind sie in der Lage, Rechnersysteme auf Komponentenbasis zu konfigurieren und in ihrer Leistungsfähigkeit zu bewerten.

Literatur

- D. Patterson, J. L. Hennessy, Computer Organization and Design The Hardware/Software Interface, Morgan Kaufmann Publishers, ISBN 978-0-12-370606-5
- W. Stallings, Computer Organization & Architecture, 6. Edition, Prentice Hall, ISBN-13: 978-0-13-035119-7
- Vorlesungsbegleitendes Material

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Rechnerstrukturen I	1,0	Übung	deutsch

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Rechnerstrukturen I	3,0	Vorlesung	deutsch

Modulname	Raumfahrtelektronik 1		
Nummer	2416470	Modulversion	
Kurzbezeichnung	ET-IDA-47	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Harald Michalik
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur 90 Minuten oder mündliche Prüfung 30 Minuten		
Zu erbringende Studienleistung			

Es werden einführende Kenntnisse der Raumfahrtsystemtechnik zu Umweltbedingungen, System Engineering, Test und Verifikation sowie Zuverlässigkeit vermittelt. Für die elektrischen und elektronischen Subsysteme eines Raumfahrzeuges (Telemetrie, Lageregelung, Energieversorgung und Bordrechner) werden Design und Aufbau erläutert.

Randbedingungen zur Systemauslegung:

- Einführung
- Astrodynamik und Orbits
- Umweltbedingungen
- Zuverlässigkeit von komplexen Systemen

Allgemeine Elektronik im Raumfahrzeug:

- Bordrechnersystem und Energieversorgung
- Lageregelung und Antriebe
- Telemetrie und Telekommandierung
- Systemdesign

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden befähigt, die Subsysteme, Telemetrie, Lageregelung, Energieversorgung und Bordrechner unter der Randbedingung der Raumfahrtanwendung auszulegen.

Literatur

#W. Larson and J. Wertz, Space Mission Analysis, Second Edition, Kluwer 1992

- P. Fortescue and J. Stark, Spacecraft Systems Engineering, Wiley 1995 #
- D. Roddy, Satellite Communications, McGraw-Hill, 1989

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	,			
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Raumfahrtelektronik I	2,0	Vorlesung	deutsch	
Raumfahrtelektronik I	1,0	Übung	deutsch	

Modulname	Hardware-Software-Systeme		
Nummer	4211270	Modulversion	V2
Kurzbezeichnung	INF-EIS-27	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Guillermo Payá Vayá
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten, oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam		
Zu erbringende Studienleistung			

- Klassischer Hardware-Entwurf
- Hardware-Beschreibungssprachen
- Register-Transfer-Logik und Logiksynthese
- Programmierbare Logik und System-on-Chip
- Hardware-Software-Codesign
- System-Entwurf und eingebettete Systeme

Qualifikationsziel

Die Studierenden entwerfen und testen Ihre eigene Hardware praktisch und erfahren, wie auch Hardware heute "nur" programmiert wird. Sie lassen Ihre Hardware mit Standard-Software kommunizieren und gewinnen Einblicke in das Zusammenspiel von Hardware und Software.

Literatur

- Ming-Bo Lin: Introduction to VLSI Systems. A logic, circuit and system perspective. 1st edition. CRC Press, 2012.
- Douglas J. Smith: HDL Chip Design: A Practical Guide for Designing, Synthesizing, and Simulating ASICs and FPGAs Using VHDL Or Verilog. Doone Publications,1998.
- Brian Bailey, Grant Martin: ESL Models and their Application. Electronic System Level Design and Verification in Practice. Springer Verlag, 2010.
- Skript und multimediale Lernprogramme

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
ZUGEHORIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Hardware-Software-Systeme	2,0	Vorlesung/Übung	deutsch		
Literaturhinweise					
- Ming-Bo Lin: Introduction to VLSI Systems. A logic, circuit and system perspective. 1st edition. CRC Press, 2012 Douglas J. Smith: HDL Chip Design: A Practical Guide for Designing, Synthesizing, and Simulating ASICs and FPGAs Using VHDL Or Verilog. Doone Publications,1998 Brian Bailey, Grant Martin: ESL Models and their Application. Electronic System Level Design and Verification in Practice.Springer Verlag, 2010 Skript und multimediale Lernprogramme					
Hardware-Software-Systeme	2,0	Übung	deutsch		

Modulname	Hardware Praktikum		
Nummer	4211420	Modulversion	
Kurzbezeichnung	INF-EIS-42	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer		Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Guillermo Payá Vayá
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung	1 Studienleistung: Kolloquium oder Protokoll		

Digitaler Schaltungsentwurf: - programmierbare Logik, - kombinatorische Logik, - Flipflops, - modulares Design und Hierarchie - Zustandsautomaten Messtechnik: - Oszilloskop, - Logikanalysator

Qualifikationsziel

Die Studierenden werden in die Lage versetzt, selbstständig logische Schaltungen mit der Hardwarebeschreibungssprache Verilog zu entwerfen und auf einem FPGA zu testen. Weiterhin sind sie nach Abschluss des Moduls befähigt, digitale Schaltungen mit Hilfe von Oszilloskop und Logikanalysator zu untersuchen und Fehler zu finden.

Literatur

es wird für die Studierenden ein Praktikumsleitfaden bereitgestellt

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	SWS	Art LVA	Sprache	
Hardware Praktikum	4,0	Praktikum	deutsch	
Literaturhinweise				
Praktikumsleitfaden				
Hardware Praktikum	1,0	Kolloquium	deutsch	

Modulname	Grundlagen Maschinelles Lernen		
Nummer	4215370	Modulversion	V2
Kurzbezeichnung	INF-ROB-37	Sprache	englisch deutsch
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer		Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Jochen Steil
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: mündliche Prüfung (20-30 Minuten) oder eine Klausur (90 Minuten) oder Take-Home-Exam		
Zu erbringende Studienleistung			

Grundlegende Prinzipien und Theorien des Maschinellen Lernens und die zugrundeliegenden mathematischen und statistischen Verfahren werden eingeführt sowie Lernprobleme formalisiert. Wichtige grundlegende Begriffe Konzepte und Verfahren werden behandelt, insbesondere zur Regression, darunter etwa:

- Modellauswahl, Bias vs. Parameteroptimierung
- Training, Test und Validierung
- Generalisierung, Overfitting, Regularisierung
- Lineare Regression, Generalisierte Linear Modelle
- Schätzer, Erwartungstreue, Varianz
- Konzeptlernen, Entscheidungsbäume
- Lazy Learning
- Gaussian Mixtures, Gaussian Mixture Regression
- Unified Regression Models

Qualifikationsziel

Die Studieren erwerben die Kompetenz, ein maschinelles Lernproblem zu analysieren, zu formalisieren, ein geeignetes Verfahren auszuwählen und hinsichtlich seiner Leistungsfähigkeit zu beurteilen. In den Übungen wird das Gelernte vertieft und praktisch, auch in Form von Programmieraufgaben, angewendet.

Literatur

Bishop, Pattern Recognition & Machine Learning, Springer, 2006

Mitchell, Machine Learning, McGraw-Hill, 1997

Vorlesungsskripte weiteres wird in der Vorlesung nach Bedarf bekanntgegeben

ZUGEHÖRIGE LEHRVERANSTALTUNGEN Belegungslogik bei der Wahl von Lehrveranstaltungen Anwesenheitspflicht Titel der Veranstaltung **SWS** Art LVA Sprache Vorlesung/Übung Grundlagen Maschinelles Lernen 4,0 englisch Literaturhinweise Bishop, Pattern Recognition & Machine Learning, Springer, 2006 Mitchell, Machine Learning, McGraw-Hill, 1997 Vorlesungsskripte weiteres wird in der Vorlesung nach Bedarf bekanntgegeben Übung Grundlagen Maschinelles Lernen 2,0 englisch

Modulname	Praktische Aspekte der Informatik		
Nummer	4216260	Modulversion	V2
Kurzbezeichnung	INF-CG-26	Sprache	deutsch
Turnus	Unregelmäßig	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Marcus Magnor
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Durchführung eines eigenständigen Softwareprojekts sowie anschließende Präsentation im Kolloquium oder Take-Home-Exam. Für die erfolgreiche Teilnahme am Modul wird die regelmäßige Teilnahme an den Übungen empfohlen.		
Zu erbringende Studienleistung			

Interessierte Studierende lernen in dieser Lehrveranstaltung den Umgang mit den in der Berufswelt verbreiteten Softare-Tools.

Hierzu zählen

- -Programmierung mit C++ (inkl. Umgang mit externen Softwarebibliotheken)
- -Codegenerierungstools make, cmake, gmake
- -Debugger gdb (inkl. graphischer Interfaces)
- -Profiler gprof-valgrind
- -UML-Tool Visio
- -Versionierungssoftware svn
- -Dokumentation mit doxygen
- -Entwicklung und Prototyping mit Matlab

Die Themenauswahl beinhaltet somit die elementarsten Werkzeuge aus der praktischen Informatik.

Innerhalb des Praktikums werden die einzelnen Softwaretools vorgestellt. Anhand kurzer Übungsaufgaben können die Studierenden jeweils den Umgang mit den Softwarewerkzeugen erlernen.

Das Kolloquium erfolgt zeitlich nach dem Praktikumsteil. In Vorbereitung zum Kolloquium erstellt und dokumentiert jeder Studierende ein kleines Softwareprojekt. Dabei ist es erforderlich, die während des Praktikums erlernten Fähigkeiten einzusetzen. Während des Kolloquiums stellen die Studierenden ihre Projekte in einer mündlichen Präsentation den anderen Kursteilnehmern vor.

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage, mit den in der Berufswelt gängigen Softwaretools zu arbeiten. Die dazu notwenigen Fähigkeiten werden sowohl isoliert (Praktikum) als auch im Zusammenspiel (Kolloquium) erarbeitet. Neben diesem naheliegenden berufsqualifierenden Vorteil werden die Studierenden auch auf weitere praktische Arbeiten während des Studiums vorbereitet.

Literatur

Wird themenabhängig bekanntgegeben

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Praktische Aspekte der Informatik	2,0	Praktikum	deutsch	
Praktische Aspekte der Informatik	2,0	Vorlesung	deutsch	
Literaturhinweise	· ·		,	
wird themengebunden bekanntgegeben				

Modulname	Computergraphik - Grundlagenpraktikum			
Nummer	4216230	Modulversion		
Kurzbezeichnung	INF-CG-23	Sprache	deutsch	
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer		Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Marcus Magnor	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform				
Zu erbringende Studienleistung	1 Studienleistung: Software-/Programmentwicklung. Die Abgabe besteht aus dem gut kommentierten Sourcecode mit Projektfiles/Makefiles inkl. einer schriftlichen Dokumentation der Praktikumsarbeiten.			

- Low-level Graphikbibliothek (OpenGL oder DirectX) anhand von konkreten Programmieraufgaben. - Dabei kann eine einzelne, grössere Aufgabe aus der Computergraphik bearbeitet werden. - Alternativ eine Aufgabenfolge zur Abdeckung eines bestimmten Themengebiets

Qualifikationsziel

Die Studierenden können ein thematisch eng umgrenztes und genau beschriebenes Projekt selbstständig erfassen und praktisch bearbeiten. Sie können eine low-level-Graphikbibliothek praktisch verwenden.

Literatur

- J. Neider, T. Davis, M. Woo: OpenGL Programmierung Guide: The Official Guide to Learning OpenGL. Version 2. Addison-Wesley, 2007. Weiterführende Literatur je nach gewähltem Themengebiet

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Praktikum Computergraphik-Einführung		Praktikum	deutsch	
Literaturhinweise				
- J. Neider, T. Davis, M. Woo: OpenGL Programmierung Learning OpenGL. Version 2. Addison-Wesley, 2007. W gewähltem Themengebiet	_			

Modulname	Computergraphik - Grundlagen			
Nummer	4216300	Modulversion	V2	
Kurzbezeichnung	INF-CG-30	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Marcus Magnor	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten, oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: regelmäßige erfolgreiche Teilnahme an den Übungen (50% der Übungen müssen bestanden sein)			

- Grundlagen der digitalen Bilderzeugung
- physikalische Gesetze des Lichttransports
- die menschliche visuelle Wahrnehmung
- 3D-Geometrie und Transformationen
- der Ray Tracing-Ansatz
- Beschleunigungsstrukturen
- Material- und Reflexionsmodelle
- Grundlagen der Bild-Signalverarbeitung

Qualifikationsziel

Nach Abschluss dieses Moduls besitzen die Studierenden grundlegende Kenntnisse über die theoretischen und praktischen Grundlagen der Computergraphik. Am Beispiel des Ray Tracing-Ansatzes werden eine Reihe fundamentaler Themen der Bilderzeugung sowohl theoretisch als auch praktisch erläutert. Die Studierenden sind in der Lage, alle Komponenten eines Ray Tracers zu verstehen und einen eigenen Ray Tracer zu entwickeln.

Literatur

- James Foley, Andries Van Dam, et al., Computer Graphics: Principles and Practice, 2. Ausgabe, Addison-Wesley, 2009
- Peter Shirley: Realistic Ray-Tracing. AK Peters, 2009
- Peter Shirley, Steve Marschner: Fundamentals of Computer Graphics. AK Peters/CRC Press, 2009.

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Titel der Veranstaltung		Art LVA	Sprache
Computergraphik I - Grundlagen	4,0	Vorlesung/Übung	deutsch

Literaturhinweise

- Peter Shirley: Realistic Ray-Tracing . AK Peters, 2009
- James Foley, Andries Van Dam, et. Al., Computer Graphics: Principles and Practice. Addison-Wesley, 2009
- Frank Nielsen, Visual Computing, Charles River Media, 2005
- Steven J. Gortler, Foundations of 3D Graphics, Mit Pr, 2012
- John F. Hughes, Computer Graphics: Principles and Practice, Addison-Wesley, 2009

Modulname	Grundlagenpraktikum Computer Vision		
Nummer	4216360	Modulversion	
Kurzbezeichnung	INF-CG-36	Sprache	englisch deutsch
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Martin Eise- mann
Arbeitsaufwand (h)			
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung	1 Studienleistung: Software-/Programmentwicklung. Die Abgabe besteht aus dem gut dokumentierten Sourcecode mit sämtlichen Pro- jektdateien und notwendigen Daten inkl. einer schriftlichen Dokumentation der Prakti- kumsarbeiten.		

- Low- und High Level Computer Vision und/oder Graphikbibliotheken (OpenCV und/oder PyTorch/Tensor-flow sowie ggf. OpenGL oder Vulkan)

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage, ein genau definiertes und abgegrenztes wissenschaftliches Projekt selbstständig zu erfassen und praktisch zu bearbeiten.

Literatur

weiterführende Literatur, je nach gewähltem Themengebiet

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltung	en				
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Grundlagenpraktikum Computer Vision	4,0	Praktikum	englisch deutsch		
Literaturhinweise					
weiterführende Literatur, je nach gewähltem Themengebiet					

Modulname	Einführung in die Medizinische Informatik			
Nummer	4217610	Modulversion	V2	
Kurzbezeichnung	INF-MI-61	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Peter L. Reichertz Institut für Medizinische Informatik	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Thomas Deserno	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten) oder Hausarbeit oder Referat oder Erstellung und Dokumentation von Rechnerprogrammen oder experimentelle Arbeit oder Portfolioprüfung oder Take-Home-Exam			
Zu erbringende Studienleistung				

Medizinische Informatik:

- zur individuellen Gesundheitsversorgung
- zur Erkenntnisgewinnung in der Medizin
- zur Organisation von Gesundheitsversorgung

Methoden, Beispiele, Exkursionen in die Praxis

Qualifikationsziel

Die Studierenden erhalten einen Einblick in die Zielsetzung und Teilgebiete der Medizinischen Informatik. Sie kennen die Problemstellungen und können hierfür Lösungsansätze entwickeln. Zudem sind die Studierenden mit dem Aufbau von Gesundheitssytemen vertraut und sind in der Lage, Methoden zur Entscheidungsfindung sowie zum Zugriff auf Wissen sowie dessen Verarbeitung zu entwickeln.

Literatur

- Dugas, Martin (2017): Medizininformatik. Springer Vieweg, Berlin.
- IMIA Yearbook of Medical Informatics [erscheint jährlich]
- weitere aktuelle Literatur wird im Rahmen der Vorlesung bekanntgegeben

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Einführung in die Medizinische Informatik 3,0		Vorlesung	deutsch	
Literaturhinweise				
- Dugas, Martin (2017): Medizininformatik. Springer Vieweg, Berlin IMIA Yearbook of Medical Informatics [erscheint jährlich] - weitere aktuelle Literatur wird im Rahmen der Vorlesung bekanntgegeben				
Einführung in die Medizinische Informatik	1,0	Übung	deutsch	

Modulname	Medizinische Informationssysteme A			
Nummer	4217620	Modulversion	V2	
Kurzbezeichnung	INF-MI-62	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Peter L. Reichertz Insti- tut für Medizinische Informatik	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Thomas Deserno	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	Selbststudium (h)	108	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Empfehlung: Vor der Teilnahme an "Medizinische Informationssysteme A" sollte das Modul "Einführung in die Medizinische Informatik" gehört werden.			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten) oder Hausarbeit oder Referat oder Erstellung und Dokumentation von Rechnerprogrammen oder experimentelle Arbeit oder Portfolio oder Take-Home-Exam			
Zu erbringende Studienleistung				

- Einführung in Informationssysteme des Gesundheitswesens, insb. in Krankenhausinformationssysteme
- Konzepte des Informationsmanagements
- Phasen des taktischen Informationsmanagements (Projektstart, Projektplanung, Projektdurchführung/-begleitung, Projektabschluss)
- Module des taktischen Informationsmanagements (Systemanalyse inkl. Modellierung und Simulation von Informationssystemen und Geschäftsprozessen, Systemspezifikation, Systemauswahl, Systemeinführung, Systemevaluation)

Qualifikationsziel

Nach Abschluss dieses Moduls besitzen die Studierenden Kenntnisse über Informationssysteme, insbesondere des Gesundheitswesens, und deren Modellierung und Analyse. Darüber hinaus sind die Studierenden in der Lage, Methoden, Werkzeuge und Aktivitäten für das taktische Informationsmanagement am Beispiel von Informationssystemen des Gesundheitswesens anzuwenden. Sie sind befähigt, das Erlernte in aktuelle gesundheitspolitische Erörterungen einzuordnen(z.B. eHealth-Gesetzgebung...).

Literatur

- Ammenwerth, E.; Haux. R.et al.(2015): IT-Projektmanagement im Gesundheitswesen. Schattauer Verlag, Stuttgart. ISBN 978-3-7945-3071-7
- Schlegel, H. (Hrsg.)(2010):Steuerung der IT im Klinikmanagement. Vieweg + Teubner Verlag, Wiesbaden.
- Dugas, Martin (2017): Medizininformatik. Berlin, Springer Vieweg.

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN Belegungslogik bei der Wahl von Lehrveranstaltungen Anwesenheitspflicht Titel der Veranstaltung SWS Art LVA Sprache Medizinische Informationssysteme A 2,0 Vorlesung deutsch

Literaturhinweise

- Ammenwerth, E.; Haux. R.et al.(2015): IT-Projektmanagement im Gesundheitswesen. Schattauer Verlag, Stuttgart. ISBN 978-3-7945-3071-7 - Schlegel, H. (Hrsg.)(2010):Steuerung der IT im Klinikmanagement. Vieweg + Teubner Verlag, Wiesbaden. - Dugas, Martin (2017): Medizininformatik. Berlin, Springer Vieweg.

Medizinische Informationssysteme A	1,0	Übung	deutsch
Literaturhinweise			

- Ammenwerth, E.; Haux. R.et al.(2015): IT-Projektmanagement im Gesundheitswesen. Schattauer Verlag, Stuttgart. ISBN 978-3-7945-3071-7 - Schlegel, H. (Hrsg.)(2010):Steuerung der IT im Klinikmanagement. Vieweg + Teubner Verlag, Wiesbaden. - Dugas, Martin (2017): Medizininformatik. Berlin, Springer Vieweg.

Modulname	Repräsentation und Analyse medizinischer Daten			
Nummer	4217680	Modulversion	V2	
Kurzbezeichnung	INF-MI-68	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Peter L. Reichertz Institut für Medizinische Informatik	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Tim Kacprow- ski	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	Selbststudium (h)	108	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Vor der Teilnahme an "Repräsentation und Analyse medizinischer Daten" sollte das Modul "Einführung in die Medizinische Informatik" gehört werden.			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten) oder Portfolio oder Take-Home-Exam			
Zu erbringende Studienleistung				

- Einführung
- Grundbegriffe zu medizinischen Dokumentations- und Ordnungssystemen
- Wichtige medizinische Ordnungssysteme
- Typische medizinische Dokumentationen
- Nutzen und Gebrauch medizinischer Dokumentationssysteme
- Planung medizinischer Dokumentations- und Ordnungssysteme
- Dokumentation in Krankenhausinformationssystemen
- Dokumentation bei klinischen Studien

Qualifikationsziel

Die Studierenden besitzen Kenntnisse über gängige Dokumentations- und Ordnungssysteme in der Medizin. Sie sind mit den Methoden des Klassierens und Indexierens vertraut und können diese anwenden, insb. bei Diagnosen. Sie sind der Lage, typische medizinische Dokumentationen zu analysieren sowie diese in aktuelle gesundheitspolitische Erörterungen einzuordnen. Sie sollen medizinische Dokumentations- und Ordnungssysteme konstruieren können.

Literatur

- Leiner, F; Gaus, W et al (2012): Medizinische Dokumentation, 6. Auflage. Stuttgart: Schattauer Verlag
- IMIA Yearbook of Medical Informatics [erscheint jährlich]
- Dugas, Martin (2017). Medizininformatik. Berlin: Springer Vieweg.

ተ

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Repräsentation und Analyse medizinischer Daten	3,0	Vorlesung/Übung	deutsch		
LV-Informatik (10)	1,0	Übung	deutsch		

Modulname	Bild- und Signalerzeugung in der Biomedizin			
Nummer	4217750	Modulversion	V2	
Kurzbezeichnung	INF-MI-75	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer		Einrichtung		
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Thomas Deserno	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	Selbststudium (h)	108	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten) oder Portfolio oder Take-Home-Exam			
Zu erbringende Studienleistung				

Temperatur und Bewegung (Beschleunigung) sowie elektrische und magnetische Impulse werden vom menschlichen Körper erzeugt und können mit einfachen Sensoren gemessen werden. Zudem werden optische, akustische, magnetische und auf Röntgenstrahlen basierende physikalische Effekte ausgenutzt, um die Morphologie und die Funktion des menschlichen Körpers darzustellen und zu verstehen. Zur computerbasierten Analyse müssen diese Signale digitalisiert werden. Dann kann eine Verbesserung mit einfachen Algorithmen der Bild- und Signalverarbeitung erfolgen.

Qualifikationsziel

Die Studierenden können nach erfolgreichem Abschluss des Moduls intrinsische Sginalquellen des menschlichen Körpers auflisten und verstehen. Des Weiteren sind sie in der Lage, extrinsische Methoden zur Bild- und Signalerzeugung vom menschlichen Körper zu benennen und zu konstruieren sowie die Digitalisierung von Signalen im ein-, zwei-, und dreidimensionalen Raum zu beschreiben. Sie verstehen die Grundlagen der digitalen Signal- und Bildverbesserung und können die Methoden anwenden sowie Biomedizinische Bild- und Signaldaten visualisieren.

Literatur

- Wehrli, W., Loosli-Hermes, J. (2003): Enzyklopädie elektrophysiologischer Untersuchungen. 2. Auflage. Urban & Fischer Verlag (Elsevier). ISBN-13: 978-3437474705.
- Dössel, O.(2016): Bildgebende Verfahren in der Medizin: Von der Technik zur medizinischen Anwendung. 2. Auflage. Springer Vieweg Verlag. ISBN-13: 978-3642544064.
- Preim, B., Bartz, D. (2007): Visualization in Medicine: Theory, Algorithms, and Applications. Morgan Kaufmann. ISBN-13: 978-0123705969.
- Burger, W., Burge, M.J.(2015): Digitale Bildverarbeitung: Eine algorithmische Einführung mit Java. 3. Auflage. Springer-Vieweg. ISBN-13: 978-3-642-04604-9.
- Jähne, B.(2012): Digitale Bildverarbeitung und Bildgewinnung. 7. Auflage. Springer-Verlag Berlin. ISBN-13: 978-3642049514.
- Werner, M.(2011): Digitale Signalverarbeitung mit MATLAB: Grundkurs mit 16 ausführlichen Versuchen. 5. Auflage. Vieweg & Teubner Verlag. ISBN-13: 978-3834814739.

- Majumder, S., Pal, S., Mitra, M.(2012): Time Plane, Feature Extraction of ECG wave and Abnormality Detection: With MATLAB Program. Lap Lambert Academic Publishing. ISBN-13: 978-3847339779.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltunger	n		
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Bild- und Signalerzeugung in der Biomedizin	3.0	Vorlesung/Übung	deutsch

Literaturhinweise

- Wehrli, W., Loosli-Hermes, J. (2003): Enzyklopädie elektrophysiologischer Untersuchungen. 2. Auflage. Urban & Fischer Verlag (Elsevier). ISBN-13: 978-3437474705. - Dössel, O.(2016): Bildgebende Verfahren in der Medizin: Von der Technik zur medizinischen Anwendung. 2. Auflage. Springer Vieweg Verlag. ISBN-13: 978-3642544064. - Preim, B., Bartz, D. (2007): Visualization in Medicine: Theory, Algorithms, and Applications. Morgan Kaufmann. ISBN-13: 978-0123705969. - Burger, W., Burge, M.J.(2015): Digitale Bildverarbeitung: Eine algorithmische Einführung mit Java. 3. Auflage. Springer-Vieweg. ISBN-13: 978-3-642-04604-9. - Jähne, B.(2012): Digitale Bildverarbeitung und Bildgewinnung. 7. Auflage. Springer-Verlag Berlin. ISBN-13: 978-3642049514. - Werner, M.(2011): Digitale Signalverarbeitung mit MATLAB: Grundkurs mit 16 ausführlichen Versuchen. 5. Auflage. Vieweg & Teubner Verlag. ISBN-13: 978-3834814739. - Majumder, S., Pal, S., Mitra, M.(2012): Time Plane, Feature Extraction of ECG wave and Abnormality Detection: With MATLAB Program. Lap Lambert Academic Publishing. ISBN-13: 978-3847339779.

Bild- und Signalerzeugung in der Biomedizin	1,0	Übung	deutsch
---	-----	-------	---------

Modulname	Cloud Computing			
Nummer	4223450	Modulversion	V2	
Kurzbezeichnung	INF-VS-45	Sprache	englisch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Institut für Betriebssysteme und Rechnerverbund	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Rüdiger Kapitza	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: Erfolgreiche Bearbeitung von Hausaufgaben: Jedes Aufgabenblatt muss mit mind. 30% der erzielbaren Punktzahl gelöst werden und insgesamt müssen mind. 50% der Gesamtpunktzahl aller Übungsaufgaben erzielt werden.			

- * Überblick Cloud Computing
- * Entwicklung von Cluster, Grid und Utility Computing hin zu Cloud Computing
- * Auswirkungen auf Wirtschaft (z.B. Kostendruck und Energie) und Gesellschaft (z.B. Datenschutz)
- * Grundlagen verteilter Programmierung (Web Services/SOAP/REST)
- * Basistechnologie und Architektur
- * Virtualisierung als Basis für Cloud Computing
- * Ansätze zur Virtualisierung von Hardware (z.B. Xen, KVM oder VMware ESX)
- * Vor- und Nachteile von Virtualisierung (z.B.hinsichtlich Leistungsfähigkeit und Wartbarkeit)
- * Infrastructure as a Service am Beispiel von Eucalyptus und Amazon EC2
- * Deployment und Verwaltung von verteilten Anwendungen
- * Verteilte Dateisysteme für Cloud-Anwendungen
- * Bereitstellung von zuverlässigem Massenspeicher, basierend auf unzuverlässigen Komponenten
- * Verteilte Programmierung für datenlastige Cloud-Anwendungen
- * Skalierbare Verarbeitung von großen Datenmengen
- * Interoperabilität und Multi-Cloud Computing
- * Fehlertoleranz und Sicherheit im Kontext von Cloud Computing
- * Aktuelle Forschungstrends (z.B. neue Programmiersprachen, einbruchstolerante Systeme)

Qualifikationsziel

Nach Abschluss des Moduls besitzen die Studierenden Kenntnisse über Grundlagen, Methoden und Techniken des Cloud Computing. Weiterhin besitzen Studierende Wissen über existierende Cloud Computing-Techniken und können sowohl Anwendungen als auch Systemkomponenten für dieses Umfeld entwickeln und bewerten.

Literatur

* A view of cloud computing

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.

Communication of the ACM, 53(4):50-58, 2010.

Cloud computing: An overview M. Creeger.

* Cloud computing: An overview.Queue, 7(5):3-4, 2009. Advisor-Creeger, Mache.

Weitere Literaturangaben siehe unter http://www.ibr.cs.tu-bs.de/courses/

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveransta	altungen		
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Cloud Computing	2,0	Vorlesung	englisch deutsch
Cloud Computing	2,0	Übung	englisch deutsch
Cloud Computing	1,0	Online-kleine Übung	deutsch

Modulname	Praktikum Enterprise Applications		
Nummer	4223460	Modulversion	
Kurzbezeichnung	INF-VS-46	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Betriebssysteme und Rechnerverbund
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Rüdiger Kapitza
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung	1 Studienleistung: Bestehen des Kolloquiums		

- Einführung in JAVA EE
- praktische Realisierung einer Multi-Tier-Anwendung anhand einer realitätsnahen Aufgabenstellung
- Persistenz-APIs in Java
- Techniken zur Verbesserung der Verfügbarkeit (inkl. Geo-Redundanz)

Qualifikationsziel

Die Studierenden werden befähigt, verteilte Unternehmensanwendungen zu planen (Multi-Tier-Architektur) und solche Systeme mit Hilfe von JAVA EE praktisch umzusetzen.

Literatur

- Deepak Alur, Dan Malks, John Crupi: Core J2EE Patterns: Best Practicies and Design. Prentice Hall, 2003.
- Eric Jendrock, Debbie Carson, Ian Evans, Devika Gollapudi, Kim Haase, Chinmayee Srivathsa: The Java EE 6 Tutorial 2: Advanced Topics. Addison-Wesley Verlag, 2012 (vorauss. Erscheinungsdatum: 10/2012)

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			,
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Modulname	Praktikum Cloud Computing		
Nummer	4223470	Modulversion	
Kurzbezeichnung	INF-VS-47	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Betriebssysteme und Rechnerverbund
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Rüdiger Kapitza
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen		`	
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung	1 Studienleistung: erfolgreiche Bearbeitung der Praktikumsaufgaben und Vortrag zum Inhalt der Aufgaben (je 2-3 Studierende, Dauer 30 Minuten)		

- Einführung in Cloud Computing am Beispiel einer Open Source Plattform
- Aspekte der Programmierung verteilter Systeme
- Öffentliche Schnittstellen einer Infrastruktur Cloud
- Interne Struktur und Mechanismen einer Infrastruktur Cloud

Qualifikationsziel

Die Studierenden werden befähigt Cloud Infrastrukturen zu verwenden, konfigurieren sowie zu erweitern.

Literatur

- Armbrust, Michael, Fox, Armando, Griffith, Rean, Joseph, Anthony D., Katz, Randy, Konwinski, Andy, Lee, Gunho, Patterson, David, Rabkin, Ariel, Stoica, Ion and Zaharia, Matei: A view of cloud computing, in Communication of the ACM, Vol. 53, No. 4, pages 50-58, ACM, 2010 (armbrust10cloud, BibTeX)
- Creeger, Mache: Cloud Computing: An Overview, in Queue, Vol. 7, No. 5, pages 3-4, ACM, 2009 (creeger)09cloud, BibTeX, Advisor-Creeger, Mache)
- OpenStack http://docs.openstack.org/content/index.html

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Praktikum Cloud Computing	3,0	Praktikum	deutsch
Praktikum Cloud Computing	1,0	Kolloquium	deutsch

Modulname	Verteilte Systeme		
Nummer	4225080	Modulversion	V2
Kurzbezeichnung	INF-IBR-08	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Betriebssy- steme und Rechnerver- bund
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Christian Mengert-Dietrich
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam		
Zu erbringende Studienleistung			

- Client/Server
- Middleware
- Namensräume
- Konsistenz und Replikation
- Sicherheit
- Verteilte objektbasierte Systeme
- Verteilte Dateisysteme
- Verteilte Dokumentensysteme
- Verteilte koordinationsbasierte Systeme
- Web-Technolgien

Qualifikationsziel

Nach Abschluss des Moduls besitzen die Studierenden grundlegende Kenntnisse über Theorie und Praxis verteilter Systeme. Sie besitzen Kenntnisse über Techniken und Methoden sowie Einblick in wichtige und weit verbreitete verteilte Systeme. Studierende sollen befähigt sein, sowohl selbst verteilte Systeme zu entwerfen oder zu ändern, als auch eigenständig Klassifikation und Bewertung verteilter Systeme durchzuführen.

Literatur

- A. Tanenbaum, Marten van Stehen: Verteilte Systeme, 2. Auflage, Pearson, 2007
- G. Coulouris, J. Dollimore, T. Kindberg: Verteilte Systeme Konzepte und Design, 3. Auflage, Pearson, 2002
- C. Cachin, R. Guerraoui, L. Rodrigues: Introduction to Reliable and Secure Distributed Programming, 2nd edition, 2011

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN Belegungslogik bei der Wahl von Lehrveranstaltungen Anwesenheitspflicht Titel der Veranstaltung **SWS** Art LVA Sprache Verteilte Systeme 2,0 Vorlesung deutsch Literaturhinweise A. Tanenbaum, Marten van Stehen: Verteilte Systeme, 2. Auflage, Pearson, 2007 G. Coulouris, J. Dollimore, T. Kindberg: Verteilte Systeme - Konzepte und Design, 3. Auflage, Pearson, C. Cachin, R. Guerraoui, L. Rodrigues: Introduction to Reliable and Secure Distributed Programming, 2nd edition, 2011 Übung Verteilte Systeme 1,0 deutsch

Modulname	Algorithmik-Praktikum			
Nummer	4227100	Modulversion		
Kurzbezeichnung	INF-ALG-10	Sprache	deutsch	
Turnus	Unregelmäßig	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Institut für Betriebssysteme und Rechnerverbund	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Sandor Fekete	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	Selbststudium (h)	108	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform				
Zu erbringende Studienleistung	1 Studienleistung: Kolloquium zum Praktikum. Genaue Modalitäten werden zu Beginn der Vorlesung bekanntgegeben.			
Inhalte				

Entwurf und Implementierung von Algorithmen zur Personenerkennung im "Sensorflur".

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden in der Lage, Algorithmen zu entwerfen, aufzubauen und umzusetzen in Bezug auf geometrische und graphentheoretische Fragestellungen.

Literatur

Die Literaturquellen variieren je nach Thema.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA			
The der veranstallang	3₩3	AILEVA	Sprache		
Algorithmik-Praktikum	3,0	Praktikum	deutsch		
			-		

Modulname	Netzwerkalgorithmen			
Nummer	4227120	Modulversion	V2	
Kurzbezeichnung	INF-ALG-12	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Institut für Betriebssy- steme und Rechnerver- bund	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Sandor Fekete	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 120 Minuten oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: 50% der Übungen müssen bestanden sein			

- Graphen und diskrete Strukturen
- Wichtige diskrete Optimierungsprobleme im Überblick
- Algorithmen zur Berechnung optimaler Bäume
- Algorithmen zur Berechnung optimaler Wege
- Algorithmen zur Berechnung optimaler Flüsse
- Algorithmen zur Berechnung optimaler Matchings

Qualifikationsziel

Die Studierenden besitzen die Fähigkeit zur Modellierung im Rahmen diskreter Optimierungsprobleme, kennen algorithmische Lösungsansätze, besitzen die Fähigkeit zur Implementation und Anwendung der behandelten Probleme und können die Anwendbarkeit und Komplexität von Modellen und Algorithmen beurteilen.

Literatur

- B. Korte, J. Vygen: Combinatorial Optimization.5th edition. Springer-Verlag, Berlin Heidelberg 2012. hzw
- B. Korte, J. Vygen: Kombinatorische Optimierung: Theorie und Algorithmen. 2. deutsche Auflage. Springer-Verlag, Berlin Heidelberg 2012.
- Cook, Cunningham, Pulleyblank, Schrijver: Combinatorial Optimization. 1st edition. John Wiley & Sons, 1997.
- C. Papdimitriou, K. Steiglitz: Combinatorial Optimization: Algorithms and Complexity. 1st edition. Dover Publication Inc., New York 1998.

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache
Netzwerkalgorithmen	2,0	Vorlesung	deutsch

Literaturhinweise

- B. Korte, J. Vygen: Combinatorial Optimization.5th edition. Springer-Verlag, Berlin Heidelberg 2012. bzw. - B. Korte, J. Vygen: Kombinatorische Optimierung: Theorie und Algorithmen. 2. deutsche Auflage. Springer-Verlag, Berlin Heidelberg 2012. - Cook, Cunningham, Pulleyblank, Schrijver: Combinatorial Optimization. 1st edition. John Wiley & Sons, 1997. - C. Papdimitriou, K. Steiglitz: Combinatorial Optimization: Algorithms and Complexity. 1st edition. Dover Publication Inc., New York 1998.

Netzwerkalgorithmen	1,0	Übung	deutsch
Netzwerkalgorithmen	1,0	kleine Übung	deutsch

Literaturhinweise

- B. Korte, J. Vygen: Combinatorial Optimization.5th edition. Springer-Verlag, Berlin Heidelberg 2012. bzw. - B. Korte, J. Vygen: Kombinatorische Optimierung: Theorie und Algorithmen. 2. deutsche Auflage. Springer-Verlag, Berlin Heidelberg 2012. - Cook, Cunningham, Pulleyblank, Schrijver: Combinatorial Optimization. 1st edition. John Wiley & Sons, 1997. - C. Papdimitriou, K. Steiglitz: Combinatorial Optimization: Algorithms and Complexity. 1st edition. Dover Publication Inc., New York 1998.

Modulname	Algorithmen und Datenstrukturen 2			
Nummer	4227230	Modulversion	V2	
Kurzbezeichnung	INF-ALG-23	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Institut für Betriebssy- steme und Rechnerver- bund	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Sandor Fekete	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 120 Minuten, oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: 50% der Übungen müssen bestanden sein			

- weiterführende Komplexitätsaspekte
- elementare Aspekte zu Heuristiken, exakten Verfahren und Approximationsalgorithmen
- Enumerationsverfahren
- probabilistische Ansätze
- fortgeschrittene Datenstrukturen

Qualifikationsziel

Die Absolventen dieses Moduls kennen die weiterführenden Algorithmen und Datenstrukturen der Informatik. Sie sind in der Lage, auch für komplexere Probleme eine algorithmische Lösung zu formulieren und algorithmische Lösungen in ihrer Leistungsfähigkeit einzuschätzen.

Literatur

- Th. Cormen, Ch. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms. 3rd edition. MIT Press, Cambridge 2009.

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	

Algorithmen und Datenstrukturen 2	2,0	Vorlesung	deutsch		
Literaturhinweise					
- Th. Cormen, Ch. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms. 3rd edition. MIT Press, Cambridge 2009.					
Algorithmen und Datenstrukturen 2	1,0	Übung	deutsch		
Algorithmen und Datenstrukturen 2	1,0	kleine Übung	deutsch		
Literaturhinweise					
- Th. Cormen, Ch. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms. 3rd edition. MIT Press, Cambridge 2009.					

Modulname	Einführung in Algorithm Engineerir	ng	
Nummer	4227240	Modulversion	V2
Kurzbezeichnung	INF-ALG-23	Sprache	englisch
Turnus	Unregelmäßig	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Betriebssysteme und Rechnerverbund
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Sandor Fekete
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Min.)oder mündliche Prüfung (30 Min.) oder Portfolio-Prüfung oder Take-Home-Exam		
Zu erbringende Studienleistung			

Der klassische Algorithmenentwurf beschränkt sich auf rein theoretische Analysen, die wiederum auf einfachen und etablierten Rechnermodellen

(wie RAM und Turing) basieren. Heute gebräuchliche Rechnersysteme weichen von diesen Modellen aber teilweise ab. Häufig weisen Inputdaten extreme

Eigenschaften auf, wie großer Datenmenge oder kleiner Datenvarianz, für die Standardalgorithmen und - datenstrukturen nicht ausgelegt sind.

Im Algorithm Engineering werden realistische Annahmen zu Rechnern und Inputs zugrunde gelegt. Analysen umfassen sowohl asymptotische (Groß-O) als auch experimentelle Techniken.

Die einzelnen Themen des Moduls umfassen

- Datenstrukturen (bspw. geordnete Sequenzen, Mengen, Relationen, Graphen)
- Algorithmen (bspw. sortieren, suchen, traversieren)
- Rechnermodelle (bspw. Externspeicher, parallel/multicore, verteilt)
- theoretische Analysetechniken (bspw. Asymptotisch, Worst- vs. Average-Case, Smoothed Complexity)
- praktische Analysetechniken (bspw. Hypothesenentwurf und -validierung, Experimentplanung und -auswertung)

Qualifikationsziel

Die Absolventen des Moduls sind in der Lage, für gegebene praktisch motivierte Probleme korrekte algorithmische Formulierungen zu destillieren,

Annahmen über die zu erwartenden Datencharakteristika zu treffen und zu überprüfen, und Algorithmen auszuwählen und zu adaptieren, die für die

Problemstellung unter Berücksichtigung ihres Anwendungskontextes geeignet sind. Sie können unter verschiedenen alternativen Analysetechniken die

jeweils korrekten bestimmen und diese durchführen, um Hypothesen zu ihren Entscheidungen zu validieren.

Literatur

- Kurt Mehlhorn und Peter Sanders: "Algorithms and Data Structures: The Basic Toolbox". Springer Verlag.
- Ulrich Meyer, Peter Sanders und Jop Sibeyn: "Algorithms for Memory Hierarchies: Advanced Lectures". Springer Verlag.

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Titel der Veranstaltung		Art LVA	Sprache
Einführung in Algorithm Engineering	2,0	Vorlesung	englisch

Literaturhinweise

- Kurt Mehlhorn und Peter Sanders: "Algorithms and Data Structures: The Basic Toolbox". Springer Verlag. Ulrich Meyer, Peter Sanders und Jop Sibeyn: "Algorithms for Memory Hierarchies: Advanced Lectures".
- Ulrich Meyer, Peter Sanders und Jop Sibeyn: "Algorithms for Memory Hierarchies: Advanced Lectures".
 Springer Verlag.

Einführung in Algorithm Engineering	1,0	Übung	englisch
-------------------------------------	-----	-------	----------

Literaturhinweise

Kurt Mehlhorn und Peter Sanders: "Algorithms and Data Structures: The Basic Toolbox". Springer Verlag.
 Ulrich Meyer, Peter Sanders und Jop Sibeyn: "Algorithms for Memory Hierarchies: Advanced Lectures".
 Springer Verlag.

Einführung in Algorithm Engineering	1,0	kleine Übung	englisch
-------------------------------------	-----	--------------	----------

Literaturhinweise

- Kurt Mehlhorn und Peter Sanders: "Algorithms and Data Structures: The Basic Toolbox". Springer Verlag.
- Ulrich Meyer, Peter Sanders und Jop Sibeyn: "Algorithms for Memory Hierarchies: Advanced Lectures". Springer Verlag.

Modulname	Grundlagen der digitalen Schaltungstechnik			
Nummer	4299760	Modulversion		
Kurzbezeichnung	INF-STD-76	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Elektrotechnik, Informationstechnik, Physik	
Moduldauer		Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Harald Michalik	
Arbeitsaufwand (h)				
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Es wird empfohlen, das Wahlpflichtmodul "Elektrotechnische Grundlagen der Informatik" vorher zu belegen.			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten, oder mündliche Prüfung, 30 Minuten			
Zu erbringende Studienleistung				

- Netzwerkberechnungsmethoden
- Aufbau PN-Diode, MOSFET, Grundschaltungen
- Digitaltechnik, Grundlagen der Boolschen Algebra
- statische CMOS-Schaltungstechnik
- Übertragung digitaler Signale auf Leitungen
- elementare Leitungsstrukturen, Busse
- Schaltwerke Funktion und Timing
- zusammengesetzte und reguläre Schaltungsstrukturen
- statischer und dynamischer Schreib-/Lesespeicher

Qualifikationsziel

Nach Abschluss dieses Moduls besitzen die Studierenden ein elementares Grundwissen in Digitaltechnik und Schaltungstechnik. Sie sind in der Lage, grundlegende digitale Schaltungen zu analysieren, selbstständig zu entwickeln und zu implementieren.

Literatur

- M. Albach: Grundlagen der Elektrotechnik 1 und 2, Pearson 2005
- R. Ernst, P. Rüffer: Skript zu Technischer Informatik I, 2005
- R. Ohse: Elektrotechnik für Ingenieure Lehrbuch, Band 1, 2003
- U. Tietze, Ch. Schenk: Halbleiterschaltungstechnik, Springer, 1999
- A. Sedra, K. Smith: Microelectronic Circuits, Oxford University Press, 1998

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrverar	nstaltungen			
Anwesenheitspflicht				
			1	
Titel der Veranstaltung		SWS	Art LVA	Sprache
Technische Informatik I		2,0	Vorlesung	deutsch
Literaturhinweise				
A.R.Hambley: Electrical Engineering 3rd Ed., F7th Ed., McGraw-Hill	Prentice Hall 2005 A.I	Malvino,	D.J.Bates: electron	ic Principles,
Technische Informatik I		2,0	Übung	deutsch
Literaturhinweise				
siehe Vorlesung				

Modulname	Programmiersprachen und Übersetzer		
Nummer	4225000020	Modulversion	
Kurzbezeichnung		Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Christian Mengert-Dietrich
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Gute Kenntnis wenigstens einer höheren Programmiersprache ist erforderlich.		
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Minuten) oder Klausur+ (90 Minuten) oder mündliche Prüfung (30 Minuten), oder Take-Home-Exam oder Portfolio-Prüfung		
Zu erbringende	1 Studienleistung: Die Übungen müssen zu 50 Prozent bestanden v den.		
Studienleistung	Im Falle einer Klausur+ hat Note.	die Studienleistung ei	n 10% Anteil an der

Die Veranstaltung beschäftigt sich mit zwei großen Bereichen die das Thema der Programmiersprachen von zwei Seiten angehen. Zum einen werden, top-down, die wichtigsten, immer wieder auftretenden Kernkonzepte von Programmiersprachen (Typen, Namen, Objekte, Operationen) betrachtet und besprochen wie aus ihnen die vorherschenden Programmierparadigmen (funktional, objekt-orientiert) zusammengesetzt sind. Hierdurch erlangt der Studierende eine abstrakte Sicht auf Programmiersprachen, die das effektive Erlernen neuer Sprachen beschleunigt. Von der anderen Seite kommend (bottom-up) erlernen die Studierenden den prinzipiellen Ablauf des Übersetzungsvorgangs und die dazu notwendigen Techniken (Syntaxanalyse, Semantische Analyse, Zwischencodeerzeugung und Maschinencodeerzeugung). Flankiert werden diese Inhalte durch Lerninhalte zur Optimierung und zum Laufzeitsystem.

Qualifikationsziel

Die Studierenden können nach dieser Vorlesung sich schnell in einer neuen Programmiersprache zurechtfinden und zügig an den Punkt kommen an dem Sie effektiv effiziente Programme schreiben können. Zu diesem Zweck erlernen Sie in dieser Veranstaltung die wichtigsten Kernkonzepte von Programmiersprachen, sowie einen Grundlegenden Überblick über den Aufbau und den Fähigkeiten von Übersetzern.

Literatur

- Michael L. Scott, Programming Language Pragmatics, Morgan Kaufmann Publishers
- V. Aho, R. Sethi, J. D. Ullman: Compilers, Addison Wesley

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Titel der Veranstaltung Programmiersprachen und Übersetzer	SWS 4,0	Art LVA Vorlesung/Übung	Sprache deutsch
			•

Modulname	Principles and Theory for Machine Learning			
Nummer	4229000000	Modulversion		
Kurzbezeichnung		Sprache	englisch	
Turnus	Unregelmäßig	Lehreinheit		
Moduldauer	1 Semester	Einrichtung	Department Informatik Institut für Systemsi- cherheit	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Michel Besserve	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Die Vorlesung und die Übungen setzen eine gute Beherrschung der in den Pflichtmodulen Lineare Algebra und Analysis erworbenen Kenntnisse voraus. Darüber hinaus sind Kenntnisse der Wahrscheinlichkeitsrechnung und erste Erfahrungen mit Werkzeugen des maschinellen Lernens sehr zu empfehlen.			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten, oder mündliche Prüfung, 30 Minuten, oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: 50% der Übung	saufgaben müssen besta	nden sein	

- Foundations of supervised learning
- Optimization for ML
- Unsupervised learning
- Neural networks
- Deep learning
- Deep generative models
- Some ML weaknesses
- Interpretable-explainable Al
- Self-supervised learning and foundation models

Qualifikationsziel

Nach erfolgreichem Abschluss dieses Moduls sollten die Studierenden in der Lage sein

- grundlegende Konzepte des maschinellen Lernens zu verstehen und korrekt anzuwenden,
- elementare Werkzeuge zur Analyse der Leistungsfähigkeit von maschinellen Lernansätzen zu beherrschen,
- die wichtigsten Einschränkungen von Methoden des maschinellen Lernens zu erkennen,
- Strategien zur Überwindung solcher Einschränkungen vorzuschlagen.

Literatur

- Understanding Machine Learning, Shalev-Schwartz & Ben-David, 2014
- Learning Theory from First Principles, Bach, 2024
- Deep Learning, Goodfellow et al., 2016
- Mathematical Theory of Deep Learning, Petersen & Zech, 2024
- Mathematics for Machine Learning, Deisenroth et al., 2020
- Neural Networks and Deep Learning, Aggarwal, 2023 (2nd edition)
- Deep Learning Architectures, Calin, 2020

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache
Principles and Theory for Machine Learning	4,0	Vorlesung/Übung	englisch

Literaturhinweise

- Understanding Machine Learning, Shalev-Schwartz & Ben-David, 2014
- Learning Theory from First Principles, Bach, 2024
- Deep Learning, Goodfellow et al., 2016
- Mathematical Theory of Deep Learning, Petersen & Zech, 2024
- Mathematics for Machine Learning, Deisenroth et al., 2020
- Neural Networks and Deep Learning, Aggarwal, 2023 (2nd edition)
- Deep Learning Architectures, Calin, 2020

Modulname	Einführung in maschinelles Lernen			
Nummer	4229000040	Modulversion		
Kurzbezeichnung		Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Michel Besserve	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Die Vorlesung und die Übungen verlangen eine gute Beherrschung der in den Pflicht- modulen "Lineare Algebra" und "Analysis" erworbenen Kenntnisse.			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten oder mündliche Prüfung, 30 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: 50% der Übung	saufgaben müssen besta	nden sein	

- Python for Machine Learning,
- Introduction to Probability and statistics for Machine Learning,
- Introduction to Optimization for Machine Learning,
- Linear regression,
- Linear classification,
- Clustering,
- Dimensionality reduction,
- Introduction to Deep Learning.

Qualifikationsziel

Nach erfolgreichem Abschluss dieses Moduls sollten die Studierenden in der Lage sein:

- ML-Algorithmen mit häufig verwendeten Python-Bibliotheken zu implementieren,
- die elementaren mathematischen Grundlagen verschiedener klassischer ML-Algorithmen zu verstehen,
- die Leistung von ML-Algorithmen empirisch zu analysieren.

Literatur

- Fluent Python: Clear, Concise, and Effective Programming, Ramalho, 2022
- Machine Learning, A Probabilistic Perspective, Murphy, 2012
- Deep Learning, Goodfellow et al., 2016
- Mathematics for Machine Learning, Deisenroth et al., 2020

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Einführung in maschinelles Lernen	4,0	Vorlesung/Übung	deutsch

Modulname	Software Engineering 2			
Nummer	4220000030	Modulversion		
Kurzbezeichnung	INF-ISF-02	Sprache	englisch deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Thomas Thüm	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Der vorherige Besuch von Software Engineering 1 wird empfohlen.			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Minuten) oder Klausur+ (90 Minuten) oder mündliche Prüfung (20 Minuten) oder Take-Home-Exam			
Zu erbringende Studienleistung				

- Ziele und Methoden des modernen Software Engineering
- Erweiterte Methoden für verschiedene Entwicklungsphasen (z.B. Analyse, Entwurf, Implementierung, Testen und Wartung)
- Erweiterte Maßnahmen zur Qualitätssicherung
- Vertiefendes Verständnis von modernem Software Engineering
- Einblicke in Forschung und Praxis im Software Engineering

Qualifikationsziel

Nach Abschluss dieses Moduls besitzen die Studierenden ein erweitertes Verständnis zur Entwicklung komplexer Softwaresysteme. Sie sind in der Lage, erweiterte Methoden des Software Engineering in der jeweiligen Phase anzuwenden und die Konsequenzen der Anwendung zu verstehen.

Literatur

Ian Sommerville: Software Engineering. 10. Aufl. Pearson, 2018, ISBN 978-3-86894-344-3. Helmut Balzert: Lehrbuch der Software-Technik, 3. Auflage, Spektrum Akademischer Verlag Heidelberg, 2009, ISBN 978-3-8274-1705-3.

J. Ludewig, H. Lichter: Software Engineering - Grundlagen, Menschen, Prozesse, Techniken. 4. Auflage. dpunkt-Verlag, Heidelberg 2023, ISBN 978-3-86490-598-8.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Software Engineering 2	4,0	Vorlesung/Übung	deutsch
------------------------	-----	-----------------	---------

Modulname	Entwicklung (un)sicherer Systeme			
Nummer	4210000010	Modulversion		
Kurzbezeichnung		Sprache	deutsch	
Turnus	Unregelmäßig	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Martin Johns	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen	Einführung in die IT-Sicherheit, Programmieren 1			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: erfolgreiche Bearbeitung der Aufgaben inkl. Kolloquium oder Take-Home-Exam			
Zu erbringende Studienleistung				

- Konzeption und Implementierung von realistischen Testanwendungen mit Schwachstellen.
- Analyse und/oder Erkennung von Schwachstellen in komplizierten IT-Systemen.

Qualifikationsziel

Nach Abschluss dieses Moduls haben die Studierenden praktische Erfahrungen in angewandter IT-Sicherheit, Erkennung und Behebung von Schwachstellen, sowie sicherer Programmierung erworben.

Literatur

Hinweise zu aktueller Literatur erhalten Sie im Rahmen der Veranstaltung.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Entwicklung (un)sicherer Systeme	4,0	Praktikum	deutsch	

Modulname	Bioinformatik und Biostatistik 1			
Nummer	4217000030	Modulversion		
Kurzbezeichnung	BIBS1	Sprache	englisch deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Tim Kacprow- ski	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Programmieren 1, Programmieren 2, Algorithmen und Datenstrukturen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Min.) oder mündl. Prüfung (20 Min.) oder Klausur+ oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: 50% der Aufgaben müssen bestanden sein			

- Grundlagen Molekularbiologie
- Microarrays
- Sequenziermethoden (Genomics, Transcriptomics)
- Sequenzassemblierung / -alignment / -mapping
- Hidden Markov Modelle
- Statistisches Testen
- Regression
- Hauptkomponentenanalyse
- Genomweite Assoziationsstudien
- Differentielle Expressionanalyse
- Gene Set Enrichment Analyse

Qualifikationsziel

Nach Abschluss dieses Moduls verstehen die Student*innen grundlegende Begriffe aus der Molekularbiologie und sind mit experiementellen Methoden zur Bestimmung von Genomsequenzen und Transkriptabundanzen vertraut. Sie sind in der Lage, klassische bioinformatische Probleme wie das Sequenzalignment eigenständig zu lösen und kennen statistische Verfahren zur Untersuchung der Zusammenhänge zwischen Genom oder Transkriptom und Phänotypen.

Literatur

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Bioinformatik und Biostatistik 1	4,0	Vorlesung/Übung	englisch deutsch	
Bioinformatik und Biostatistik 1	2,0	Übung	englisch deutsch	

Modulname	Einführung in Algorithmische Geometrie			
Nummer	4227000020	Modulversion		
Kurzbezeichnung		Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Dr. Arne Schmidt	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Algorithmen und Datenstrukturen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur 120 Minuten oder Mündliche Prüfung 30 Minuten			
Zu erbringende Studienleistung	Erfolgreiche Bearbeitung der Haus	aufgaben		

- Grundlagen und Techniken der algorithmischen Geometrie
- Arrangements
- Lokalisierung in Arrangements
- Motion Planning
- Ausgewählte Themen der algorithmischen Geometrie

Qualifikationsziel

Absolventen erlernen die Grundlagen und allgemeine Techniken der algorithmischen Geometrie. Sie können diese auf neue Probleme anwenden und deren Komplexität abschätzen.

Literatur

Rolf Klein: Algorithmische Geometrie. Springer, Heidelberg, 2005. Mark de Berg, Marc van Krevel, Mark Overmars, Otfried Schwarzkopf: Computational Geometry: Algorithms and Applications. Springer Verlag, 2nd edition (2000)

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Einführung in Algorithmische Geometrie	2,0	Vorlesung/Übung	deutsch
Einführung in Algorithmische Geometrie	2,0	kleine Übung	deutsch

Modulname	Einführung in parallele und verteilte Algorithmen			
Nummer	4227000000	Modulversion		
Kurzbezeichnung		Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Dr. Arne Schmidt	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Algorithmen und Datenstrukturen, Netzwerkalgorithmen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 120 Minuten oder mündliche Prüfung, 30 Minuten			
Zu erbringende Studienleistung	1 Studienleistung: 50% der Übungen müssen bestanden sein.			

- Grundlagen Paralleler Algorithmen
- Parallele Sortieralgorithmen
- Parallele Graphenalgorithmen
- Komplexitätsklasse
- Dezentrale und Verteilte Algorithmen

Qualifikationsziel

Die Absolventen lernen die Bedeutung paralleler Algorithmen kennen und können Anwendbarkeit und Komplexität dieser beurteilen. Sie besitzen die Fähigkeit eigenständig parallele Algorithmen zu entwickeln.

Literatur

Joseph Jájá, An Introduction to Parallel Algorithms, Addison-Wesley Professional; First Edition (1. Januar 1992)

ZUGEHORIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Einführung in parallele und verteilte Algorithmen	2,0	Vorlesung	deutsch		
Einführung in parallele und verteilte Algorithmen	1,0	Übung	deutsch		

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Einführung in parallele und verteilte Algorithmen	1,0	kleine Übung	deutsch
---	-----	--------------	---------

Modulname	Fortgeschrittene Aspekte der Anwendungssicherheit			
Nummer	4210000050	Modulversion		
Kurzbezeichnung		Sprache	deutsch	
Turnus	Unregelmäßig	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Martin Johns	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Einführung in die IT-Sicherheit und Programmieren 1			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten) oder Take-Home-Exam			
Zu erbringende Studienleistung	Erfolgreiche Bearbeitung von mind. 50% der Übungsaufgaben oder Kurz-/Teilreferate oder äquivalente vorlesungsbegleitende Leistungen			
Inhalta				

- Umsetzung von Sicherheitsmaßnahmen
- Fortgeschrittene Aspekte der IT-Sicherheit
- Moderne Anwendungssicherheitskonzepte

Qualifikationsziel

Die Studierende besitzen nach der Veranstaltung die Fähigkeit komplexe sicherheitsrelevante Konzepte in Entwurf, Analyse und Umsetzung von Softwareprojekten anzuwenden und zu bedenken.

Literatur

Wird in der Veranstaltung bekannt gegeben.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Fortgeschrittene Aspekte der Anwendungssicherheit	4,0	Vorlesung/Übung	deutsch	

Modulname	Parametrisierte Algorithmen		
Nummer	4227000010	Modulversion	
Kurzbezeichnung		Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Dr. Arne Schmidt
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Algorithmen und Datenstrukturen, Theoretische Informatik 2 (oder Algorithmen und Datenstrukturen 2)		
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur 120 Minuten oder Mündliche Prüfung 30 Minuten		
Zu erbringende Studienleistung	Erfolgreiche Bearbeitung der Hausaufgaben		

- Einführung in parametrisierte Algorithmen und Komplexitäten
- FPT-Klasse
- Grundlegende Techniken
- Kernelization
- W-Hierarchie

Qualifikationsziel

Die Absolventen lernen die Bedeutung parametrisierter Probleme kennen und können die Komplexität dieser beurteilen. Sie besitzen die Fähigkeit eigenständig Algorithmen zum Lösen parametrisierter Probleme zu entwickeln.

Literatur

Cygan, Marek, et al.: Parameterized algorithms. Vol. 5. No. 4. Cham: Springer, 2015.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Parametrisierte Algorithmen	2,0	Vorlesung	deutsch		
Parametrisierte Algorithmen	1,0	Übung	deutsch		

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Parametrisierte Algorithmen	1,0	kleine Übung	deutsch	1
-----------------------------	-----	--------------	---------	---

Modulname	Softwaremodellierung elektronischer Systeme			
Nummer	4211000000	Modulversion		
Kurzbezeichnung		Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Guillermo Payá Vayá	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Die Module "Hardware-Software-Systeme" ist für die Veranstaltung als Vorbereitung empfohlen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten) oder Take-Home-Exam			
Zu erbringende Studienleistung				

- System-on-Chip (SoC): Komponenten (z. B. Prozessorkerne, Beschleuniger) und Verbindungen (Busse und Protokolle)
- Electronic System Level (ESL) Design unter Verwendung von High-Level-Systemsprachen (z. B. SystemC und SystemVerilog); Entwurf von Virtual-Prototyping-Systemen
- Transaction-Level-Modellierung
- Modellierung der zeitlichen Abläufe in TL-Modellen (Loosely-Timed und Approximately-Timed)
- Performance-Analyse
- Hardware-Software-Verifikation
- Anwendungsbeispiele / Fallstudien

Qualifikationsziel

- In diesem Modul erwerben die Studierenden die F\u00e4higkeit, die Prinzipien des Hardwareentwurfs von Systems-on-Chip zu beherrschen. Sie sind in der Lage, die Qualit\u00e4t und Rechenleistung von System-on-Chip-Entw\u00fcrfen zu analysieren und zu optimieren.
- Zudem verstehen sie die Funktionsweise von High-Level-System-Hardwarebeschreibungssprachen (wie z.B. SystemC oder SystemVerilog) und k\u00f6nnen diese f\u00fcr den System-on-Chip-Entwurf sowie f\u00fcr die Hardware-Software-Verifikation einsetzen.

Lernziele

- Die Studierenden erlernen, wie man eine Systemspezifikation in eine Hardwareimplementierung mithilfe einer Hardwarebeschreibungssprache auf Electronic System Level (z.B. SystemC oder SystemVerilog) umsetzt. Dabei machen sie sich mit dem Entwurfsprozess vertraut, der verschiedene funktionale Abstraktionsebenen (wie z.B. Loosely-Timed oder Approximately-Timed) verwendet.
- Die Studierenden erlernen, diese Beschreibung eigenständig mithilfe von EDA-Werkzeugen (Electronic Design Automation) umzusetzen. Dabei erwerben sie ein grundlegendes Verständnis der Funktionsweise dieser Werkzeuge. Zudem sind sie in der Lage, die verwendeten EDA-Werkzeuge auch zur Lösung eigener Aufgabenstellungen einzusetzen.

Literatur

- Kesel, F.: _Modellierung von digitalen Systemen mit SystemC_, De Gruyter Verlag, 2012. ISBN 978-3-486-71895-9.
- Kesel, F.; Bartholomä, R.: _Entwurf von digitalen Schaltungen und Systemen mit HDLs und FPGAs_, De Gruyter Verlag, 2013. ISBN 978-3-486-74715-7.
- Widtmann, C.: _High-Level System Modeling with SystemC and TLM: Introduction and Practical Application of an Electronic System_, VDM Verlag, March 29, 2009. ISBN 978-3-639-14034-7.
- Ghenassia, F.: _Transaction-Level Modeling with SystemC: TLM Concepts and Applications for Embedded Systems_, Springer, 2005. ISBN 978-0-387-26233-8.
- Gajski, D. D.; Abdi, S.; Gerstlauer, A.; Schirner, G.: _Embedded System Design: Modeling, Synthesis and Verification , Springer, 2009. ISBN 978-1-441-90504-8.
- Pasricha, S.; Dutt, N.; Morgen, M.: _On-Chip Communication Architectures_, Kaufmann Publishers, 2010. ISBN 978-008-0-55828-8.
- Martin, G.; Bailey, B.; Piziali, A.: _ESL Design and Verification A Prescription for Electronic System Level Methodology_, Kaufmann Publishers, 2010. ISBN 978-0-080-48883-7.
- Ashenden, P. J.; Mermet, J.; Seepold, R.: _System-on-Chip Methodologies & Design Languages_, Springer US, 2013. ISBN 978-1-475-73281-8.
- Grötker, T.; Liao, S.; Martin, G.; Swan, S.: _System Design with SystemC_, Springer US, 2002. ISBN 978-0-306-47652-5.
- Navabi, Z.: _System-Level Design and Modeling: ESL Using C/C++, SystemC and TLM-2.0_, Springer, 2016. ISBN 978-1-441-98674-0.
- Black, D. C.; Donovan, J.; Bunton, B.; Keist, A.: _SystemC: From the Ground Up, Second Edition_, Springer, 2011.

Weitere Referenzen werden in der Veranstaltung bekanntgegeben.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			<u> </u>		
Belegungslogik bei der Wahl von Lehrveranstaltungen					
			,		
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
	0110		- Process		
Softwaremodellierung elektronischer Systeme	2,0	Vorlesung	deutsch		

Wahlpflichtbereich Mathematik

10 ECTS

Modulname	Algebra für Informatiker			
Nummer	1201130	Modulversion	V3	
Kurzbezeichnung	MAT-STD-13	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Institut für Partielle Diffe- rentialgleichungen	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Studiendekan der Mathematik	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	Selbststudium (h)	108	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung in Form einer Klausur (90 Minuten) oder einer mündlichen Prüfung (etwa 25 Minuten) oder einem Projekt oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung in Form von wöc	chentlichen Hausaufgaber	ı ist möglich.	

Inhalte

- Mengen, Relationen und Abbildungen
- Verbände und Boolesche Algebren
- Ganze Zahlen und Polynome
- Halbgruppen und Monoide
- Permutationen
- Gruppen
- Charaktere endlicher abelscher Gruppen und die endliche

Fouriertransformation

- Operationen von Gruppen auf Mengen
- Ringe
- Kategorien und Funktoren
- Monoide und Ringe
- Algebraische Systeme

Qualifikationsziel

Die Studierenden kennen grundlegende algebraische Strukturen und ihre Bedeutung für die Informatik

Literatur

- G. Birkhoff, T.C. Bartee: Modern applied algebra, McGraw-Hill Inc., US.
- S. Buris, H.P. Sankappanavar: A Course in Universal Algebra, Springer-Verlag.
- O. Forster: Algorithmische Zahlentheorie, Vieweg-Verlag.
- S. Lang: Algebra, Springer-Verlag.
- J.D. Lipson: Elements of algebra and

algebraic computing, Addison-Wesley.

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Algebra für Informatiker	3,0	Vorlesung/Übung	deutsch		

Modulname	Einführung in die Stochastik für Informatiker			
Nummer	1201420	Modulversion	V3	
Kurzbezeichnung	MAT-STD-85	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer	1	Einrichtung	Institut für Mathematische Stochastik	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Studiendekan der Mathematik	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	Selbststudium (h)	108	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung in Form einer Klausur (90 Minuten) oder einer mündlichen Prüfung (etwa 25 Minuten) oder einem Projekt oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung in Form von wöc	hentlichen Hausaufgaber	ı ist möglich.	

- Relative Häufigkeiten, Wahrscheinlichkeitsmaße
- Laplace-Experiment, diskrete Verteilungen
- Rechenregeln für Wahrscheinlichkeitsmaße
- Elementare bedingte Wahrscheinlichkeiten
- Stochastische Unabhängigkeit
- Zufallsvariable auf diskreten Wahrscheinlichkeitsräumen
- Wahrscheinlichkeitsmaße mit Dichten, Rechenregeln für Erwartungswerte, Varianzen und Kovarianzen
- Schwaches Gesetz der großen Zahlen
- Schwache Konvergenz, Verteilungskonvergenz und zentrale Grenzwertsätze

Qualifikationsziel

- Die Studierenden verstehen die Modellierung von zufälligen Ereignissen und den axiomatischen Aufbau der Wahrscheinlichkeitstheorie
- Die Studierenden haben die Fähigkeit, konkrete Situationen durch Zufallsvariable zu formulieren
- Die Studierenden können Wahrscheinlichkeiten von Ereignissen in Laplace Räumen berechnen
- Die Studierenden kennen den Zusammenhang zwischen W-Maßen und Verteilungsfunktionen
- Die Studierenden können Erwartungswerte, Varianzen und Kovarianzen von zufälligen Verteilungen berechnen
- Die Studierenden haben einen souveränen Umgang mit diskreten und stetigen Zufallsverteilungen Die Studierenden kennen das schwache Gesetz der großen Zahlen und seine Bedeutung
- Die Studierenden verstehen die zentralen Grenzwertsätze

Literatur

- U. Krengel, Einführung in die Wahrscheinlichkeitstheorie und Statistik, Vieweg-Verlag
- F. Jondra + A. Wiesler, Wahrscheinlichkeitsrechnung und stochastische Prozesse, Teubner

 \uparrow

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Einführung in die Stochastik (Informatik)	2,0	Vorlesung	deutsch		
Einführung in die Stochastik (Informatik)	1,0	kleine Übung	deutsch		

Modulname	Numerik für Informatiker	Numerik für Informatiker			
Nummer	1201140	Modulversion	V3		
Kurzbezeichnung	MAT-STD-86	Sprache	deutsch		
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät		
Moduldauer	1	Einrichtung	Institut für Numerische Mathematik		
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Studiendekan der Mathematik		
Arbeitsaufwand (h)	150				
Präsenzstudium (h)	42	Selbststudium (h)	108		
Zwingende Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung in Form einer Klausur (90 Minuten) oder einer mündlichen Prüfung (etwa 25 Minuten) oder einem Projekt oder Take-Home-Exam				
Zu erbringende Studienleistung	1 Studienleistung in Form von wöc	hentlichen Hausaufgaber	ı ist möglich.		

- Grauß-Algorithmus (LR-Zerlegung)
- Stabilität eines Algorithmus, Kondition eines Problems
- Lineares Ausgleichsproblem (QR-Zerlegung)
- Nichtlineare Gleichungen (Bisektion, Newton-Verfahren)
- Interpolation und Approximation (klassische Polynom-Interpolation, Splines)
- Bestimmte Integrale (Quadraturformel, Newton-Cotes-Formeln, Romberg-Quadratur, Extrapolation)

Qualifikationsziel

- Die Studierenden kennen einfache Methoden für die Approximation von Funktionen und Integralen
- Die Studierenden kennen Methoden zur Lösung (nicht-)linearer Gleichungen
- Die Studierenden sind mit für die Numerik relevanter Software vertraut
- Die Studierenden kennen Methoden zur Lösung (nicht-)linearer Gleichungen und zur Approximation von Funktionen und Integralen
- Die Studierenden wissen um die Bedeutung und Grundlagen der Fehleranalyse
- Die Studierenden haben die Fähigkeit, Grundprinzipien der Implementation numerischer Algorithmen anzuwenden

Literatur

- Deuflhard, Hohmann, Numerische Mathematik I, de Gruyter
- Moler, Numerical Computing with MATLAB, SIAM, auch online
- H.R. Schwarz, N. Köckler, Numerische Mathematik, Teubner

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Einführung in die Numerische Mathematik für Studierende der Informatik	2,0	Vorlesung	deutsch		
Einführung in die Numerische Mathematik für Studierende der Informatik	1,0	kleine Übung	deutsch		

5 ECTS

Modulname	Seminar Informatik Bachelor			
Nummer	4299660	Modulversion	V2	
Kurzbezeichnung	INF-STD-66	Sprache	deutsch	
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät	
Moduldauer		Einrichtung		
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Studiendekan der Informatik	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	Selbststudium (h)	108	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Referat (Prüfung). Die Note wird abhängig von der aktiven Teilnahme am Seminar und der Qualität des Vortrages und einer eventuell begleitenden Ausarbeitung bestimmt.			
Zu erbringende Studienleistung				

Die Lehrinhalte im Seminar sind abhängig vom bearbeiteten Themengebiet und können in jedem Semester variieren.

Qualifikationsziel

Die Studierenden werden befähigt, sich selbstständig in ein Thema einzuarbeiten, dieses aufzubereiten sowie zu präsentieren. Sie werden sich zudem der Wirkung des eigenen Vortrags auf andere Studierende bewusst. Darüber hinaus werden wichtige Schlüsselkompetenzen erworben: So trainieren und verbessern die Studierenden beispielsweise ihre Präsentationstechnik sowie ihre rhetorischen Fähigkeiten.

Literatur

Die Literaturquellen variieren - je nach gewähltem Seminarthema.

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung SWS Art LVA Sprache					
Studienseminar New Trends in Computer Engineering	3,0	Seminar	deutsch		

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Studienseminar für Nachrichtentechnik (2013)	2,0	Seminar	deutsch
Literaturhinweise			
individuell			
Seminar Anwendungssicherheit (Bachelor)	3,0	Seminar	deutsch
Literaturhinweise	·		
Die Literaturquellen variieren - je nach gewähltem	Seminarthe	ema.	
Seminar Technische Informatik (Bachelor)	3,0	Seminar	deutsch
Literaturhinweise			
Wird zum jeweiligen Thema separat bekanntgege	ben.		
Seminar Theoretische Informatik (Bachelor)	3,0	Seminar	englisch
Literaturhinweise			
Die Literaturquellen variieren - je nach gewähltem	Seminarthe	ema.	
Seminar Connected and Mobile Systems (Bachelor)	3,0	Seminar	englisch deutsch
Seminar Robotik und Prozessinformatik (Bachelor)	3,0	Seminar	deutsch
Literaturhinweise			
Die Literaturquellen variieren - je nach gewähltem	Seminarthe	ema.	
Seminar Computergraphik (Bachelor)	3,0	Seminar	deutsch
Literaturhinweise			
Die Literaturquellen variieren - je nach gewähltem	Seminarthe	ema.	
Seminar Computer Vision (Bachelor)	3,0	Seminar	englisch deutsch
Literaturhinweise	•		
Die Literaturquellen variieren, je nach gewähltem	Thema.		
Seminar Medizinische Informatik (Bachelor)	3,0	Seminar	deutsch
Literaturhinweise	•		
Die Literaturquellen variieren - je nach gewähltem	Seminarthe	ema.	
Seminar Data Science in Biomedicine (Bachelor)	3,0	Seminar	englisch

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Seminar Softwaretechnik und Fahrzeuginformatik (Bachelor)	3,0	Seminar	englisch deutsch
Literaturhinweise			
Die Literaturquellen variieren - je nach gewähltem Semina	rthema.		
Seminar Verlässliche Systemsoftware (Bachelor)	3,0	Seminar	deutsch
Seminar Algorithmik (Bachelor)	3,0	Seminar	deutsch
Literaturhinweise			
Die Literaturquellen variieren - je nach gewähltem Sem	inarthen	na.	
Seminar IT-Sicherheit - Privacy and Machine Learning - Bachelor	3,0	Seminar	englisch
Seminar Bioinformatik (Bachelor)	3,0	Seminar	deutsch
Literaturhinweise			
Die Literaturquellen variieren - je nach gewähltem Sem	inarthem	na.	
Seminar Informationssysteme (Bachelor)	3,0	Seminar	englisch deutsch
Literaturhinweise	•		,
Die Literaturquellen variieren, je nach gewähltem Them	ıa.		
Seminar Künstliche Intelligenz (Bachelor)	3,0	Seminar	englisch deutsch
Literaturhinweise	•		•
Die Literaturquellen variieren, je nach gewähltem Them	ıa.		

Teamprojekt	5 ECTS
-------------	--------

Modulname	Teamprojekt		
Nummer	4299170	Modulversion	
Kurzbezeichnung	INF-STD-17	Sprache	englisch deutsch
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Studiendekan der Informatik
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung	1 Studienleistung: Je nach Thema wicklung. Die erfolgreiche Teilnahr		

Die Inhalte sind abhängig von der konkreten Aufgabenstellung und variieren von Semester zu Semester.

Qualifikationsziel

Die Studierenden führen eine größere Aufgabe gemeinsam durch und lernen so Schlüsselqualifikationen, wie die eigenständige Planung, Abstimmung und Koordination von Projekten im Team, die Vergabe von Rollen und Aufgaben sowie die Definition und Einhaltung von Meilensteinen. Das Teamprojekt kann der Vorbereitung der Bachelorarbeit dienen.

Literatur

Die Literaturquellen variieren je nach gewähltem Thema.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Je nach Art des Teamprojekts ergibt sich eine unterschiedliche Präsenzzeit (z.B. Arbeitszeit im Labor) im Vergleich zum Selbststudium, weshalb die SWS zwischen den einzelnen Teamprojekten variieren.

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache
Teamprojekt Entwurf und Implementierung eingebetteter Systeme	4,0	Teamprojekt	deutsch

Teamprojekt Digitale Signalverarbeitung	4,0	Teamprojekt	deutsch
Literaturhinweise	1,0		
- abhängig von der konkreten Aufgabenstellung			
Teamprojekt Programmierung verteilter eingebetteter Systeme	6,0	Teamprojekt	deutsch
Literaturhinweise			
Die Literaturquellen variieren je nach gewähltem The	ma.		
Teamprojekt Computer Networking	5,0	Teamprojekt	englisch deutsch
Teamprojekt Robotik	4,0	Teamprojekt	deutsch
Literaturhinweise			,
Die Literaturquellen variieren je nach gewähltem The	ma.		
Teamprojekt Computergraphik	4,0	Teamprojekt	deutsch
Teamprojekt Computer Vision	4,0	Teamprojekt	deutsch
Teamprojekt Softwaretechnik	4,0	Teamprojekt	deutsch
Teamprojekt Verlässliche Systemsoftware	5,0	Teamprojekt	englisch deutsch
Teamprojekt Algorithmik	4,0	Teamprojekt	deutsch
Literaturhinweise			,
Die Literaturquellen variieren je nach gewähltem The	ma.		
Teamprojekt Medizinische Informationssysteme	4,0	Teamprojekt	deutsch
Literaturhinweise			
Literatur und geeignete Entwicklungssysteme (Freew den.	are) kön	nen im PLRI erf	ragt wer-
Teamprojekt Chip- und Systementwurf	4,0	Teamprojekt	deutsch
Literaturhinweise		•	<u>'</u>
Abhängig von der jeweiligen Aufgabe			
Teamprojekt Theoretische Informatik	4,0	Teamprojekt	deutsch
Literaturhinweise			,
Abhängig von der jeweiligen Aufgabe		,	
Teamprojekt Data Science in Biomedicine	4,0	Teamprojekt	deutsch

Schlüsselqualifikationen	5 ECTS
--------------------------	--------

Modulname	Medizin 2		
Nummer	4217700	Modulversion	V2
Kurzbezeichnung	INF-MI-70	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer		Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Thomas Deserno
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Empfehlung: Vor der Teilnahme an "Medizin 2" sollten die Module "Medizin 1" und "Einführung in die Medizinische Informatik" gehört werden.		
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten) oder Portfolioprüfung oder Take-Home-Exam		
Zu erbringende Studienleistung			

- ausgewählte morphologische, funktionelle und psychosoziale Grundlagen des kranken Menschen
- allgemeine Krankheitslehre anhand typischer Krankheitsbilder, Diagnostik und Therapie
- Einführung in wichtige Aspekte der Informationsverarbeitung in der Krankenversorgung

Qualifikationsziel

Nach Abschluss dieses Moduls sind die Studierenden mit ausgewählten morphologischen, funktionellen und psychosozialen Grundlagen des kranken Menschen vertraut und lernen einführend wichtige Aspekte der Informationsverarbeitung in der Krankenversorgung kennen.

Literatur

- Guignard, E.; Meerwein, P. (2014): Krankheitslehre für die Medizinische Praxisassistenz. Huber Verlag, Bern.
- Schoppmeyer, M. (2014): Gesundheits- und Krankheitslehre. Urban & Fischer, München.
- Dugas, Martin (2017): Medizininformatik. Springer Vieweg, Berlin.
- Speckmann, E.-J.; Wittkowski, W. (2004): Bau und Funktion des menschlichen Körpers. Elsevier Verlag, München.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Medizin 2	3,0	Vorlesung/Übung	deutsch		
Literaturhinweise					
- Guignard, E.; Meerwein, P. (2014): Krankheitslehre fi stenz. Huber Verlag, Bern Schoppmeyer, M. (2014): Urban & Fischer, München - Speckmann, EJ.; Wittkow des menschlichen Körpers. Elsevier Verlag, München. formatik. Berlin: Springer Vieweg.	Gesundh vski, W.	neits- und Krank (2004): Bau und	heitslehre. Funktion		
Medizin 2	1.0	Übung	deutsch		

Modulname	Schlüsselqualifikationen		
Nummer	4299810	Modulversion	
Kurzbezeichnung	INF-STD-81	Sprache	deutsch
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer		Einrichtung	
SWS / ECTS	5 / 5,0	Modulverantwortli- che/r	Studiendekan der Informatik
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	70	Selbststudium (h)	80
Zwingende Voraussetzungen		`	
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung	Studienleistung: Leistungsnachweise je nach Vorgabe der gewählten Lehrveranstaltungen. (Die Prüfungsmodalitäten richten sich nach der jeweiligen Prüfungsordnung des anbietenden Faches, weitere Absprachen bitte mit den Lehrenden bzw. dem Modulverantwortlichen)		

Verschiedene in den Wahlveranstaltungen des Gesamtprogramms

Qualifikationsziel

Bereich I: Übergeordneter Bezug/ Einbettung des Studienfaches

Die Studierenden werden befähigt, ihr Studienfach in gesellschaftliche, historische, rechtliche oder berufsorientierte Bezüge einzuordnen (je nach Schwerpunkt der Veranstaltung). Sie sind in der Lage, übergeordnete, fachliche Verbindungen und deren Bedeutung zu erkennen, zu analysieren und zu bewerten. Die Studenten erwerben einen Einblick in Vernetzungsmöglichkeiten des Studienfaches und Anwendungsbezüge ihres Studienfaches im Berufsleben.

Bereich II: Wissenskulturen

Die Studierenden

- lernen Theorien und Methoden anderer, fachfremder Wissenskulturen kennen,
- lernen sich interdisziplinär mit Studierenden aus fachfremden Studiengebieten auseinanderzusetzen und zu arbeiten.
- können aktuelle Kontroversen aus einzelnen Fachwissenschaften diskutieren und bewerten,
- kennen genderbezogene Sichtweisen auf verschiedene Fachgebiete und die Auswirkungen von Geschlechtsdifferenzen.
- können sich intensiv mit Anwendungsbeispielen aus fremden Fachwisssenschaften auseinandersetzen

Bereich III: Handlungsorientierte Angebote

Die Studierenden werden befähigt, theoretische Kenntnisse handlungsorientiert umzusetzen. Sie erwerben verfahrensorientiertes Wissen (Wissen über Verfahren und Handlungsweisen) sowie metakognitives Wissen (u. a. Wissen über eigene Stärken und Schwächen).

Je nach Veranstaltungsschwerpunkt erwerben die Studierenden die Fähigkeit:

- Wissen zu vermitteln bzw. Vermittlungstechniken anzuwenden,
- Gespräche und Verhandlungen effektiv zu führen, sich selbst zu reflektieren und adäquat zu bewerten,
- Kooperativ im Team zu arbeiten, Konflikte zu bewältigen
- Informations- und Kommunikationsmedien zu bedienen oder
- sich in einer anderen Sprache auszudrücken.

Durch die handlungsorientierten Angebote sind die Studierenden in der Lage, in anderen Bereichen erworbenes Wissen effektiver einzusetzen, die in Zusammenarbeit mit anderen Personen einfacher und konstruktiver zu gestalten und somit Neuerwerb und Neuentwicklung von Wissen zu erleichtern. Sie erwerben

Schlüsselqualifikationen, die ihnen den Eintritt in das Berufsleben erleichtern und in allen beruflichen Situationen zum Erfolg beitragen.

Literatur

Die Literaturquellen variieren -je nach gewählter Lehrveranstaltung.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN						
Belegungslogik bei der Wahl von Lehrveranstaltungen						
Anwesenheitspflicht						
	_					
Titel der Veranstaltung	SWS	Art LVA	Sprache			
Bild-Aspekte	2,0	Vorlesung	englisch deutsch			
Literaturhinweise	•					
 Donald Hoffman: Visual Intelligence. Norton, 1998. Simon Ings: A Natural History of Seeing. Norton, 2007. Patrick Cavanagh: The Artist as Neuroscientist. Nature, vol. 434 	., March 20	005.				
Techniken der Visualisierung	2,0	Vorlesung	englisch			
IT-Recht: Vertragsrecht	2,0	Vorlesung	deutsch			
Literaturhinweise	•	•				
Gesetzessammlung Computerrecht - DTV-Beck weitere Empfehlungen in der Veranstaltung Achtung: Es wird empfohlen, die Literatur erst nach der ersten Veranstaltung anzuschaffen, da sich aktualitätsbedingt Änderungen ergeben könnten.						
IT-Recht: Haftungsrecht	2,0	Vorlesung	deutsch			

Modulname	Schlüsselqualifikationen (3 LP)		
Nummer	4299830	Modulversion	
Kurzbezeichnung	INF-STD-83	Sprache	deutsch
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer		Einrichtung	
SWS / ECTS	2 / 3,0	Modulverantwortli- che/r	Studiendekan der Informatik
Arbeitsaufwand (h)	90		
Präsenzstudium (h)	28	Selbststudium (h)	62
Zwingende Voraussetzungen		`	
Zu erbringende Prüfungsleistung/ Prüfungsform			
Zu erbringende Studienleistung	Studienleistung: Leistungsnachweise je nach Vorgabe der gewählten Lehrveranstaltungen. (Die Prüfungsmodalitäten richten sich nach der jeweiligen Prüfungsordnung des anbietenden Faches, weitere Absprachen bitte mit den Lehrenden bzw. dem Modulverantwortlichen)		

Verschiedene in den Wahlveranstaltungen des Gesamtprogramms

Qualifikationsziel

Bereich I: Übergeordneter Bezug/ Einbettung des Studienfaches

Die Studierenden werden befähigt, ihr Studienfach in gesellschaftliche, historische, rechtliche oder berufsorientierte Bezüge einzuordnen (je nach Schwerpunkt der Veranstaltung). Sie sind in der Lage, übergeordnete, fachliche Verbindungen und deren Bedeutung zu erkennen, zu analysieren und zu bewerten. Die Studenten erwerben einen Einblick in Vernetzungsmöglichkeiten des Studienfaches und Anwendungsbezüge ihres Studienfaches im Berufsleben.

Bereich II: Wissenskulturen

Die Studierenden

- lernen Theorien und Methoden anderer, fachfremder Wissenskulturen kennen,
- lernen sich interdisziplinär mit Studierenden aus fachfremden Studiengebieten auseinanderzusetzen und zu arbeiten.
- können aktuelle Kontroversen aus einzelnen Fachwissenschaften diskutieren und bewerten,
- kennen genderbezogene Sichtweisen auf verschiedene Fachgebiete und die Auswirkungen von Geschlechtsdifferenzen,
- können sich intensiv mit Anwendungsbeispielen aus fremden Fachwisssenschaften auseinandersetzen

Bereich III: Handlungsorientierte Angebote

Die Studierenden werden befähigt, theoretische Kenntnisse handlungsorientiert umzusetzen. Sie erwerben verfahrensorientiertes Wissen (Wissen über Verfahren und Handlungsweisen) sowie metakognitives Wissen (u. a. Wissen über eigene Stärken und Schwächen).

Je nach Veranstaltungsschwerpunkt erwerben die Studierenden die Fähigkeit:

- Wissen zu vermitteln bzw. Vermittlungstechniken anzuwenden,
- Gespräche und Verhandlungen effektiv zu führen, sich selbst zu reflektieren und adäquat zu bewerten,
- Kooperativ im Team zu arbeiten, Konflikte zu bewältigen
- Informations- und Kommunikationsmedien zu bedienen oder
- sich in einer anderen Sprache auszudrücken.

Durch die handlungsorientierten Angebote sind die Studierenden in der Lage, in anderen Bereichen erworbenes Wissen effektiver einzusetzen, die in Zusammenarbeit mit anderen Personen einfacher und konstruktiver zu gestalten und somit Neuerwerb und Neuentwicklung von Wissen zu erleichtern. Sie erwerben

Schlüsselqualifikationen, die ihnen den Eintritt in das Berufsleben erleichtern und in allen beruflichen Situationen zum Erfolg beitragen.

Literatur

Die Literaturquellen variieren -je nach gewählter Lehrveranstaltung.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Wahlveranstaltungen aus dem Gesamtprogramm überfachlicher Veranstaltungen der TU Braunschweig (Poolmodell) im Gesamtumfang von 5 Leistungspunkten

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache
Bild-Aspekte	2,0	Vorlesung	englisch deutsch

Literaturhinweise

- Donald Hoffman: Visual Intelligence. Norton, 1998.
- Simon Ings: A Natural History of Seeing. Norton, 2007.
- Patrick Cavanagh: The Artist as Neuroscientist. Nature, vol. 434, March 2005.

IT-Recht: Vertragsrecht 2,0 Vorlesung de	
IT-Recht: Vertragsrecht 2,0 Vorlesung de	deutsch

Literaturhinweise

Gesetzessammlung Computerrecht - DTV-Beck weitere Empfehlungen in der Veranstaltung Achtung: Es wird empfohlen, die Literatur erst nach der ersten Veranstaltung anzuschaffen, da sich aktualitätsbedingt Änderungen ergeben könnten.

IT-Recht: Haftungsrecht	2,0	Vorlesung	deutsch

Nebenfach Advanced Industrial Management 10 ECTS

Modulname	Betriebsorganisation		
Nummer	2523210	Modulversion	
Kurzbezeichnung	MB-IFU-21	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Maschinen- bau
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Christoph Herr- mann
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (120 min)		
Zu erbringende Studienleistung			

Inhalte

Einführung in die Betriebsorganisation # Organisation produzierender Unternehmen # Integrierte Managementsysteme # Personalmanagement und Führung # Querschnittsprozesse # Produktentstehungsprozess # Auftragsabwicklungsprozess # Produktion # Logistik

Qualifikationsziel

Die Studierenden

analysieren das Referenzmodell der Betriebsorganisation hinsichtlich der betriebsinternen Prozessabläufen und Funktionen sowie die damit einhergehenden Umwelteinflüsse # reproduzieren den Produkt-, Auftrags- und Fabrikprozess innerhalb der Betriebsorganisation (bspw. anhand der VDI Richtlinie 5200) # stellen die Herausforderungen im Bereich Produktion und Logistik sowie deren Folgen für die Betriebsorganisation mittels praxisbezogener Fallbeispiele und empirischer Untersuchungen dar und wenden die daraus gewonnenen Erkenntnisse im Rahmen der Industrie 4.0 und Digitalisierung an # verstehen die Notwendigkeit von Integrierten Managementsystemen zur Unterstützung der betrieblichen Abläufe im Hinblick auf Qualität, Umwelt & Energie, Daten, Risiko sowie Technologie # beschreiben weitere Querschnittsfunktionen im Bereich des Rechnungswesens / Controlling sowie der Finanzierung und Investition # Iernen die Rolle der Mitarbeiter in Betrieben kennen (z.B. Personalmanagement, Organisation, Führung) # sind in der Lage, die Interessen der betriebsrelevanten Share- sowie Stakeholder zu benennen und im Kontext praxisbezogener Fragestellungen anzuwenden # sind in der Lage, die Herausforderungen der betrieblichen Umwelt sowie deren Folgen im Kontext der Ökonomie, Ökologie und Soziales darzustellen.

Literatur

- Wiendahl, H.-P.: Betriebsorganisation f
 ür Ingenieure. M
 ünchen: Hanser 2019.
- Dillerup, R.: Unternehmensführung. München: Verlag Franz Vahlen 2013.
- Hering, E.: Handbuch Betriebswirtschaft für Ingenieure. Berlin: Springer-Verlag 2000.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	'			
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Betriebsorganisation	2,0	Vorlesung	deutsch	
Betriebsorganisation	1,0	Übung	deutsch	

Modulname	Industrielles Qualitätsmanagemen	ndustrielles Qualitätsmanagement		
Nummer	2511210	Modulversion		
Kurzbezeichnung	MB-IPROM21	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Maschinen- bau	
Moduldauer	1	Einrichtung		
SWS / ECTS	3 / 5,0	/ 5,0 Modulverantwortli-che/r		
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	42 Selbststudium (h) 108		
Zwingende Voraussetzungen		`		
Empfohlene Voraussetzungen	keine			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (120 min)			
Zu erbringende Studienleistung				

Qualitätsmanagementsysteme, Einführung von Qualitätsmanagementsystemen, Integrierte Managementsysteme, Total Quality Management (TQM), Wirtschaftlichkeit im Qualitätsmanagement, Messsysteme und Qualitätsregelkreise, Qualitätsmanagement in Entwicklung und Konstruktion, Quality Function Deployment (QFD), Fehlermöglichkeits-Einflussanalyse (FMEA), Qualitätsmanagement in der Arbeitsvorbereitung / operative Qualitätsplanung, Qualitätsmanagement in der Beschaffung, Qualitätsmanagement in der Fertigung, Statistische Prozessregelung (SPC), Qualitätsmanagement beim Kunden

Qualifikationsziel

Die Studierenden können den Begriff Qualität sowie dessen Relevanz für ein Unternehmen anhand theoretischer Grundlagen und Praxisbeispielen darlegen. Sie können mehrere Managementsysteme benennen. Des Weiteren können die Studierenden anhand geeigneter QM-Werkzeuge Problemursachen illustrieren und Zusammenhänge daraus ableiten. Sie können zudem verschiedene Qualitätsprogramme im Total Quality Management beschreiben. Schließlich können die Studierenden die Wirtschaftlichkeit von Qualitätsmanagementsystemen anhand mehrerer Berechnungsmodelle analysieren. Darüber hinaus können sie die Qualität von Produkten anhand verschiedener Mess- und Prüfmethoden bestimmen und dazu eine geeignete Auswahl an Prüfparametern treffen. Die Studierenden können unterschiedliche QM-Methoden in der Entwicklung und Konstruktion vergleichen sowie QM-Systeme in der Beschaffung unterscheiden. Sie können in der Fertigung eingesetzte QM-Werkzeuge erläutern und eine Qualitätsregelkarte zeichnen. Zudem sind sie in der Lage die Bedeutung von Qualität beim Kunden zu definieren und anhand von Methoden zur Datenerfassung und #analyse, etwa eines Lebensdauertests, zu bewerten. Die Studierenden können schließlich Qualitätsmanagementsysteme entlang der Supply Chain darstellen.

Literatur

- Pfeifer, T.: Qualitätsmanagement: Strategien, Methoden, Techniken. 3. Auflage. München: Hanser 2001
- Seghezzi, H.D.: Integriertes Qualit\u00e4tsmanagement: der St. Galler Ansatz. 3. Auflage. M\u00fcnchen Hanser 2007
- Masing, W.: Handbuch Qualitätsmanagement. 5. Auflage. München: Hanser 2001

个

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	,		
Belegungslogik bei der Wahl von Lehrveranstaltunge	n		
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Industrielles Qualitätsmanagement	1,0	Übung	deutsch
Industrielles Qualitätsmanagement	2,0	Vorlesung	deutsch

Nebenfach Betriebswirtschaftslehre 10 ECTS

Modulname	Grundlagen der Betriebswirtschaft	Grundlagen der Betriebswirtschaftslehre - Produktion & Logistik und Finanzwirtschaft			
Nummer	2299530	99530 Modulversion V2			
Kurzbezeichnung	WW-STD-53	Sprache			
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät		
Moduldauer	1	Einrichtung			
SWS / ECTS	4 / 6,0	Modulverantwortli- che/r	Studiendekan der Wirtschaftswissenschaften		
Arbeitsaufwand (h)					
Präsenzstudium (h)	56	Selbststudium (h)	124		
Zwingende Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Klausur, 120 Minuten oder Take-Home-Exam				
Zu erbringende Studienleistung					

Inhalte

- Statische und dynamische Vorteilhaftigkeitsentscheidungen unter Sicherheit;
- · Grundlagen der Unternehmensfinanzierung;
- Simultane Investitions- und Finanzierungsentscheidungen;
- Einführung in die und Grundbegriffe der Produktswirtschaft sowie der Logistik;
- Planungsaufgaben des Produktionsmanagements; Erfolgstheorie;
- Mathematische Grundkonzepte f
 ür Bewertung und optimale Planung.

Qualifikationsziel

Die Studierenden besitzen ein grundlegendes Verständnis der Finanzwirtschaft und der Produktionswirtschaft sowie der Logistik. Sie können die Vorteilhaftigkeit von Investitionsprojekten mit Hilfe finanzwirtschaftlicher Verfahren beurteilen und besitzen grundlegende Kenntnisse hinsichtlich des Einsatzes von Finanzierungsinstrumenten. Die Studierenden verfügen ferner über ein Verständnis für die Modellierung und Bewertung von Produktions- und Logistiksystemen und Grundlagen des operativen Produktionsmanagements.

Literatur

- Dyckhoff, H.; Spengler, T. S. (2010): Produktionswirtschaft Eine Einführung, Springer, Berlin.
- Breuer, W. (2013): Finanzierung, 3. Auflage, Wiesbaden.
- Breuer, W. (2012): Investition I, 4. Auflage, Wiesbaden.
- Hirth, H. (2017): Grundzüge der Finanzierung und Investition, 4. Auflage, München.
- Kruschwitz, L.; Lorenz, D. (2019): Investitionsrechnung, 15. Auflage, Berlin.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Vorlesungen verpflichtend.

Tutorien, Übungen freiwillig

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache
Einführung in die Finanzwirtschaft	2,0	Vorlesung/Übung	deutsch

Literaturhinweise

- •Breuer, W. (2013): Finanzierung, 3. Auflage, Wiesbaden.
- •Breuer, W. (2012): Investition I, 4. Auflage, Wiesbaden.
- •Hirth, H. (2017): Grundzüge der Finanzierung und Investition, 4. Auflage, München.
- •Kruschwitz, L.; Lorenz, D. (2019): Investitionsrechnung, 15. Auflage, Berlin.

	Einführung in Produktion und Logistik	2,0	Vorlesung/Übung	deutsch
Literaturhinweise				

- Dyckhoff/Spengler: Produktionswirtschaft (Springer, 2010, 3. Auflage)
- Hahn, R.: Sustainability Management (2022)

Modulname	Grundlagen der Betriebswirtschaft	Grundlagen der Betriebswirtschaftslehre - Unternehmensführung und Marketing			
Nummer	2299540	V2			
Kurzbezeichnung	WW-STD-54	Sprache	deutsch		
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät		
Moduldauer	1	Einrichtung			
SWS / ECTS	4 / 6,0	Modulverantwortli- che/r	Studiendekan der Wirtschaftswissenschaften		
Arbeitsaufwand (h)	180				
Präsenzstudium (h)	56	Selbststudium (h)	124		
Zwingende Voraussetzungen					
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Klausur (120 min) oder 1 Take-at-Home-Exam				
Zu erbringende Studienleistung					

- · Grundlagen der Unternehmensführung;
- · Grundlagen der Beschaffungswirtschaft;
- · Grundlagen des betrieblichen Entscheidens;
- Grundlagen des Marketing;
- Marketing-Forschung;
- Ziele und Basisstrategien des Marketing;
- Marketing-Implementierung und -Kontrolle;

Qualifikationsziel

Die Studierenden besitzen ein grundlegendes Verständnis der Allgemeinen Betriebswirtschaftslehre und des Marketings. Sie können die unterschiedlichen betrieblichen Unternehmensfunktionen, insbesondere die drei Hauptfunktionen Planung, Entscheidung und Kontrolle, voneinander abgrenzen und beschreiben. Die Studierenden haben darüber hinaus die Fähigkeit erworben, die betriebswirtschaftliche Realität aus der Perspektive des Marketings zu betrachten.

Literatur

Einführung in das Marketing:

- Fritz, W. /von der Oelsnitz, D./Seegebarth, B.: Marketing. Elemente marktorientierter Unternehmensführung, 5. Aufl., Stuttgart 2019.
- Meffert, H./Burmann, C./Kirchgeorg, M.: Marketing: Grundlagen marktorientierter Unternehmensführung, Konzepte Instrumente Praxisbeispiele, 12. Aufl., Wiesbaden 2014.
- Kotler, P./Keller, K./Opresnik, M. O.: Marketing-Management, 15. Aufl., München 2017.
- Homburg, C.: Grundlagen des Marketingmanagements: Einführung in Strategie, Instrumente, Umsetzung und Unternehmensführung, 5. Aufl., Wiesbaden 2017.
- Folienskript

Einführung in die Unternehmensführung:

- von der Oelsnitz, D. (2009): Management. Geschichte, Aufgaben, Beruf, München.
- Staehle, W.H. (1999): Management, 8. Aufl., München.
- Steinmann, H./Schreyögg, G. (2005): Management, 6. Aufl., Wiesbaden

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Vorlesungen verpflichtend.

Übungen, Tutorien freiwillig.

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache
Einführung in die Unternehmensführung	2,0	Vorlesung	deutsch

Literaturhinweise

- von der Oelsnitz, D. (2009): Management. Geschichte, Aufgaben, Beruf, München
- Staehle, W.H. (1999): Management, 8. Aufl., München
- Steinmann, H./Schreyögg, G. (2005): Management, 6. Aufl., Wiesbaden

Einführung in das Marketing		Vorlesung	deutsch

Literaturhinweise

- Fritz, W. /von der Oelsnitz, D./Seegebarth, B.: Marketing. Elemente marktorientierter Unternehmensführung, 5. Aufl., Stuttgart 2019
- Meffert, H./Burmann, C./Kirchgeorg, M.: Marketing: Grundlagen marktorientierter Unternehmensführung, Konzepte Instrumente Praxisbeispiele, 12. Aufl., Wiesbaden 2014
- Kotler, P./Keller, K./Opresnik, M. O.: Marketing-Management, 15. Aufl., München 2017
- Homburg, C.: Grundlagen des Marketingmanagements: Einführung in Strategie, Instrumente, Umsetzung und Unternehmensführung, 5. Aufl., Wiesbaden 2017
- Folienskript

Repetitorium zur Vorlesung "Einführung in das Marketing"	2,0	Kolloquium	deutsch
Tutorien zu Einführung in die Unternehmensführung	2,0	Tutorium	deutsch
Literaturhinweise			

- Macharzina, K./Wolf, J. (2005): Unternehmensführung, 4. Aufl., Wiesbaden.
- Staehle, W.H. (1999): Management, 8. Aufl., München.
- Steinmann, H./Schreyögg, G. (2005): Management, 6. Aufl., Wiesbaden.

Beratungskolloquium "Vorlesung Einführung in die Unterneh-	1,0	Kolloquium	deutsch
mensführung"			

Nebenfach Kommunikationsnetze 10 ECTS

Modulname	Grundlagen des Mobilfunks		
Nummer	2424490	Modulversion	
Kurzbezeichnung	ET-NT-49	Sprache	englisch deutsch
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Thomas Kürner
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Mündliche Prüfung 20 Minuten ode	er Klausur 90 Minuten.	
Zu erbringende Studienleistung			

Inhalte

- 1. Einführung
- 2. Wellenausbreitung
- 3. Funkübertragungstechnik
- 4. Medienzugriffsverfahren
- 5. Mobilfunksysteme nach 3GPP
- 6. Mobilfunksysteme nach IEEE802

Qualifikationsziel

Nach Abschluss des Moduls haben die Studierenden Kenntnisse über die Struktur und die Funktionsweise zellularer Mobilfunknetze sowie drahtloser lokaler Netze erlangt und sind in der Lage, die erlernten Prinzipien in realen Mobilfunksystemen zu identifizieren sowie deren daraus resultierende Leistungsfähigkeit einzuschätzen.

Literatur

- Skript
- C. Lüders, Mobilfunksysteme, Vogel-Verlag 2001
- J. Schiller, Mobilkommunikation, Addison-Wesley 2000
- N. Geng, W. Wiesbeck, Planungsmethoden für die Mobilkommunikation, Springer-Verlag 1998
- A. Molisch, Wireless Communications, Addison-Wesley 2005

Hinweise

Dieses Modul aus dem Masterprogramm ist auch für Bachelor geeignet.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltu	ungen		
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Grundlagen des Mobilfunks (2013)	1,5	Übung	englisch deutsch
Literaturhinweise	•	•	•
siehe Vorlesung			
Grundlagen des Mobilfunks (2013)	2,5	Vorlesung	englisch deutsch
Literaturhinweise		•	,
Skript C. Lüders, Mobilfunksysteme, Vogel-Verlag 20 ley 2000 N. Geng, W. Wiesbeck, Planungsmethoder Molisch, Wireless Communications, Addison-Wesley	n für die Mobilkommun		

Modulname	Kommunikationsnetze		
Nummer	2416660	Modulversion	
Kurzbezeichnung	ET-IDA-66	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Admela Jukan
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Prüfungsleistung: Klausur 90 Minu	ten oder mündliche Prüfu	ng 30 Minuten
Zu erbringende Studienleistung			

Qualifikationsziel

Nach Abschluss dieses Moduls besitzen die Studierenden grundlegende Kenntnisse über Architekturen und Protokollstandards von Telekommunikationsnetzen und sind mit den Prinzipien der Signalisierung vertraut. Die erlernten Grundlagen ermöglichen es, selbstständig neue Protokolle und vermittlungstechnische Verfahren zu analysieren und zu bewerten.

Literatur

Skript # J. F. Kuruse und K. W. Ross, Computer Networking: A Top-Down Approach Featuring the Internet, Addison Wesley, 2005, ISBN: 0-321-26976-4 # W. Stallings, Data and Computer Communications, Pearson Prentise Hall, 2004, ISBN: 0-13-183311-1 # L. L. Peterson und B. S. Davie, Computer Networks: A Systems Approach, Morgan Kaufmann Publishers, 2003, ISBN: 1-55860-833-8

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

^{*} Ausgewählte Protokollmechanismen * Grundlagen des Internets und des IP-Protokolls * Routing im Internet * Das TCP-Protokoll und seine Leistungsbewertung * Grundlagen der Netzsicherheit * Grundlagen der Leistungsbewertung von Kommunikationssystemen * Wireless Networks (Wi-Fi, 3G / 4G, IMS) * Breitbandnetze (MPLS, Ethernet und optische Netze)

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Kommunikationsnetze	2,0	Vorlesung	deutsch
Literaturhinweise			
* Skript * J.F. Kuruse und K.W. Ross, Computernetze *W. Stallings	s, Data an	d Computer Comm	unications
Kommunikationsnetze	1,0	Übung	deutsch
Literaturhinweise			
* Skript * J.F. Kuruse und K.W. Ross, Computernetze *W. Stallings	s, Data an	d Computer Comm	unications

10 ECTS

Modulname	Einführung in die Mechatronik		
Nummer	2538230	Modulversion	
Kurzbezeichnung	MB-MT-23	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Maschinen- bau
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Andreas Dietzel
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	30	Selbststudium (h)	120
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Die Studierenden sollten Grundker Regelungstechnik und Informatik b stungskurs-Niveau entsprechen.		
Zu erbringende Prüfungsleistung/ Prüfungsform	2 Prüfungsleistungen: a) Klausur, 45 Minuten oder münd (Gewichtung bei Berechnung der 0 b) Seminarvortrag, 20 Minuten (Gewichtung bei der Berechnung 0	Gesamtmodulnote 2,5/5)	
Zu erbringende Studienleistung			

Systemtechnische Methodik; Komponenten mechatronischer Systeme (Sensoren, Aktoren, Signalverarbeitung etc.); Modellbildung mechatronischer Systeme; Gestaltung mechatronischer Systeme; Anwendungsbeispiele mechatronischer Systeme. Für das Seminar wählen die Studierenden ein eigenes Anwendungsbeispiel, auf das sie die Definition mechatronischer Systeme übertragen und dessen Bestandteile sie in angemessener fachlicher Tiefe erläutern. Dazu wird ein folienbasierter Vortrag ausgearbeitet, gehalten und diskutiert, der als eigene Prüfungsleistung bewertet wird.

Qualifikationsziel

Die Studierenden sind in der Lage, mechatronische Systeme zu definieren, zu beschreiben und wesentliche Funktionen bzw. Komponenten zu benennen. Sie können die Herangehensweisen für die Entwicklung mechatronischer Systeme diskutieren und anwenden (systemtechnische Methoden, Entwicklungsmethoden) und Analogien aus den unterschiedlichen technischen Domänen Mechanik, Elektrotechnik und Informatik beschreiben und auf Anwendungsbeispiele übertragen. Weiterhin sind die Studierenden fähig, Sensoren und Aktoren als wesentliche Bestandteile mechatronischer Systeme und deren grundlegenden Funktionsprinzipien zu erläutern. Im Rahmen des Seminars wenden die Studierenden die Vorlesungsinhalte auf ein selbst gewähltes Beispiel an. Sie sind in der Lage, die erarbeiteten Erkenntnisse zu präsentieren (Vortrag) und im Team darüber zu diskutieren.

Literatur

- S. Büttgenbach, I. Constantinou, A. Dietzel, M. Leester-Schädel, Case Studies in Micromechatronics, Springer 2020, ISBN 978-3-662-61319-1
- H. Czichos, Mechatronik, 2. Aufl. 2008, Vieweg+Teubner
- W. Bolton, Bausteine mechatronischer Systeme, 3. Aufl. 2004, Pearson Studium

- K. Janschek, Systementwurf mechatronischer Systeme, 2010, Springer
- W. Roddeck, Einführung in die Mechatronik, 3. Aufl. 2006, Teubner

VDI-Richtlinie 2206, Entwicklungsmethodik für mechatronische Systeme

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Anwendungen mechatronischer Systeme	2,0	Seminar	deutsch
Mechatronische Systeme	1,0	Vorlesung	deutsch

Modulname	Regelungstechnik		
Nummer	2599460	Modulversion	
Kurzbezeichnung	MB-STD-46	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Maschinen- bau
Moduldauer	1	Einrichtung	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Jürgen Pannek
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	56	Selbststudium (h)	94
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (120 r	nin)	
Zu erbringende Studienleistung			

- Grundlagen der Regelungstechnik, Grundlegende Eigenschaften dynamischer Systeme, Steuerung und Regelung, Systembeschreibung mit mathematischen Modellen, mathematische Methoden zur Analyse linearer Differentialgleichungen, lineare und nichtlineare Systeme
- Darstellung im Zeit- und Frequenzbereich, Laplace-Transformation
- Übertragungsfunktion, Impuls- und Sprungantwort, Frequenzgang
- Zustandsraumbeschreibung linearer und nichtlinearer Systeme, Regelkreis, Stabilität von Regelsystemen, Verfahren für Reglerentwurf, Mehrgrößensysteme.

Qualifikationsziel

Die Studierenden kennen die grundlegenden Strukturen, Begriffe und Methoden der Regelungstechnik und können diese auf alle einfachen technischen bzw. physikalischen Systeme anwenden. Mit Laplacetransformation, Übertragungsfunktion, Frequenzgang, Stabilitätskriterien, Zustandsraumkonzept und der Beschreibung mathematischer Systeme erlernen die Studierenden das Aufstellen der Gleichungen für unbekannte dynamische Systeme. Weiterhin können Regelkreisglieder, die Analyse linearer Systeme im Zeit- und Frequenzbereich sowie die Reglerauslegung für unbekannte Systeme angewendet werden. Anhand von theoretischen und anschaulichen Beispielen können die Studierenden aus vielseitigen Disziplinen die regelungstechnische Problemstellung abstrahieren und behandeln. Die regelungstechnischen Methoden und Anforderungen werden in den Kontext des Entwurfs von Produktionsprozessen, der Prozessoptimierung und der Prozessführung eingeordnet und können von den Studierenden auf entsprechende unbekannte Systeme übertragen werden.

Literatur

- J. Lunze, Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen, Springer Verlag Berlin, 10. Auflage, 2014
- J. Lunze, Regelungstechnik 2: Mehrgrößensysteme, Digitale Regelung, Springer-Verlag, 8. Auflage 2014
- H. Unbehauen, Regelungstechnik I Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme, Fuzzy-Regelsysteme, 12. Auflage, Vieweg-Verlag, 2002
- H. Unbehauen, Regelungstechnik II Zustandsregelungen, digitale und nichtlineare Regelsysteme, 9. Auflage, Vieweg-Verlag, 2007

Hinweise

Sprachoptionen für Studierende internationaler und bilingualer Studiengänge: Die Lehrveranstaltungen werden in deutscher Sprache gehalten. Parallel werden die Inhalte als Videoaufzeichnungen in englischer Sprache zur Verfügung gestellt. Das Vorlesungsskript wird in beiden Sprachen angeboten.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltur	ngen		
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Titel der Veranstaltung Regelungstechnik	SWS 2,0	Art LVA Vorlesung	Sprache deutsch
		7.1.7.	

Nebenfach Mathematik	10 ECTS
----------------------	---------

Modulname	Algebra für Informatiker		
Nummer	1201130	Modulversion	V3
Kurzbezeichnung	MAT-STD-13	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Partielle Differentialgleichungen
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Studiendekan der Mathematik
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung in Form einer Klausur (90 Minuten) oder einer mündlichen Prüfung (etwa 25 Minuten) oder einem Projekt oder Take-Home-Exam		
Zu erbringende Studienleistung	1 Studienleistung in Form von wöchentlichen Hausaufgaben ist möglich.		

- Mengen, Relationen und Abbildungen
- Verbände und Boolesche Algebren
- Ganze Zahlen und Polynome
- Halbgruppen und Monoide
- Permutationen
- Gruppen
- Charaktere endlicher abelscher Gruppen und die endliche

Fouriertransformation

- Operationen von Gruppen auf Mengen
- Ringe
- Kategorien und Funktoren
- Monoide und Ringe
- Algebraische Systeme

Qualifikationsziel

Die Studierenden kennen grundlegende algebraische Strukturen und ihre Bedeutung für die Informatik

Literatur

- G. Birkhoff, T.C. Bartee: Modern applied algebra, McGraw-Hill Inc., US.
- S. Buris, H.P. Sankappanavar: A Course in Universal Algebra, Springer-Verlag.
- O. Forster: Algorithmische Zahlentheorie, Vieweg-Verlag.
- S. Lang: Algebra, Springer-Verlag.
- J.D. Lipson: Elements of algebra and algebraic computing, Addison-Wesley.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Algebra für Informatiker	3,0	Vorlesung/Übung	deutsch	

Modulname	Einführung in die Stochastik für Informatiker		
Nummer	1201420	Modulversion	V3
Kurzbezeichnung	MAT-STD-85	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Mathematische Stochastik
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Studiendekan der Mathematik
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung in Form einer Klausur (90 Minuten) oder einer mündlichen Prüfung (etwa 25 Minuten) oder einem Projekt oder Take-Home-Exam		
Zu erbringende Studienleistung	1 Studienleistung in Form von wöchentlichen Hausaufgaben ist möglich.		

- Relative Häufigkeiten, Wahrscheinlichkeitsmaße
- Laplace-Experiment, diskrete Verteilungen
- Rechenregeln für Wahrscheinlichkeitsmaße
- Elementare bedingte Wahrscheinlichkeiten
- Stochastische Unabhängigkeit
- Zufallsvariable auf diskreten Wahrscheinlichkeitsräumen
- Wahrscheinlichkeitsmaße mit Dichten, Rechenregeln für Erwartungswerte, Varianzen und Kovarianzen
- Schwaches Gesetz der großen Zahlen
- Schwache Konvergenz, Verteilungskonvergenz und zentrale Grenzwertsätze

Qualifikationsziel

- Die Studierenden verstehen die Modellierung von zufälligen Ereignissen und den axiomatischen Aufbau der Wahrscheinlichkeitstheorie
- Die Studierenden haben die Fähigkeit, konkrete Situationen durch Zufallsvariable zu formulieren
- Die Studierenden können Wahrscheinlichkeiten von Ereignissen in Laplace Räumen berechnen
- Die Studierenden kennen den Zusammenhang zwischen W-Maßen und Verteilungsfunktionen
- Die Studierenden können Erwartungswerte, Varianzen und Kovarianzen von zufälligen Verteilungen berechnen
- Die Studierenden haben einen souveränen Umgang mit diskreten und stetigen Zufallsverteilungen Die Studierenden kennen das schwache Gesetz der großen Zahlen und seine Bedeutung
- Die Studierenden verstehen die zentralen Grenzwertsätze

Literatur

- U. Krengel, Einführung in die Wahrscheinlichkeitstheorie und Statistik, Vieweg-Verlag
- F. Jondra + A. Wiesler, Wahrscheinlichkeitsrechnung und stochastische Prozesse, Teubner

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Einführung in die Stochastik (Informatik)	2,0	Vorlesung	deutsch	
Einführung in die Stochastik (Informatik)	1,0	kleine Übung	deutsch	

Modulname	Lineare und Kombinatorische Optimierung		
Nummer	1296510	Modulversion	V2
Kurzbezeichnung	MAT-STD5-5	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	6 / 10,0	Modulverantwortli- che/r	Studiendekan der Mathematik
Arbeitsaufwand (h)			
Präsenzstudium (h)	84	Selbststudium (h)	216
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Prüfungsleistung: 1 Prüfungsleistung in Form einer Klausur (180 Minuten) oder mündlichen Prüfung (etwa 35 Minuten) nach Vorgabe der Prüferin oder des Prüfers. Nach Genehmigung durch den Prüfungsausschuss Mathematik kann der/die Prüfer:in auch das Take-Home-Exam als Prüfungsform wählen. Die genauen Abschlussmodalitäten gibt die Dozentin bzw. der Dozent zu Beginn der Veranstaltung bekannt.		
Zu erbringende Studienleistung	Studienleistung: 1 Studienleistung in Form von Hausaufgaben nach Vorgabe der Prüferin oder des Prüfers und/oder Klausur. Die genauen Abschlussmodalitäten gibt die Dozentin bzw. der Dozent zu Beginn der Veranstaltung bekannt.		

[Inhalt - Lineare und Kombinatorische Optimierung]

- Varianten des Simplexverfahrens (SV), Anwendung auf Ausgleichsprobleme
- Darstellungstheorie von Polyedern
- Dekomposition linearer Optimierungsaufgaben (OPT)
- Parametrische Lineare Optimierung, Sensitivitätsanalyse
- Numerisch stabile, effektive Implementation des SV
- Ellipsoidverfahren, Innere Punkte Verfahren
- Graphen und diskrete Strukturen
- wichtige kombinatorische OPT im Überblick
- Einführung in die Modellierung Kombinatorischer OPT als ganzzahlige OPT
- Komplexität und Implementation kombinatorischer Optimierungsverfahren
- Verfahren zur Berechnung optimaler Bäume, Wege, Zuordnungen, Rundreisen

Qualifikationsziel

- Exemplarische Vertiefung der im Grundlagenbereich und in den Aufbaubereichen erworbenen Kenntnisse
- Exemplarisches Kennenlernen eines oder mehrerer weiterer
- mathematischen Gebiete und damit Verbreiterung des eigenen Basiswissens
- Vernetzung des eigenen mathematischen Wissens durch Herstellung von Bezügen zwischen den Inhalten der verschiedenen mathematischen Bereiche
- Vertiefung von Anwendungen der theoretischen Inhalte durch deren konkrete quantitative Ausführung
- Beherrschen polyedertheoretischer Grundlagen, der linearen parametrischen Optimierung, komplexer Varianten des Simplexverfahrens (SV) sowie der alternativen Ellipsoid- und Innere Punkte-Verfahren
- Fähigkeit zur stabilen und effektiven numerischen Implementation des SV
- Überblick über die Grundbegriffe der kombinatorischen Optimierung, wichtige Begriffe wie Graphen und diskrete Strukturen
- Fähigkeit zur Berechnung von Komplexität und Implementation kombinatorischer Optimierungsverfahren

- Beherrschen von Verfahren zur Berechnung optimaler Bäume, Wege, Zuordnungen, Rundreisen

Literatur

- V. Chvatal: Linear Programming, Freeman and Company, 1983
- Burkard/Zimmermann: Einführung in die Mathematische Optimierung, Springer, erscheint Mitte 2012
- W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver, Combinatorial Optimization, John Wiley and Sons, 1998
- Korte/Vygen, Kombinatorische Optimierung, Springer, 2008
- Schrijver, Combinatorial Optimization, Springer, 2004

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Lineare und Kombinatorische Optimierung	1,0	kleine Übung	deutsch		
Lineare und Kombinatorische Optimierung	6,0	Vorlesung/Übung	deutsch		

Modulname	Nichtlineare Optimierung		
Nummer	1296500	Modulversion	V2
Kurzbezeichnung	MAT-STD5-5	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	
SWS / ECTS	6 / 10,0	Modulverantwortli- che/r	Studiendekan der Mathematik
Arbeitsaufwand (h)			
Präsenzstudium (h)	84	Selbststudium (h)	216
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Die Inhalte der Basismodule 'Analysis 1 und 2' und 'Lineare Algebra' werden vorausgesetzt.		
Zu erbringende Prüfungsleistung/ Prüfungsform	Prüfungsleistung: 1 Prüfungsleistung in Form einer Klausur (180 Minuten) oder mündlichen Prüfung (etwa 35 Minuten) nach Vorgabe der Prüferin oder des Prüfers. Nach Genehmigung durch den Prüfungsausschuss Mathematik kann der/die Prüfer:in auch das Take-Home-Exam als Prüfungsform wählen. Die genauen Abschlussmodalitäten gibt die Dozentin bzw. der Dozent zu Beginn der Veranstaltung bekannt.		
Zu erbringende Studienleistung	Studienleistung: 1 Studienleistung in Form von Hausaufgaben nach Vorgabe der Prüferin oder des Prüfers und/oder Klausur. Die genauen Abschlussmodalitäten gibt die Dozentin bzw. der Dozent zu Beginn der Veranstaltung bekannt.		

- Grundfragen der nichtlinearen Optimierung in Bezug auf Modelle, Lösbarkeit und Lösungen, Konvexität, lokale und globale Lösungen, Sattelpunkte, Konvergenz und Konvergenzrate, Ableitungen und Iterationskosten, Zulässigkeit, Degeneriertheit und Constraint Qualifications
- Einführung in die Theorie der nichtlinearen Optimierung, notwendige und hinreichende Optimierungsbedingungen, Stabilität von Lösungen gegen Störungen
- grundlegende Algorithmen zur unbeschränkten Optimierung, darunter beispielsweise Abstiegsverfahren, Broyden-Typ-Verfahren, Newton-Typ-Verfahren, nichtlineare konjugierte Gradienten
- Techniken zur Globalisierung der Konvergenz, darunter beispielsweise Liniensuche, Vertrauensgebiete, Filter, oder Penalty-Funktionen
- grundlegende Algorithmen zur beschränkten Optimierung, darunter beispielsweise projizierte Gradienten, Quadratische Programmierung, Sequentielle Quadratische Programmierung, Barriereverfahren, Innere-Punkte-Verfahren und Augmented Lagrangian Verfahren
- Praktischer Einsatz von Software zur nichtlinearen Optimierung

Qualifikationsziel

- Aufbau von Grundkenntnissen in den Bereichen Mathematische Optimierung, Numerik und Stochastik
- Vertiefung der im Grundlagenbereich erworbenen Kenntnisse zur Analysis, Linearer Algebra und Computerorientierter Mathematik
- Kennenlernen von Anwendungen der Bereiche Stochastik, Numerik oder Optimierung, auch mit umfangreicheren Beispielen
- Verstehen und Anwenden von Techniken zur Modellierung von nichtlinearen Optimierungsproblemen, mit Randbedingungen und Grenzen ihrer Anwendbarkeit
- Beherrschen der grundlegenden Begriffe und Theoreme der nichtlinearen Optimierung, beispielsweise Karush-Kuhn-Tucker-Bedingungen, Constraint Qualifications, Lagrangesche Multiplikatoren, konvexe und

nichtkonvexe Funktionen, lokale und globale Minima und Konvergenz, Sattelpunkte, Globalisierungstechniken

- Beherrschen der grundlegenden Algorithmen zur beschränkten und unbeschränkten Optimierung
- Kenntnis der Verfügbarkeit von Software zur nichtlinearen Optimierung
- Fähigkeit, Algorithmen und Software problemspezifisch zur Bearbeitung praktischer Optimierungsaufgaben einzusetzen

Literatur

- Nocedal, Wright: Nonlinear Optimization, Springer, 2006
- Ulbrich, Ulbrich: Nichtlineare Optimierung, Birkhäuser, 2012
- Burkhard, Zimmermann: Einführung in die Mathematische Optimierung, Springer, 2012
- Jarre, Stoer: Optimierung, Springer, 2004Fletcher: Practical Methods of Optimization, Wiley, 2000
- Alt: Nichtlineare Optimierung: Eine Einführung in Theorie, Verfahren und Anwendungen, Vieweg+Teubner, 2011

ZUGEHÖRIGE LEHRVERANSTALTUNGEN	'		
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
			,
Titel der Veranstaltung	sws	Art LVA	Sprache

Modulname	Numerik für Informatiker		
Nummer	1201140	Modulversion	V3
Kurzbezeichnung	MAT-STD-86	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer	1	Einrichtung	Institut für Numerische Mathematik
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Studiendekan der Mathematik
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung in Form einer Klausur (90 Minuten) oder einer mündlichen Prüfung (etwa 25 Minuten) oder einem Projekt oder Take-Home-Exam		
Zu erbringende Studienleistung	1 Studienleistung in Form von wöchentlichen Hausaufgaben ist möglich.		

- Grauß-Algorithmus (LR-Zerlegung)
- Stabilität eines Algorithmus, Kondition eines Problems
- Lineares Ausgleichsproblem (QR-Zerlegung)
- Nichtlineare Gleichungen (Bisektion, Newton-Verfahren)
- Interpolation und Approximation (klassische Polynom-Interpolation, Splines)
- Bestimmte Integrale (Quadraturformel, Newton-Cotes-Formeln, Romberg-Quadratur, Extrapolation)

Qualifikationsziel

- Die Studierenden kennen einfache Methoden für die Approximation von Funktionen und Integralen
- Die Studierenden kennen Methoden zur Lösung (nicht-)linearer Gleichungen
- Die Studierenden sind mit für die Numerik relevanter Software vertraut
- Die Studierenden kennen Methoden zur Lösung (nicht-)linearer Gleichungen und zur Approximation von Funktionen und Integralen
- Die Studierenden wissen um die Bedeutung und Grundlagen der Fehleranalyse
- Die Studierenden haben die Fähigkeit, Grundprinzipien der Implementation numerischer Algorithmen anzuwenden

Literatur

- Deuflhard, Hohmann, Numerische Mathematik I, de Gruyter
- Moler, Numerical Computing with MATLAB, SIAM, auch online
- H.R. Schwarz, N. Köckler, Numerische Mathematik, Teubner

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
	,				
Titel der Veranstaltung	Titel der Veranstaltung SWS Art LVA Sprache				
Einführung in die Numerische Mathematik für Studierende der Informatik	2,0	Vorlesung	deutsch		
Einführung in die Numerische Mathematik für Studierende der Informatik	1,0	kleine Übung	deutsch		

Modulname	Statistische Verfahren		
Nummer	1296240	Modulversion	V2
Kurzbezeichnung	MAT-STD5-2	Sprache	
Turnus	nur im Sommersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer		Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Studiendekan der Mathematik
Arbeitsaufwand (h)			
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Prüfungsleistung: 1 Prüfungsleistung in Form einer Klausur (90 Minuten) oder mündlichen Prüfung (etwa 25 Minuten) nach Vorgabe der Prüferin oder des Prüfers. Nach Genehmigung durch den Prüfungsausschuss Mathematik kann der/die Prüfer:in auch das Take-Home-Exam als Prüfungsform wählen. Die genauen Abschlussmodalitäten gibt die Dozentin bzw. der Dozent zu Beginn der Veranstaltung bekannt.		
Zu erbringende Studienleistung	Studienleistung: 1 Studienleistung in Form von Hausaufgaben nach Vorgabe der Prüferin oder des Prüfers und/oder Klausur. Die genauen Abschlussmodalitäten gibt die Dozentin bzw. der Dozent zu Beginn der Veranstaltung bekannt.		

- Punktschätzung: Maximum-Likelihood-Methode, Erwartungstreue, Bias, Konsistenz
- Konfidenzintervalle
- Testverfahren: Gauß- und t-Test, Fehler 1. und 2. Art, Gütefunktionen, p-Werte
- Lineare Modelle: Parameterschätzung, beste lineare Schätzer, Testen linearer Hypothesen, Varianzanalyse
- Kontingenztafeln, Chi-Quadrat-Tests und Rangverfahren (Grundlagen)

Qualifikationsziel

- Ausbau von Grundkenntnissen im Bereich Stochastik
- Vertiefung der im Grundlagenbereich erworbenen Kenntnisse zur Analysis, Linearer Algebra und Einführung Stochastik
- Kennenlernen von Anwendungen des Bereichs Statistik, auch mit umfangreicheren Beispielen
- Wissen und Verstehen unterschiedlicher Modellierungstechniken, ihrer Randbedingungen und Grenzen
- Vertrautheit mit grundlegenden statistischen Fragestellungen wie Schätzern, Tests, Konfidenzintervallen und Regressionsanalyse

Literatur

- L.Fahrmeier, R. Künstler, J. Pigeot, G. Tutz, Statistik, Springer
- U. Krengel: Einführung in die Wahrscheinlichkeitstheorie und Statistik. Vieweg
- H. Pruscha: Angewandte Methoden der Mathematischen Statistiktig. Teubner

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			,
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Statistische Verfahren	3,0	Vorlesung/Übung	deutsch
Statistische Verfahren	1,0	Übung	deutsch

Nebenfach Medizin	10 ECTS
-------------------	---------

Modulname	Gesundheitssysteme		
Nummer	4217590	Modulversion	V2
Kurzbezeichnung	INF-MI-59	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer		Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Thomas Deserno
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Empfehlung: Vor der Teilnahme am Modul"Gesundheitssysteme" sollte das Modul "Einführung in die Medizinische Informatik" gehört werden.		
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten) oder Hausarbeit oder Referat oder Erstellung und Dokumentation von Rechnerprogrammen oder experimentelle Arbeit oder Portfolio oder Take-Home-Exam		
Zu erbringende Studienleistung			

- Gesundheitssysteme im internationalen Vergleich
- Organisation von Gesundheitssystemen, Einrichtung des Gesundheitswesens, Finanzierungsformen. Vergleichende Typisierung von Gesundheitssystemen.

Qualifikationsziel

Die Studierenden lernen verschiedene Gesundheitssysteme kennen und diese zu analysieren. Sie sind anschließend in der Lage, die Qualität der Gesundheitssysteme zu beurteilen.

Literatur

- Nagel, E. (Hrsg.) (2013): Das Gesundheitswesen in Deutschland Weiterentwicklung. Deutscher Ärzteverlag, Köln.
- Busse, R., Blümel, M. (2013): Das deutsche Gesundheitssystem Akteure, Daten, Analysen. MVV Verlag, Berlin.
- Rosenbrock, R., Gerlicher, T. (2014): Gesundheitspolitik Eine systematische Einführung. Hans Huber Verlag, Bern.
- Thielscher, Chr. (Hrsg.) (2012): Medizinökonomie Band 1: Das System der medizinischen Versorgung. Gabler Verlag- Springer Fachmedien Wiesbaden GmBH.
- Amelung, V.; Eble, S.; Hildebrandt, H. (2011): Innovatives Versorgungsmanagement. MWV Verlag, Berlin.
- Amelung, V.; Volker, E. (2012): Managed Care. Gabler Verlag, Hannover.
- Dugas, Martin (2017). Medizininformatik. Berlin: Springer Vieweg.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Gesundheitssysteme	3,0	Vorlesung/Übung	deutsch
LV-Informatik (07)	1,0	Übung	deutsch

Modulname	Medizin 1		
Nummer	4217690	Modulversion	V2
Kurzbezeichnung	INF-MI-69	Sprache	deutsch
Turnus	nur im Wintersemester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer		Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Thomas Deserno
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Empfehlung: Parallel zum Modul "Medizin 1" sollte das Modul "Einführung in die Medizinische Informatik" gehört werden.		
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten) oder Portfolioprüfung oder Take-Home-Exam		
Zu erbringende Studienleistung			

- morphologische, funktionelle und psychosoziale Grundlagen des gesunden Menschen
- Grundlagen der medizinischen Terminologie und Anatomie, funktionelle Organisation des Körpers, Organsysteme, Stoffwechsel

Qualifikationsziel

Die Studierenden kennen morphologische, funktionelle und psychosoziale Grundlagen des gesunden Menschen, Grundlagen der medizinischen Terminologie und Anatomie sowie Grundlagen der funktionellen Organisation des Körpers, der Organsysteme und des Stoffwechsels. Sie erhalten Einblicke in den Aufbau und die Funktion des eigenen Körpers.

Literatur

- Speckmann, E.-J.; Wittkowski, W. (2006): Bau und Funktion des menschlichen Körpers. Elsevier Verlag, München.
- Haller, A. (2008): Der Körper des Menschen: Einführung in Bau und Funktion. Thieme Verlag, Stuttgart.
- Mutschler, E. (2007): Anatomie, Physiologie, Pathophysiologie des Menschen. WVG-Verlag, Stuttgart.
- Schwegler, J. (Hrsg.); Lucius, R. Der Mensch. Anatomie und Physiologie. 5. Aufl. 2011.
- Dugas, Martin (2017): Medizininformatik. Springer Vieweg, Berlin.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Medizin 1	3,0	Vorlesung/Übung	deutsch		
Literaturhinweise	Literaturhinweise				
- Speckmann, EJ.; Wittkowski, W. (2006): Bau und Funktion des menschlichen Körpers. Elsevier Verlag, München Haller, A. (2008): Der Körper des Menschen: Einführung in Bau und Funktion. Thieme Verlag, Stuttgart Mutschler, E. (2007): Anatomie, Physiologie, Pathophysiologie des Menschen. WVG-Verlag, Stuttgart Schwegler, J. (Hrsg.); Lucius, R. Der Mensch. Anatomie und Physiologie. 5. Aufl. 2011 Dugas, Martin (2017): Medizininformatik. Springer Vieweg, Berlin.					

Medizin 1

Übung

deutsch

1,0

10 ECTS	Nebenfach Philosophie
---------	-----------------------

Modulname	Philosophie für TechnikwissenschaftlerInnen (1)			
Nummer	4299700	Modulversion	V2	
Kurzbezeichnung	INF-STD-70	Sprache	deutsch	
Turnus	Unregelmäßig	Lehreinheit	Carl-Friedrich-Gauß- Fakultät Fakultät für Geistes- und Erziehungswissenschaf- ten	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Nicole Karafyllis	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten, oder Hausarbeit, 10-15 Seiten Umfang, oder mündliche Abschlussprüfung, 20 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: Protokoll, 1-2 Seiten, oder Essay, 3-5 Seiten, oder Referat, 15-20 Minuten			

Das Modul umfasst ausgewählte Bereiche der theoretischen Philosophie, d.h. Wissenschaftstheorie, Technik- und Naturphilosophie, Sprachphilosophie, Anthropologie, Philosophie des Geistes/der Kognition.

Qualifikationsziel

Die Studierenden werden befähigt, auf Basis von klassischen und aktuellen Positionen der theoretischen Philosophie gesellschaftliche Diskurse um Technik und die Technikwissenschaften zu analysieren, argumentativ zu durchdringen und orientierungsstiftend darzustellen.

Literatur

Nagel, Thomas: Was bedeutet das alles? Eine ganz kurze Einführung in die Philosophie. Reclam 2010.

Hübner, Johannes: Einführung in die theoretische Philosophie. Metzler 2015.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Für den erfolgreichen Abschluss dieses Moduls sind zwei der angebotenen Lehrveranstaltungen zu wählen. Dabei ist eine der gewählten Lehrveranstaltungen mit einer Prüfungsleistung, die andere mit einer Studienleistung abzuschließen.

Anwesenheitspflicht

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

BA Informatik: Philosophie für TechnikwissenschaftlerInnen (1) -	2,0	Vorlesung/Übung	deutsch
Ausgewählte Themen der Theoretischen Philosophie - VG1			

Modulname	Philosophie für TechnikwissenschaftlerInnen (2)			
Nummer	4299710	Modulversion	V2	
Kurzbezeichnung	INF-STD-71	Sprache	deutsch	
Turnus	Unregelmäßig	Lehreinheit	Carl-Friedrich-Gauß- Fakultät Fakultät für Geistes- und Erziehungswissenschaf- ten	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Hans-Christoph Schmidt am Busch	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur, 90 Minuten, oder Hausarbeit, 10-15 Seiten Umfang, oder mündliche Abschlussprüfung, 20 Minuten oder Take-Home-Exam			
Zu erbringende Studienleistung	1 Studienleistung: Protokoll, 1-2 Seiten, oder Essay, 3-5 Seiten, oder Referat, 15-20 Minuten			

Das Modul umfasst ausgewählte Bereiche der praktischen Philosophie, etwa die normative Ethik und die philosophische Gerechtigkeitstheorie, die Sozialphilosophie und die Rechtsphilosophie.

Qualifikationsziel

Die Studierenden werden befähigt, auf Basis von klassischen und aktuellen Positionen der praktischen Philosophie gesellschaftliche Fragen und Probleme ethisch zu bewerten und eigene Standpunkte auf dem Gebiet der praktischen Philosophie argumentativ abzusichern.

Literatur

Quante, Michael. Einführung in die Allgemeine Ethik. WBG 2013 (4. Aufl.).

Celikates, Robin; Gosepath. Stefan. Grundkurs Philosophie. Band 6. Reclam 2013.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Für den erfolgreichen Abschluss dieses Moduls sind zwei der angebotenen Lehrveranstaltungen zu wählen. Dabei ist eine der gewählten Lehrveranstaltungen mit einer Prüfungsleistung, die andere mit einer Studienleistung abzuschließen.

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache
Einführung in die Sozialphilosophie	2,0	Blockveranstal- tung	deutsch

Technische Universität Braunschweig | Modulhandbuch: Informatik (Bachelor)

Spinoza: Die Ethik	2,0	Blockveranstal- tung	deutsch
BA Informatik: Philosophie für TechnikwissenschaftlerInnen (2) - Ausgewählte Themen der Praktischen Philosophie	2,0	Vorlesung/Übung	deutsch

Nebenfach Psychologie	10 ECTS
-----------------------	---------

Modulname	Einführung in die Psychologie für Informatiker			
Nummer	4299450	Modulversion	V2-4299450-E-079	
Kurzbezeichnung	INF-STD-45-2	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	1 Semester	Einrichtung	Institut für Psychologie	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Mark Vollrath	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56	Selbststudium (h)	94	
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur, 90 Minuten oder mündliche Prüfung, 30 Minuten			
Zu erbringende Studienleistung	Teilnahme-Nachweis in Form eines Kurzreferats, eines Protokolls oder einer Zusatz- aufgabe			

- Einführung in die Grundlagen- und Anwendungsfächer der Psychologie
- Einführung in die wissenschaftstheoretischen, methodischen, anthropologischen, historischen und ethischen Grundlagen der Psychologie
- Überblick über Formen der Verhaltenssteuerung (Reflexe, Instinktverhalten, Habituation und Sensitivierung, Prägung, Klassische Konditionierung, Operante Konditionierung, Reizkontrolle, Vermeidungsverhalten), die sie realisierenden neuronalen Mechanismen und ihren adaptiven Wert
- Überblick über die zentralen mentalen Prozesse des Menschen (Grundlagen der Wahrnehmung, die Rolle der Aufmerksamkeit, Gedächtnis, Bewusstsein und Handlungssteuerung, Emotion und Motivation

Qualifikationsziel

- Die Studierenden verfügen über erste Kenntnisse und einen Überblick über die wichtigsten Grundlagenund Anwendungsfächer der Psychologie sowie ihrer wissenschaftstheoretischen, methodischen, anthropologischen, historischen und ethischen Grundlagen.
- Sie erkennen, dass Psychologie eine empirische Wissenschaft ist.
- Die Studierenden verfügen über grundlegende Kenntnisse der Verhaltenspsychologie, zentraler mentaler Prozesse des Verhaltens und der Verhaltenssteuerung.

Schlüsselkompetenzen:

Lesen wissenschaftlicher Texte, Arbeitstechniken zur Recherche und Auswertung wissenschaftlicher Literatur, Fähigkeit, Theorien und empirische Befunde zu verstehen und methodisch zu reflektieren

Literatur

Literaturquellen variieren - je nach gewählter Lehrveranstaltung

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Für den Abschluss dieses Moduls müssen zwei der angebotenen Veranstaltungen erfolgreich absolviert werden. Dabei muss in einer der beiden ausgewählten Veranstaltungen eine Prüfung abgelegt werden, die zweite Veranstaltung wird als Studienleistung eingebracht. Alle Veranstaltungen werden im Wintersemester angeboten.

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache
Allgemeine Psychologie I	2,0	Vorlesung	deutsch
Literaturhinweise			
Wird in der Veranstaltung bekannt gegeben.			
Allgemeine Psychologie II	2,0	Vorlesung	deutsch
Literaturhinweise	·		
Wird in der Veranstaltung bekannt gegeben.			

Modulname	Grundlagengebiete in der Psychologie für Informatiker			
Nummer	4299460	Modulversion	Erstellt am 18.04.2023	
Kurzbezeichnung	INF-STD-46-2	Sprache	deutsch	
Turnus	in jedem Semester	Lehreinheit	Fakultät für Lebenswissenschaften	
Moduldauer	2 Semester	Einrichtung	Institut für Psychologie	
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Mark Vollrath	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)		Selbststudium (h)		
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur, 90 Minuten oder mündliche Prüfung, 30 Minuten			
Zu erbringende Studienleistung	Teilnahme-Nachweis in Form eines Kurzreferats, eines Protokolls oder einer Zusatz- aufgabe			

- wichtige Konzepte aus der Sozialpsychologie (z.B. Einstellungen, Gruppenprozesse, interpersonale Beziehungen, Aggression und Hilfeverhalten), methodische Vorgehensweisen in der Sozialpsychologie (insbes. Experimente und Korrelationsstudien), Anwendungsfelder der Sozialpsychologie
- aktuelle Konzeptionen der Psychologie der Lebensspanne, Meilensteine der physischen, kognitiven, sozialen und emotionalen Entwicklung, Entwicklungstheorien, Entwicklungspsychologische Untersuchungsmethoden und Forschungsdesigns,(Interindividuelle) Entwicklungsverläufe und ihre Kontextabhängigkeit
- Anthropologische, historische, wissenschaftstheoretische und methodische Grundlagen
- Persönlichkeitstheorien, Erfassung und Klassifikation der Persönlichkeit, Entstehung interindividueller Unterschiede, Zusammenhänge zwischen Persönlichkeits-struktur und Psychopathologie, Entwicklungspotentiale der Persönlichkeit

Qualifikationsziel

- Die Studierenden verfügen über grundlegende Kenntnisse über das Erleben und Verhalten von Menschen im sozialen Kontext. Hierzu gehört die Wahrnehmung und aktive Gestaltung sozialer Situationen wie auch die Beeinflussung des Menschen durch Andere.
- Sie sind in der Lage, die vorhandenen Modelle kritisch einzuschätzen sowie empirische Befunde zur Sozialpsychologie zu verstehen und Schlussfolgerungen daraus zu ziehen.
- Die Studierenden verfügen über grundlegende Kenntnisse der menschlichen Entwicklung über die Lebesspanne. Sie sind mit den physischen, kognitiven und sozialen Entwicklungsprozessen in den unterschiedlichen Lebensabschnitten vertraut.
- Sie verfügen über Kenntnisse von Entwicklungsverläufen einschließlich ihrer interindividuellen Unterschiede und Kontextabhängigkeit.
- Die Studierenden sind mit den Theorien, Modellen und Methoden der Persönlichkeitspsychologie vertraut. Sie kennen die biologischen, kognitiven, sozialen und kulturellen Voraussetzungen, die jeden Menschen zu einem einmaligen und einzigartigen Individuum machen.
- Die Studierenden kennen Ansätze zur Klassifikation der Persönlichkeit und sind sich der methodischen und praktischen Probleme und Grenzen der Typisierung und Klassifikation bewusst.

Literatur

Literaturquellen variieren - je nach gewählter Lehrveranstaltung

ZUGEHÖRIGE LEHRVERANSTALTUNGEN

Belegungslogik bei der Wahl von Lehrveranstaltungen

Für den Abschluss dieses Moduls müssen zwei der angebotenen drei Veranstaltungen gewählt werden. Dabei muss in einer der beiden ausgewählten Veranstaltungen eine Prüfung abgelegt werden, die zweite Veranstaltung wird als Studienleistung eingebracht.

Die VL "Psychologie der Persönlichkeit" wird jeweils im WS angeboten. Die VL "Sozialpsychologie" und die VL "Entwicklung über die Lebensspanne" jeweils im SS.

Anwesenheitspflicht

Titel der Veranstaltung	sws	Art LVA	Sprache
Psychologie der Persönlichkeit	2,0	Vorlesung	deutsch
Literaturhinweise			,
Dommonyor T & Woher H (2010) Differentially Dayshalagia	Doroënlichl	coltatha a miara C #4	tin man.

Rammsayer, T. & Weber, H. (2010). Differentielle Psychologie – Persönlichkeitstheorien. Göttingen: Hogrefe.

Entwicklung über die Lebensspanne	2,0	Vorlesung	deutsch
Sozialpsychologie	2,0	Vorlesung	deutsch

Literaturhinweise

Jonas, K., Stroebe, W., & Hewstone, M. (Hrgs.). (2023). Sozialpsychologie. Springer-Verlag.

Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben.

ebenfach Raumfahrttechnik	10 ECTS
---------------------------	---------

Modulname	Raumfahrttechnische Grundlagen		
Nummer	2514560	Modulversion	
Kurzbezeichnung	MB-ILR-56	Sprache	deutsch
Turnus	in jedem Semester	Lehreinheit	Fakultät für Maschinen- bau
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Dr. Carsten Wiedemann
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Es wird ein grundlegendes Verstär menhänge empfohlen.	ndnis physikalischer und r	mathematischer Zusam-
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (120 min) oder mündliche Prüfung (45 min)		
Zu erbringende Studienleistung			

Grundlagen der Raumflugmechanik:

- · Freiflugbahnen im zentralen Gravitationsfeld
- Keplerbahnen
- Ellipsen- und Kreisbahnen
- Planetenbahnen
- Satellit am Seil
- Hyperbelbahnen
- Bahnen mit Antrieb und Luftwiderstand
- · Verluste und Gewinne beim Raketenaufstieg
- Bahnen mit Schubimpulsen
- Bahnübergänge
- interplanetare Missionen
- Bahnen bei kontinuierlichem
- schwachem Schub.

Grundlagen der Raketentechnik:

- · Rückstoßprinzip und Raketen-Grundgleichung
- Massenverhältnisse
- Mehrstufenraketen
- Grundlagen der Raketentriebwerke
- Grundlagen chemischer Antriebe
- Trägerraketen und Raumtransporter

Qualifikationsziel

Die Studierenden können grundlegende Bahnelemente benennen und damit die Form und Lage einer Umlaufbahn beschreiben. Sie sind fähig, die Bedeutung der Bahnelemente zu erläutern. Sie können einfache Bahnen von Satelliten oder Raumsonden in den einzelnen Missionsphasen zu berechnen. Sie sind in der Lage, den daraus resultierenden Antriebsbedarf zu berechnen und somit die Massenbilanzen für eine komplette Mission zu bestimmen. Sie sind in der Lage, Bahnübergängen und interplanetare Missionen zu

analysieren. Sie verfügen über grundlegende Kenntnisse der Bahnmechanik sowie der Raketentechnik. Sie können die Auswahl von Raketenstufenzahlen und Treibstoffkombinationen beurteilen.

Literatur

- David A. Vallado, Fundamentals of Astrondynamics and Applications, Microcosm Press, Hawthorne, CA and Springer, New York, NY, 2007.
- Oliver Montenbruck, Eberhard Gill, Satellite Orbits Models Methods Applications, Springer-Verlag, Berlin Heidelberg 2000.
- George P. Sutton, Oscar Biblarz, Rocket Propulsion Elements, John Wiley & Sons, 2001.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Vorlesung und Übung sind zu belegen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Raumfahrttechnische Grundlagen	2,0	Vorlesung	deutsch
Raumfahrttechnische Grundlagen	1,0	Übung	deutsch

Modulname	Raumfahrttechnik bemannter Systeme			
Nummer	2514070	Modulversion		
Kurzbezeichnung	MB-ILR-07	Sprache	deutsch	
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Maschinen- bau	
Moduldauer	1	Einrichtung		
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Simona Silve- stri	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	42	Selbststudium (h)	108	
Zwingende Voraussetzungen				
Empfohlene Voraussetzungen	Es wird ein grundlegendes Verstär menhänge empfohlen.	Es wird ein grundlegendes Verständnis physikalischer und mathematischer Zusammenhänge empfohlen.		
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (120 min) oder mündliche Prüfung (45 min)			
Zu erbringende Studienleistung				

- · Geschichte und Zukunft der Raumfahrt
- Nahrung im Weltraum
- Medizinische Auswirkungen der Raumfahrt
- Internationale Raumstation (ISS): Montage und Konfiguration, europäische Beiträge, Columbus-Modul
- Trägersysteme für ISS-Nachschub und Crew-Rotation. ISS-Nutzlastübersicht: Forschung, Nutzlast-Komponenten
- Außenbordmanöver: amerikanische und russische Raumanzüge, amerikanische und russische Luftschleusen. ISS Robotik. ISS-Subsysteme.
- Astronautentraining und Missionsbetrieb: Auswahl und Training von Astronauten, ISS-Missionskontrollzentren und -betrieb, Eurocom und COSMO.
- Projektmanagement in der Raumfahrt: Grundlagen, Geschichte, Definitionen, Life-Cycle Cost, Design-to-Cost, Angebotsmanagement, Methoden der Gestaltung und Leitung von Sitzungen, Neueste Entwicklungen im Program Management, Lean und Total Quality Management, Kaizen und Business-Reengineering, Geschäftsprozess-Optimierung und Muda, Lean Management und Benchmarking, agiles Projektmanagement, Scrum.

Qualifikationsziel

Die Studierenden können die Module der ISS und benennen und ihren Einsatz für wissenschaftliche Aufgaben beschreiben. Sie sind in der Lage, die Funktionsweise der Subsysteme der Raumstation zu erklären und ihre Funktionsweise zu erläutern. Sie können den wissenschaftlichen Beitrag des Columbus Moduls darstellen. Sie sind in der Lage, die europäischen Beiträge zur ISS zu beurteilen. Sie sind fähig, den Einfluss menschlicher Faktoren im Rahmen des Betriebes der ISS zu berücksichtigen. Sie sind in der Lage, moderne Verfahren des Projektmanagements anzuwenden. Sie kennen die Anforderungen an das Management anspruchsvoller Projekte am Beispiel einer Raumstation sowohl auf technischer Ebene, als auch auf Seiten der Astronauten

Literatur

- Wiley J. Larson, Linda K. Pranke, Human Spaceflight: Mission Analysis and Design (Space Technology Series), McGraw-Hill Companies, 1. edition (October 26, 1999), ISBN-10: 007236811X.
- Ernst Messerschmid, Reinhold Bertrand, Space Stations: Systems and Utilization, Springer, 1. edition (June 11, 1999), ISBN-10: 354065464X.

• Jürg Kuster, Eugen Huber, Robert Lippmann, Alphons Schmid, Emil Schneider, Urs Witschi, Roger Wüst, Handbuch Projektmanagement, Springer, 2. überarb. Aufl. (March 1, 2008), ISBN-10: 3540764313.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltunge	n		
			·
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache
Raumfahrttechnik bemannter Systeme	2,0	Vorlesung	deutsch
Raumfahrttechnik bemannter Systeme	1,0	Übung	deutsch

Modulname	Satellitentechnik und Satellitenbetrieb		
Nummer	2514620	Modulversion	
Kurzbezeichnung	MB-ILR-62	Sprache	deutsch
Turnus	nur im Sommersemester	Lehreinheit	Fakultät für Maschinen- bau
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Dr. Carsten Wiedemann
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	150	Selbststudium (h)	108
Zwingende Voraussetzungen			
Empfohlene Voraussetzungen	Es wird ein grundlegendes Verständnis physikalischer und mathematischer Zusammenhänge empfohlen.		
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: Klausur (120 min) oder mündliche Prüfung (45 min)		
Zu erbringende Studienleistung			

- Das System Satellit
- typische Subsysteme in einem Satelliten (wie z.B. Payload, Kommunikation, OBDH, Thermal, Lageregelung etc.)
- typische Hardwarekomponenten
- Algorithmen und Auslegungsrechnungen
- Grundlegende Konzepte zum operationellen Betrieb von Satelliten (nomineller Betrieb, Fehleranalyse und Fehlerbehebung).

Qualifikationsziel

Die Studierenden verfügen über die Grundlagen der Satellitentechnik und des operationellen Betriebes von Satelliten. Sie können die Subsysteme benennen und den Satelliten als Gesamtsystem definieren. Sie sind in der Lage, die Anforderungen an die Nutzlast als wesentliches Auslegungskriterium zu erklären und deren Auswirkung auf die Subsysteme zu formulieren. Sie können daraus die Eingabeparameter für die Subsysteme berechnen und diese detailliert auslegen. Sie sind in der Lage, die Interaktion der einzelnen Subsysteme im nominellen Zustand zu analysieren. Sie können die Auswirkung der Parameter des Satelliten auf den auf dessen Betrieb beurteilen. Sie sind in der Lage, eine Satellitenmission generell planen zu können.

Literatur

- James R. Wertz, Wiley J. Larson, Space Mission Analysis and Design, Microcosm.
- Marcel J. Sidi, Spacecraft Dynamics and Control: A Practical Engineering Approach, Cambridge University Press.
- Ulrich Walter, Astronautics: The Physics of Space Flight, Wiley-VCH Verlag
- James R. Wertz, Spacecraft Attitude Determination and Control, Springer Verlag.
- Thomas Uhlig, Florian Sellmaier, Michael Schmidhuber, Spacecraft Operations, Springer Verlag.

T

ZUGEHÖRIGE LEHRVERANSTALTUNGEN				
Belegungslogik bei der Wahl von Lehrveranstaltungen				
Anwesenheitspflicht				
Titel der Veranstaltung	sws	Art LVA	Sprache	
Satellitentechnik	2,0	Vorlesung	deutsch	
Satellitentechnik	1,0	Übung	deutsch	

10 ECTS

Nebenfach Signalverarbeitung

Modulname	Grundlagen der Digitalen Signalverarbeitung		
Nummer	2424480	Modulversion	
Kurzbezeichnung	ET-NT-48	Sprache	deutsch
Turnus	in jedem Semester	Lehreinheit	Fakultät für Elektrotech- nik, Informationstechnik, Physik
Moduldauer	1	Einrichtung	
SWS / ECTS	3 / 5,0	Modulverantwortli- che/r	Prof. Dr. Tim Fing- scheidt
Arbeitsaufwand (h)	150		
Präsenzstudium (h)	42	Selbststudium (h)	108
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	Klausur 120 Minuten oder mündliche Prüfung 30 Minuten		
Zu erbringende Studienleistung			

Inhalte

- Zeitdiskrete Signale und Systeme
- Fourier-Transformation für zeitdiskrete Signale und Systeme
- Die z-Transformation
- Entwurf von rekursiven IIR-Filtern
- Entwurf von nichtrekursiven FIR-Filtern
- Die diskrete Fourier-Transformation (DFT) und die schnelle Fourier-Transformation (FFT)
- Multiratensysteme

Qualifikationsziel

Nach Abschluss dieses Moduls einschl. der enthaltenen Rechnerübung verfügen die Studierenden über grundlegendes Wissen zu den Werkzeugen der digitalen Signalverarbeitung im Zeit- und Frequenzbereich und können diese Werkzeuge auf entsprechende Problemstellungen anwenden.

Literatur

- Vorlesungsfolien
- A.V. Oppenheim, R.W. Schafer, J.R. Buck: "Zeitdiskrete Signalverarbeitung", Pearson Verlag, 2004
- K.D. Kammeyer, K. Kroschel: "Digitale Signalverarbeitung", Teubner Verlag, 2002
- A.V. Oppenheim, R.W. Schafer, J.R. Buck: "Discrete Time Signal Processing", Prentice-Hall, 2004
- H.-W. Schüßler: "Digitale Signalverarbeitung 1" , Springer Verlag, 1994

Hinweise

Deutsch

ZUGEHÖRIGE LEHRVERANSTALTUNGEN Belegungslogik bei der Wahl von Lehrveranstaltungen Anwesenheitspflicht Titel der Veranstaltung **SWS Art LVA** Sprache Digitale Signalverarbeitung 2,0 deutsch Vorlesung Literaturhinweise • A. V. Oppenheim, R. W. Schafer, J. R. Buck: Zeitdiskrete Signalverarbeitung, Pearson Studium, 2004 K. D. Kammeyer, K. Kroschel: Digitale Signalverarbeitung, Teubner Verlag, 2002 A. V. Oppenheim, R. W. Schafer, J. R. Buck: Discrete Time Signal Processing, Prentice Hall, 2004 H.-W. Schüßler: Digitale Signalverarbeitung, Springer Verlag, 1994 Digitale Signalverarbeitung 1,0 Übung deutsch Literaturhinweise siehe Vorlesung

Modulname	Sprachkommunikation			
Nummer	2424500	Modulversion		
Kurzbezeichnung	ET-NT-50	Sprache	deutsch	
Turnus	nur im Wintersemester	Lehreinheit	Fakultät für Elektrotech- nik, Informationstechnik, Physik	
Moduldauer	1	Einrichtung		
SWS / ECTS	4 / 5,0	Modulverantwortli- che/r	Prof. Dr. Tim Fing- scheidt	
Arbeitsaufwand (h)	150			
Präsenzstudium (h)	56 Selbststudium (h) 94			
Zwingende Voraussetzungen				
Zu erbringende Prüfungsleistung/ Prüfungsform	Mündliche Prüfung 30 Minuten oder Klausur 90 Minuten (nach Teilnehmerzahl)			
Zu erbringende Studienleistung	Kolloquium oder Protokoll des Labors als Leistungsnachweis			

- Sprachentstehung
- Sprachwahrnehmung
- · Lineare Prädiktion und Sprachmodellierung
- Sprachcodierung
- Störgeräuschreduktion
- Echokompensation

Qualifikationsziel

Nach Abschluss des Moduls sind die Studierenden zur digitalen Verarbeitung von Sprachsignalen befähigt und können erlangte Kenntnisse zur Sprachentstehung und Sprachwahrnehmung, zu Algorithmen und Methoden der Sprachverbesserung, Sprachcodierung, Sprachübertragung in Mobilkommunikationssystemen sowie Voice over IP anwenden.

Literatur

- Kopien der Vorlesungsfolien
- P. Vary u. R. Martin: Digital Speech Transmission, Wiley 2006

Hinweise

Dieses Modul aus dem Masterprogramm ist auch für Bachelor geeignet. Grundkenntnisse der digitalen Signalverarbeitung, wie sie z.B. im Modul #Grundlagen der Signalverarbeitung# erworben werden, erleichtern das Verständnis der Vorlesung. Grundkenntnisse der Wahrscheinlichkeitsrechnung sind ebenfalls hilfreich.

ZUGEHÖRIGE LEHRVERANSTALTUNGEN					
Belegungslogik bei der Wahl von Lehrveranstaltungen					
Anwesenheitspflicht					
Titel der Veranstaltung	sws	Art LVA	Sprache		
Sprachkommunikation	2,0	Vorlesung	deutsch		
Literaturhinweise		-			
Kopien der Vorlesungsfolien P.Vary u. R.Martin: Digital Speech Transmission, Wiley 2006					
Rechnerübung "Sprachkommunikation"	2,0	Labor	deutsch		
Literaturhinweise					
siehe Vorlesung					

Bachelorarbeit	12 ECTS
----------------	---------

Modulname	Bachelorarbeit Informatik		
Nummer	4299740	Modulversion	
Kurzbezeichnung	INF-STD-74	Sprache	deutsch
Turnus	in jedem Semester	Lehreinheit	Carl-Friedrich-Gauß- Fakultät
Moduldauer		Einrichtung	
SWS / ECTS	0 / 12,0	Modulverantwortli- che/r	Studiendekan der Informatik
Arbeitsaufwand (h)	360		
Präsenzstudium (h)	1	Selbststudium (h)	359
Zwingende Voraussetzungen			
Zu erbringende Prüfungsleistung/ Prüfungsform	1 Prüfungsleistung: schriftliche Ausarbeitung (Abschlussarbeit) incl. Vortrag. Der Vortrag kann gemäß § 4 Absatz 8 mit bis zu 3 von 12 Leistungspunkten in die Bewertung eingehen.		
Zu erbringende Studienleistung			

Die Inhalte sind abhängig von der konkreten Aufgabenstellung.

Qualifikationsziel

Die Studierenden sind in der Lage, sich selbstständig in ein Thema einzuarbeiten und dieses unter Anwendungen ausgewählter wissenschaftlicher Methoden zu bearbeiten.

Sie sind befähigt, Vorgehensweise und Ergebnisse in Ausarbeitung aufzubereiten und die wesentlichen Ergebnisse in verständlicher Form zu präsentieren. Darüber können Sie die Literatursuche betreiben und die Arbeit in einen Kontext einordnen. Auch haben Sie Schlüsselqualifikationen geübt und gefestigt wie das Management eines eigenen Projekts, Präsentationstechniken oder die Verfeinerung rhetorischer Fähigkeiten.

Literatur

Die Literaturquellen sind abhängig von der konkreten Aufgabenstellung.

1

ZUGEHÖRIGE LEHRVERANSTALTUNGEN			
Belegungslogik bei der Wahl von Lehrveranstaltungen			
Anwesenheitspflicht			
Titel der Veranstaltung	sws	Art LVA	Sprache

Technische Universität Braunschweig	Modulnandbuch: Informatik (Bachelol	r)