Identification of metabolically active microbial communities in sediments by two independent RNA-based *in vivo* labeling techniques

Marion Pohlner, Saranya Kanukollu, Heribert Cypionka, Bert Engelen
Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Germany; www.pmbio.icbm.de

Methods & Results

Experimental approach SIP versus DIG-labeling

<table>
<thead>
<tr>
<th>Sediment incubations</th>
<th>RNA extraction</th>
<th>Separation of labeled and unlabeled RNA</th>
<th>Transcription of RNA into cDNA by RT-PCR</th>
<th>Analysis of active microbial community by targeting the 16S rRNA</th>
</tr>
</thead>
</table>

Community structure of metabolically active microorganisms

- DGGE analysis of *de novo* synthesized RNA indicated high similarities between banding patterns of both approaches (Fig. 4)
- Distinct bacterial communities were identified for the oxic and anoxic layers
- Unlabeled RNA targets showed inactive background community

Labeling efficiency of the DIG method

- Up to 15% of the total RNA was labeled by the DIG method
- Increasing numbers of 16S rRNA targets indicated high activity
- Higher increase of targets in anoxic than in oxic incubations

Conclusions

- DIG-labeling was shown to be an appropriate method for the identification of metabolically active bacteria in sediments
- Advantages of the DIG method over SIP:
 - Short incubation times
 - Universal incorporation of the label into RNA independent from the investigated substrate

Outlook

- Detailed data analysis of active microbial community with pyrosequencing
- Application of the DIG method with various substrates and sedimentary settings