Publikationen und Patente



[29] Koopmeiners J, Diederich C, Solarczek J, Voß H, Mayer J, Blankenfeldt W, Schallmey A. HheG, a halohydrin dehalogenase with activity on cyclic epoxides. ACS Catal. 2017;7:6877–6886. doi: 10.1021/acscatal.7b01854

[28] Picart P, Liu L, Grande PM, Anders N, Zhu L, Klankermayer J, Leitner W, Dominguez de Maria P, Schwaneberg U, Schallmey A. Multi-step biocatalytic depolymerization of lignin. Appl Microbiol Biotechnol. 2017;101:6277–6287. doi: 10.1007/s00253-017-8360-z


[27] Schallmey A, Schallmey M. Recent advances on halohydrin dehalogenases - from enzyme identification to novel biocatalytic applications. Appl Microbiol Biotechnol. 2016;100:7827–7839. doi: 10.1007/s00253-016-7750-y

[26] Koopmeiners J, Halmschlag B, Schallmey M, Schallmey A. Biochemical and biocatalytic characterization of 17 novel halohydrin dehalogenases. Appl Microbiol Biotechnol. 2016;100:7517–7527. doi: 10.1007/s00253-016-7493-9

[25] Picart P, Wiermans L, Perez-Sanchez M, Grande PM, Schallmey A, Dominguez de Maria P. Assessing lignin types to screen novel biomass-degrading microbial strains: Synthetic lignin as useful carbon source. ACS Sustain Chem Eng. 2016;4:651–655. doi: 10.1021/acssuschemeng.5b00961


[24] Schallmey A. Enzymatische Ligninverwertung durch bakterielle β-Etherasen. BIOspektrum. 2015;21:487–489. doi: 10.1007/s12268-015-0605-8

[23] Picart P, Dominguez de Maria P, Schallmey A. From gene to biorefinery: Microbial β-etherases as promising biocatalysts for lignin valorization. Front Microbiol. 2015;6:916. doi: 10.3389/fmicb.2015.00916

[22] Picart P, Sevenich M, Dominguez de Maria P, Schallmey A. Exploring glutathione lyases as biocatalysts: Paving the way for enzymatic lignin depolymerization and future stereoselective applications. Green Chem. 2015;17:4931–4940. doi: 10.1039/C5GC01078K


[21] Schallmey M, Koopmeiners J, Wells E, Wardenga R, Schallmey A. Expanding the halohydrin dehalogenase enzyme family: Identification of novel enzymes by database mining. Appl Environ Microb. 2014;80:7303–7315. doi: 10.1128/AEM.02490-14

[20] Herzog K, Bracco P, Onoda A, Hayashi T, Hoffmann K, Schallmey A. Enzyme-substrate complex structures of CYP154C5 shed light on its mode of highly selective steroid hydroxylation. Acta Crystallogr D Biol Crystallogr. 2014;D70:2875–2889. doi: 10.1107/S1399004714019129

[19] Picart P, Müller C, Mottweiler J, Wiermans L, Bolm C, Dominguez de Maria P, Schallmey, A. From gene towards selective biomass valorization: Novel bacterial beta-etherases with catalytic activity on lignin-like polymers. ChemSusChem. 2014;7:3164–3171. doi: 10.1002/cssc.201402465


[18] Wiermanns L, Hofzumahaus S, Schotten C, Weigand L, Schallmey M, Schallmey A, Dominguez de Maria P. Transesterifications and peracid-assisted oxidations in aqueous media catalyzed by Mycobacterium smegmatis acyl transferase. ChemCatChem. 2013;5:3719–3724. doi: 10.1002/cctc.201300683

[17] Schallmey A, Schallmey M, Wardenga R. Identifikation neuartiger Halohydrin-Dehalogenasen. BIOspektrum. 2013;19:816–817. doi: 10.1007/s12268-013-0394-x

[16] Bracco P, Janssen DB, Schallmey A. Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microb Cell Fact. 2013;12:95. doi: 10.1186/1475-2859-12-95

[15] Schallmey A, Dominguez de Maria P, Bracco P. Biocatalytic asymmetric oxidations in stereoselective synthesis. In: Andrushko V, Andrushko N, editors. Stereoselective Synthesis of Drugs & Natural Products. Hoboken (NJ): Wiley-Blackwell; 2013. p. 1089–1114. ISBN: 978-1-118-03217-6 doi: 10.1002/9781118596784.ssd036

[14] Hofzumahaus S, Schallmey A. Escherichia coli-based expression system for the heterologous expression and purification of the elicitin beta-cinnamomin from Phytophthora cinnamomi. Protein Expr Purif. 2013;90117–123. doi: 10.1016/j.pep.2013.05.010


[13] Hollmann F, Arends IWCE, Buehler K, Schallmey A, Bühler, B. Enzyme-mediated oxidations for the chemist. Green Chem. 2011;13:226–265. doi: 10.1039/C0GC00595A

[12] Schallmey A, den Besten G, Teune IGP, Kembaren RF, Janssen DB. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca. Appl Microbiol Biotechnol. 2011;89:1475–1485. doi: 10.1007/s00253-010-2965-9

Bis 2010

[11] *Kirschner A, Bornscheuer UT. Enantioselective kinetic resolution of racemic 3-phenylbutan-2-one using a Baeyer–Villiger monooxygenase. In: Whittall J, Sutton P, editors. Practical Methods for Biocatalysis and Biotransformations. Chichester (UK): John Wiley & Sons; 2009. p. 137–140. ISBN: 978-0-470-51927-1 doi: 10.1002/9780470748589.ch11

[10] *Kirschner A, Bornscheuer UT. Baeyer-Villiger monooxygenases in organic synthesis. In: Anastas PT, Crabtree RH, eitors. Handbook of Green Chemistry – Green Catalysis, Vol. 3: Biocatalysis. Weinheim (Germany): Wiley-VCH; 2009. p. 115–149. ISBN: 978-3-527-32498-9 doi: 10.1002/9783527628698

[9] *Kirschner A, Bornscheuer UT. Directed evolution of a Baeyer-Villiger monooxygenase to enhance enantioselectivity. Appl Microbiol Biotechnol. 2008;81:465–472. doi: 10.1007/s00253-008-1646-4

[8] Völker A, *Kirschner A, Bornscheuer UT, Altenbuchner J. Functional expression, purification and characterization of the recombinant Baeyer-Villiger monooxygenase MekA from Pseudomonas veronii MEK700. Appl Microbiol Biotechnol. 2008;77:1251–1260. doi: 10.1007/s00253-007-1264-6

[7] Rehdorf J, *Kirschner A, Bornscheuer UT. Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440. Biotechnol Lett. 2007;29:1393–1398. doi: 10.1007/s10529-007-9401-y

[6] Geitner K, *Kirschner A, Rehdorf J, Schmidt M, Mihovilovic MD, Bornscheuer UT. Enantioselective kinetic resolution of 3-phenyl-2-ketones using Baeyer-Villiger monooxygenases. Tetrahedron Asymmetry. 2007;18:892–895. doi: 10.1016/j.tetasy.2007.03.025

[5] *Kirschner A, Altenbuchner J, Bornscheuer UT. Design of a secondary alcohol degradation pathway from Pseudomonas fluorescens DSM 50106 in an engineered Escherichia coli. Appl Microbiol Biotechnol. 2007;75:1095–1101. doi: 10.1007/s00253-007-0902-3

[4] *Kirschner A, Altenbuchner J, Bornscheuer UT. Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli. Appl Microbiol Biotechnol. 2007;73:1065–1072. doi: 10.1007/s00253-006-0556-6

[3] *Kirschner A, Bornscheuer UT. Kinetic resolution of 4-hydroxy-2-ketones catalyzed by a Baeyer-Villiger monooxygenase. Angew Chem Int Ed. 2006;45:7004–7006. doi: 10.1002/anie.200602986

[2] Strübing D, *Kirschner A, Neumann H, Hübner S, Klaus S, Bornscheuer UT, Beller M. Synthesis of enantiomerically pure cyclohex-2-en-1-ols: Development of novel multicomponent reactions. Chem Eur J. 2005;11:4210–4218. doi: 10.1002/chem.200401258

[1] *Kirschner A, Langer P, Bornscheuer UT. Lipase-catalyzed highly enantioselective kinetic resolution of racemic alpha-hydroxy butenolides. Tetrahedron Asymmetry. 2004;15:2871–2874. doi: 10.1016/j.tetasy.2004.06.047


Bornscheuer UT, *Kirschner A, inventors. Enantioselective representation of aliphatic acyclic esters and ketones. German patent DE200610039189. World patent WO2008022627. European patent EP2054510. 2010.

(* Geburtsname)

  aktualisiert am 29.09.2017
TU_Icon_E_Mail_1_17x17_RGB Zum Seitenanfang