The uncertainty budget in pharmaceutical industry

Kaj Heydorn
Department of Chemistry
Definition of Uncertainty

Parameter, associated with the result of a measurement, that characterizes the dispersion of the values that could reasonably be attributed to the measurand

VIM/GUM

Uncertainty budget

Definition

List of sources of uncertainty and their associated standard uncertainties, compiled with a view to evaluating a combined standard uncertainty associated with a measurement result

ISO/TS 21748:2004(E)
Measurements in the pharmaceutical industry I

serve to ascertain

The Quality of a product

The Control of a process

Measurements in the pharmaceutical industry II

serve to demonstrate

• Compliance with specifications
• Conformity with regulations
• Potency of the product
Measurements in the pharmaceutical industry should fulfil requirements in

- Pharmacopoeias
- ICH Guidelines
- ISO-10576
- GUM

Specified limits take into account:

- Acceptable variations in production
- Normal analytical errors in validated procedures
- Acceptable deterioration of reference substances and other materials

Therefore: Compliance testing needs no further tolerances needs no statement of uncertainty
ICH Guidelines

Q2A: Validation of analytical procedures
to ascertain reproducible product quality
maintain control of stability

Q2B: Terminology and Methodology
validation characteristics
adequate reference materials

Legal or global regulations

Specified limits do not take into account:
- Differences in analytical methods
- Variations in performance
- Deterioration of reference substances and other materials

Therefore: Conformity testing
needs bias correction
and statement of uncertainty
Conformity testing according to ISO 10576

Definition of the Measurand

“Quantity intended to be measured”

VIM 3 (2004)
Equivalent terms

<table>
<thead>
<tr>
<th>ICH/OMCL</th>
<th>ISO GUM/VIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Measurand</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Trueness</td>
</tr>
<tr>
<td>Intra-assay precision</td>
<td>Repeatability</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>Reproducibility</td>
</tr>
<tr>
<td>No exact equivalent</td>
<td>Uncertainty components</td>
</tr>
<tr>
<td>Typical variations</td>
<td>Determination of a major component</td>
</tr>
</tbody>
</table>

Determination of a parameter

TESTING
- Test result in arbitrary units
- method dependent
- accepted method
- reproducibility

MEASUREMENT
- Analytical result in SI-units
- method independent
- traceability
- uncertainty
Requirements for accreditation

Test reports shall include

where applicable, a statement on the estimated uncertainty of measurement

ISO/IEC 17025:1999

Uncertainty Budgets Why?

1) Applicable to non-routine analysis
2) Adapts readily to modifications
3) Points out major sources of variability
4) Permits adaptation to analytical needs
5) Offers elimination of unnecessary effort
Uncertainty Budgets How?

1. Specify measurand
2. Identify uncertainty sources
3. Quantify uncertainty components
4. Calculate combined uncertainty

1 The measurand

\[y = f(x_1, x_2, x_3, \ldots, x_N) \]

\[u_c^2(y) = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i} \right)^2 u^2(x_i) \]
Human Insulin Penfill®

HPLC chromatogram of protein reference
Flow chart for the determination of batch protein concentration

Calculation of the measurand

\[C = \frac{A_1 F_1 + A_2 F_2}{2 A_{ref}} C_{ref} \]
2 Uncertainty sources

- Parameters in the model function
- Environmental and other parameters
- Measurement procedure \(r \) and \(R \)
- Sample or specimen effects
- Calibration and traceability
- Sampling process

Cause and Effect diagrams
ad modum Ishikawa
3 Quantifying uncertainty

- Validation data
- Historical data
- Planned experiments
- Experience
- Specifications
- A priori knowledge

The GUM estimation of uncertainty

- Category A
 Uncertainty components, whose contribution is estimated by statistical methods

- Category B
 Uncertainty components, whose contribution is evaluated by any other method
Evaluation of uncertainty components

- **Type A**
 - Repeatability
 - Homogeneity
 - Interference
 - Calibration

- **Type B**
 - Base-line
 - Carry-over
 - Dilution factor
 - Traceability

Certified Reference Material
VIM 1993

- A Reference Material, accompanied by a certificate
- establishing traceability to a realization of the units of the property values
- each certified value accompanied by a statement of its uncertainty
Ph.Eur. Chemical Reference Substance

- Widely acknowledged as having appropriate qualities
- Value accepted without reliance on comparison to another chemical substance
- Uncertainty is assumed to be negligible
- Value is established for a specific method
- No certificate - report is confidential

Primary Reference Material
Novo PRM

- Certificate issued by NovoNordisk
- No traceability to SI units
- Fulfils specifications with respect to
 - Homogeneity
 - Content according to specified method
 - Comparison within ±2 %
 - Specified impurities below upper limits
4 Combined uncertainty

- Sensitivity coefficients
 \[u_c^2(y) = \sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i} \right) u^2(x_i) \]
- Expanded uncertainty
 \[U(y) = k \cdot u(y) \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
<th>Uncertainty component</th>
<th>Standard uncertainty</th>
<th>Degrees of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>Peak area</td>
<td>100</td>
<td>Abs*min</td>
<td>Analysis</td>
<td>0.58</td>
<td>11</td>
</tr>
<tr>
<td>A_2</td>
<td>Peak area</td>
<td>100</td>
<td>Abs*min</td>
<td>Analysis</td>
<td>0.58</td>
<td>11</td>
</tr>
<tr>
<td>F_1</td>
<td>Dilution factor</td>
<td>4</td>
<td>1</td>
<td>Dilution</td>
<td>0.003</td>
<td>1</td>
</tr>
<tr>
<td>F_2</td>
<td>Dilution factor</td>
<td>4</td>
<td>1</td>
<td>Dilution</td>
<td>0.003</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(\lambda_{\text{ref}})</td>
<td>Calibration</td>
<td>100</td>
<td>mg</td>
<td>Repeatability</td>
<td>0.26</td>
<td>21</td>
</tr>
<tr>
<td>(C_{\text{ref}})</td>
<td>Reference</td>
<td>600</td>
<td>(\mu \text{mol/L})</td>
<td>Calibration</td>
<td>1.7</td>
<td>35</td>
</tr>
<tr>
<td>(\delta_{\text{batch}})</td>
<td>Batch homogeneity</td>
<td>0</td>
<td>(\mu \text{mol/L})</td>
<td>Sampling</td>
<td>8.4</td>
<td>27</td>
</tr>
</tbody>
</table>
Homogeneity contribution

\[C = \frac{A_1 F_1 + A_2 F_2}{2A_{ref}} C_{ref} + \delta \]

Intra-batch heterogeneity contribution \(\delta = 0 \)

Evaluation of Sensitivity coefficients

- Differentiation of the Model function
- Kragten’s Method
- Designed experiment
- Theoretical considerations
Kragten’s method

for combined standard uncertainty

\[
\frac{\partial y}{\partial x_i} = \frac{f(...x_i...)-f(...(x_i-\Delta x_i)...)}{\Delta x_i} \quad \text{for} \quad \Delta x_i \to 0
\]

If \(u(x_i) \ll x_i \) or \(f(...x_i...) \) is linear in \(x_i \)

\[
u(y, x_i) \approx f(...x_i...) - f(...(x_i - u(x_i))...)
\]

Propagation of uncertainty

\[
y = f(x_p, x_j, x_k, \ldots)
\]

\[
p(y|x_p, x_j, x_k)
\]
Contributions to the combined uncertainty

Reporting analytical results

The result of a measurement shall include

- Definition of the measurand
- Reported value of the measurand
- ± its expanded uncertainty
- The coverage factor used
Uncertainty

A result without a statement of uncertainty is useless - because
No conclusions can be made from it

A result with an incorrect statement of uncertainty is dangerous - because
Wrong conclusions can be made from it
Verification of the uncertainty budget

χ^2-distribution with v degrees of freedom

$$T = \sum_{j=1}^{j=m} \frac{(y_{1j} - y_{2j})^2}{u(y_{1j})^2 + u(y_{2j})^2}$$

$v = m$

Evolution - no revolution in the pharmaceutical industry

Uncertainty budgets will be used

1) starting with statutory requirements
2) followed by critical process parameters
3) and environmental conditions
Conclusion

The uncertainty budget is
• a necessity in the age of globalization but it is also
• a tool to optimize and reduce the cost of chemical analysis

Thank you for your attention